
EE249 Lecture

Taken from

Roberto Passerone PhD Thesis

Heterogeneous Models of Computation: An 
Abstract Algebra Approach



Objectives

Provide the foundation to represent different semantic 

domains for the Metropolis metamodel

Study the problem of heterogeneous interaction

Formalize concepts such as abstraction and refinement



An Example of Interaction

Combine a synchronous model with a dataflow model

Synchronous model

 Total order of event

Data flow model

 Partial order of events

Discrete Time model

 Metric order of events



An Example of Heterogeneous 
Interaction

The interaction is derived from a common refinement

of the heterogeneous models

The resulting interaction depends on the particular 

refinements employed

Our objective is to derive the consequences of the 

interaction at the higher levels of abstraction



Data Flow Model

Assume signals take values from a set V

Each signal is a sequence from V (an element of V*)

Let A be the set of signals

One behavior is a function

 f : A  V*

A data-flow agent is a set of those behaviors

a b c d ……………………………

Data flowe f g h ……………………………

i j k l ……………………………



Synchronous Model

Signals are again sequences from V (elements of V*)

… But are synchronized

One element of the sequence is g : A  V

One behavior is a sequence of those functions

 <gi>  ( A  V )*

A synchronous agent is a set of those sequences

…

…

…

g1

…

…

…

g2

…

…

…

g3

…

…

…

g4 …

Synchronous



Discrete Time Model

Assume time is represented by the positive integers N

Then define a behavior

 h: N  ( A  V )

A discrete time agent is a set of those functions

…

…

…

1

…

…

…

2

…

…

…

3

…

…

…

4 …

Discrete Time



Discrete to Synchronous Abstraction

Synchronous

Discrete

ba b c e e

gg j j l m

on p p r s

a b e

g j l

n p r 



Discrete to Data Flow Abstraction

Data flow

Discrete

ba b c e e

gg j j l m

on p p r s

b a c e

g j l m

on p r s

b a c e

g j l m

on p r s



Interaction Propagation

Synchronous Data flow

Discrete

T1
T2

V1 V2V

W1 W2

U1 U2

1. Refinement
2. Composition
3. Projection
4. Abstraction



Objectives

 Provide a semantic foundations for integrating different 
models of computation
 Independent of the design language

 Maximize flexibility for using different levels of 
abstraction
 For different parts of the design

 At different stages of the design process

 For different kinds of analysis

 Support many forms of abstraction

 Model of computation (model of time, synchronization, etc.)

 Scoping

 Structure (hierarchy)



Overview

P1 P2M

S

P1.pZ.write()  P2.pX.read()

pX pZ pX pZ

M’ M’

Meta Model

Pre-Post

Process Networks

Data Flow

Discrete Time

Non-metric Time

Continuous Time

Agent Algebras

Conservative Approximations

Domain of agents with operations: projection, renaming and composition



Scope

 Concentrate on

 Natural semantic domains (sets of agents)

 Relations and functions over semantic domains

 Relationships between semantic domains and their 
relations and functions

Defer worrying about specific abstract syntaxes and 
semantic functions

 Convenient for manual, formal reasoning

 De-emphasizing executable and finitely-representable 
models (for now)



Agents and Behaviors

 For each model of computation we always distinguish between

 the domain of individual behaviors

 the domain of agents

 For different models of computation individual behaviors can be 

very different mathematical objects

 We always call these objects traces

 The nature of the elements of the carrier is irrelevant!

 An agent is primarily a set P of traces

 We call them trace structures

 Also includes the signature: T = ( , P )



Trace structure algebra

Composition
Scoping

Instantiation

Trace algebra

Projection
Renaming

Concatenation

Trace and Trace Structure Algebras

Model of individual behaviors

Model of agents
(semantic domain)

A trace structure
contains a set

of traces

Set of traces

C

Set of trace
structures

A



Essential Elements

Must be able to name elements of the model

 Variables, actions, signals, states

 We do not distinguish among them and refer to them collectively as 
a set of signals W

 Each agent has an alphabet and a signature

 Alphabet:    A  W

 Signature:    = A,  = ( I, O ), etc.

 The operations on traces and trace structures must satisfy 
certain axioms

 The axioms formalize the intuitive meaning of the operations

 They also provide hypothesis used in proving theorems

 Trade-off between generality and structure



Metric Time Traces

 = ( VR , VN , MI , MO )

x = ( , d, f )

f( v ) = [ 0, d ] -> R

f( n ) = [ 0, d ] -> N

f( a ) = [ 0, d ] -> { 0, 1 }

 Model time as a metric space

 Can talk about the difference in time between points in the 
behavior in quantitative terms

 Able to specify timing constraints in quantitative terms

 Able to represent continuous as well as discrete behavior

 Projection and renaming easily defined on the functions



Metric Time Model: Traces

 A trace x models one execution 

of a hybrid system:

 Signature  = ( 

VR: real valued var’s,

VN: integer valued var’s,

MI: input actions,

MO: output actions)

 The alphabet A of x is the union 

of the components of 

 d is a non-negative real number

 Length (in time) of x

 Can be infinity

 f gives values as a function of 

time:

f: VR --> [0, d] --> R,

f: VN --> [0, d] --> N,

f: MI --> [0, d] --> {0, 1},

f: MO --> [0, d] --> {0, 1}.



Metric Time Model: Operations on Traces

 Let x’ = proj(B)(x)

 represents scoping

 B is a subset of A

 ’ and f’ are restricted to 
variables and actions in B

 d’ = d

 Let x’ = rename(r)(x)

 represents instantiation

 r is a one-to-one function 
with domain A

 variables and actions in ’ and 
f’ are renamed by r

 d’ = d

 Let x’’ = x • x’ 

(concatenation)

 represents sequential 
composition

 ’ = , d is finite, and end of 
x matches beginning of x’

 ’’ = 

 d’’ = d + d’

 f’’(v, t) is equal to
f(v, t) for t  d

f’(v, t - d) for t  d



Metric Time Model: Trace Structures

 A trace structure T = (, P) models a process or an agent of a hybrid 
system

 P is a set of traces with signature 

Traits:

 T refines T’ if P  P’

 Natural model for physical components (such as those described with 
differential equations, possibly with discrete control variables)

 Too detailed for many other aspects of embedded systems

 Not a finite representation

 Finite representations, synthesis and verifications algorithms are clearly 
important, but not a focus of this class

 Trace structures constructed the same way for any trace algebra



Metric Time Model: 
Operations on Trace Structures

 Let T’ = proj(B)(T)

 B is a subset of A

 ’ is restricted to variables 
and actions in B

 P’ = proj(B)(P)

 Let T’ = rename(r)(T)

 r is a one-to-one function 
with domain A

 variables and actions in ’ are 
renamed by r

 P’ = rename(r)(P)

 Let T’’ = T || T’ (par. comp.)

 ’’ combines  and ’

 P’’ maximal set s.t.

P = proj(A)(P’’)

P’ = proj(A’)(P’’)

 Let x’’ = x • x’ (seq. comp.)

 ’ = 

 P’’ = P • P’ (roughly)



Non-metric Time Traces

 = ( VR , VN , MI , MO )

x = ( , L )

m( t ) = VR -> R
VN -> N

M -> { 0, 1 }

 Model time as a non-metric space

 Can only talk about precedence in time (including dense time)

 Based on Totally Ordered Multi-Sets

 Totally ordered vertex set V

 Labeling function  from the vertex set V to a set of actions S

 We do not distinguish isomorphic vertex sets



Relationships between Semantic Domains

 Each semantic domain has a refinement order

 Based on trace containment

 T1  T2 means T1 is a refinement of T2

 Guiding intuition: T1  T2 means T1 can be substituted for T2

 Abstraction mapping

 If a function H between semantic domains is monotonic, detailed implies 

abstract: If T1  T2 then H(T1)  H(T2)

 Analogy for real numbers r and s: If r  s then r  s

 Conservative approximations

 A pair of functions  = (l, u) is a conservative approximation if u(T1)  

 l(T2)   implies  T1  T2

 Analogy: r  s implies r  s

 Abstract implies detailed



Trace structure algebra

A’

Trace algebra

C’
“Abstract” Domain

Trace structure algebra

A

Trace algebra

C
“Detailed” Domain

Trace and Trace Structure Algebras

u l
inv

Lower
Bound

Upper
Bound



Deriving Conservative Approximations

Trace structure algebra

A’

Trace structure algebra

A

Trace algebra

C

Trace algebra

C’

Homomorphism
h

u l
inv

“Abstract” Domain

“Detailed” Domain

Derive

Homomorphism: mapping that commutes with the operations of 
projection, renaming and concatenation on traces



Homomorphism

From metric to non-metric

 Must define a notion of event in the metric model

 Must define how to construct the corresponding vertex set

From non-metric to pre-post

 Simply remove the intermediate steps and keep only the end-
points



Metric to Non-Metric Traces

Equivalent traces

 Event: point in time where 
the function changes value

 Homomorphism discards non-
event points

 The information about 
metric time is effectively 
lost



From Metric to Non-metric Time

• f  is stable at t0 if there is  > 0 such that f  is constant on [ t0 -  , t0 ]

• f  has an event at t0 if it is not stable

• Vertex Set   V = { t0 |  f  has an event at t0 }



Building the Upper Bound

Let P be a set of traces, and consider the natural 
extension to sets h( P ) of h

Clearly P  h-1( h( P ) )
 Because h is many-to-one

 This indeed is an upper bound!

 Equality holds if h is one-to-one

Hence define
 u( T ) = ( , h( P ) )



Building the Upper Bound

P

h(P)

h-1( h( P ) )



Building the Lower Bound

We want P  h-1( lb of P )

If x is not in P, then h( x ) should not be in the lower 

bound of P

Hence define

 l( T ) = h( P ) – h( BC( A ) – P )

There is a tighter lower bound



Building the Lower Bound

h( BC(A) – P )

BC( A ) - P

h-1( h( P ) - h( BC(A) – P ) )

h( P ) - h( BC(A) – P )



Conservative Approximations: Inverses

Apply u

u

Consider T such that

u( T ) = l( T ) = T’

l

Apply l



Conservative Approximations: Inverses

Apply u

u

Then inv(T’) = T

Consider T such that

u( T ) = l( T ) = T’

l

Apply l



Can be used to embed 
high-level model in low 
level

Conservative Approximations: Inverses

Apply u

inv

Then inv(T’) = T

Consider T such that

u(T) = l(T) = T’

Apply l



Combining MoCs
Want to compose T1 and T2
from different trace structure 
algebras

T1
T2 Construct a third, more 

detailed trace algebra, with 

homomorphisms to the other 

two

Construct a third trace 

structure algebra

Construct cons. 

approximations and their 

inverses

Map T1 and T2 to T1’ and T2’ 

in the third trace structure 

algebra

Compose T1’ and T2’

inv

T1’

T2’



Conclusions

 Semantic foundations for the Metropolis meta-model

 All models of computation of importance “reside” in a unified 
framework

 They may be better understood and optimized

 Trace Algebra used as the underlying mathematical machinery

 Showed how to formalize a semantic domain for several models of 
computation

 Conservative approximations and their inverses used to relate 
different models


