Heterogeneous Models of Computation: An Abstract Algebra Approach

EE249 Lecture
Taken from
Roberto Passerone PhD Thesis

Objectives

- Provide the foundation to represent different semantic domains for the Metropolis metamodel
-Study the problem of heterogeneous interaction
- Formalize concepts such as abstraction and refinement

An Example of Interaction

-Combine a synchronous model with a dataflow model
-Synchronous model

- Total order of event
- Data flow model
- Partial order of events
- Discrete Time model
- Metric order of events

An Example of Heterogeneous Interaction

- The interaction is derived from a common refinement of the heterogeneous models
- The resulting interaction depends on the particular refinements employed
- Our objective is to derive the consequences of the interaction at the higher levels of abstraction

Data Flow Model

- Assume signals take values from a set V
- Each signal is a sequence from V (an element of V^{\star})

Let A be the set of signals
-One behavior is a function

- f: $A \rightarrow V^{*}$
- A data-flow agent is a set of those behaviors

Synchronous Model

- Signals are again sequences from V (elements of V^{\star})
... But are synchronized
- One element of the sequence is $9: A \rightarrow V$
- One behavior is a sequence of those functions
- $\left\langle g_{i}\right\rangle \in(A \rightarrow V)^{\star}$
$\rightarrow A$ synchronous agent is a set of those sequences

Discrete Time Model

- Assume time is represented by the positive integers N
- Then define a behavior
- $h: N \rightarrow(A \rightarrow V)$
- A discrete time agent is a set of those functions

Discrete to Synchronous Abstraction

Discrete to Data Flow Abstraction

Interaction Propagation

Objectives

- Provide a semantic foundations for integrating different models of computation
- Independent of the design language
- Maximize flexibility for using different levels of abstraction
- For different parts of the design
- At different stages of the design process
- For different kinds of analysis
- Support many forms of abstraction
- Model of computation (model of time, synchronization, etc.)
- Scoping
- Structure (hierarchy)

Overview

Domain of agents with operations: projection, renaming and composition

Scope

-Concentrate on

- Natural semantic domains (sets of agents)
- Relations and functions over semantic domains
- Relationships between semantic domains and their relations and functions
- Defer worrying about specific abstract syntaxes and semantic functions
- Convenient for manual, formal reasoning
- De-emphasizing executable and finitely-representable models (for now)

Agents and Behaviors

- For each model of computation we always distinguish between
- the domain of individual behaviors
- the domain of agents
- For different models of computation individual behaviors can be very different mathematical objects
- We always call these objects traces
- The nature of the elements of the carrier is irrelevant!
- An agent is primarily a set P of traces
- We call them trace structures
- Also includes the signature: $\mathbf{T}=(\gamma, \mathbf{P})$

Trace and Trace Structure Algebras

Essential Elements

- Must be able to name elements of the model
- Variables, actions, signals, states
- We do not distinguish among them and refer to them collectively as a set of signals W
- Each agent has an alphabet and a signature
- Alphabet: $\mathbf{A} \subseteq \mathrm{W}$
- Signature: $\gamma=A, \gamma=(I, O)$, etc.
- The operations on traces and trace structures must satisfy certain axioms
- The axioms formalize the intuitive meaning of the operations
- They also provide hypothesis used in proving theorems
- Trade-off between generality and structure

Metric Time Traces

$$
\begin{aligned}
& \gamma=\left(V_{R}, V_{N}, M_{l}, M_{O}\right) \\
& x=(\gamma, \delta, f) \\
& f(v)=[0, \delta]->R \\
& f(n)=[0, \delta]->N \\
& f(a)=[0, \delta]->\{0,1\}
\end{aligned}
$$

- Model time as a metric space
- Can talk about the difference in time between points in the behavior in quantitative terms
- Able to specify timing constraints in quantitative terms
- Able to represent continuous as well as discrete behavior
- Projection and renaming easily defined on the functions

Metric Time Model: Traces

- A trace \times models one execution of a hybrid system:
- Signature $\gamma=($
V_{R} : real valued var's,
V_{N} : integer valued var's,
M_{I} : input actions,
M_{0} : output actions)
- The alphabet A of x is the union of the components of γ
- δ is a non-negative real number
- Length (in time) of x
- Can be infinity
- f gives values as a function of time:
$f: V_{R} \rightarrow->[0, \delta] \rightarrow R$,
$f: V_{N}->[0, \delta] \rightarrow N$,
$\left.f: M_{I} \rightarrow->[0, \delta] \rightarrow-10,1\right\}$,
$\left.f: M_{0} \rightarrow-(0, \delta] \rightarrow-1\right\}$.

Metric Time Model: Operations on Traces

- Let $x^{\prime}=\operatorname{proj}(B)(x)$
- represents scoping
- B is a subset of A
- γ^{\prime} and f^{\prime} are restricted to variables and actions in B
- $\delta^{\prime}=\delta$
- Let $x^{\prime}=\operatorname{rename}(r)(x)$
- represents instantiation
- r is a one-to-one function with domain A
- variables and actions in γ^{\prime} and f^{\prime} are renamed by r
- $\delta^{\prime}=\delta$
- Let $x^{\prime \prime}=x \cdot x^{\prime}$
(concatenation)
- represents sequential composition
- $\gamma^{\prime}=\gamma$, δ is finite, and end of x matches beginning of x^{\prime}
- $\gamma^{\prime \prime}=\gamma$
- $\delta^{\prime \prime}=\delta+\delta^{\prime}$
- $f^{\prime \prime}(v, t)$ is equal to $f(v, t)$ for $t \leq \delta$ $f^{\prime}(v, t-d)$ for $t \geq \delta$

Metric Time Model: Trace Structures

- A trace structure $T=(\gamma, P)$ models a process or an agent of a hybrid system
- P is a set of traces with signature γ

Traits:

- T refines T^{\prime} if $P \subseteq P^{\prime}$
- Natural model for physical components (such as those described with differential equations, possibly with discrete control variables)
- Too detailed for many other aspects of embedded systems
- Not a finite representation
- Finite representations, synthesis and verifications algorithms are clearly important, but not a focus of this class
- Trace structures constructed the same way for any trace algebra

Metric Time Model:
Operations on Trace Structures

- Let $T^{\prime}=\operatorname{proj}(B)(T)$
- B is a subset of A
- γ^{\prime} is restricted to variables and actions in B

$$
\text { - } P^{\prime}=\operatorname{proj}(B)(P)
$$

- Let $T^{\prime}=\operatorname{rename}(r)(T)$
- r is a one-to-one function with domain A
- variables and actions in γ^{\prime} are renamed by r

$$
\text { - } P^{\prime}=\operatorname{rename}(r)(P)
$$

- Let $\mathrm{T}^{\prime \prime}=\mathrm{T} \| \mathrm{T}^{\prime}$ (par. comp.)
- $\gamma^{\prime \prime}$ combines γ and γ^{\prime}
- P" maximal set s.t.

$$
\begin{aligned}
& P=\operatorname{proj}(A)\left(P^{\prime \prime}\right) \\
& P^{\prime}=\operatorname{proj}\left(A^{\prime}\right)\left(P^{\prime \prime}\right)
\end{aligned}
$$

-Let $x^{\prime \prime}=x \cdot x^{\prime}$ (seq. comp.)

- $\gamma^{\prime}=\gamma$
- $P^{\prime \prime}=P \cdot P^{\prime}$ (roughly)

Non-metric Time Traces

$$
\begin{aligned}
& \gamma=\left(V_{R}, V_{N}, M_{I}, M_{O}\right) \\
& x=(\gamma, L) \\
& m(t)=V_{R} \rightarrow R \\
& V_{N} \rightarrow N \\
& M \rightarrow\{0,1\}
\end{aligned}
$$

- Model time as a non-metric space
- Can only talk about precedence in time (including dense time)
- Based on Totally Ordered Multi-Sets
- Totally ordered vertex set V
- Labeling function μ from the vertex set V to a set of actions Σ
- We do not distinguish isomorphic vertex sets

Relationships between Semantic Domains

- Each semantic domain has a refinement order
- Based on trace containment
- $T_{1} \subseteq T_{2}$ means T_{1} is a refinement of T_{2}
- Guiding intuition: $T_{1} \subseteq T_{2}$ means T_{1} can be substituted for T_{2}
- Abstraction mapping
- If a function H between semantic domains is monotonic, detailed implies abstract: If $T_{1} \subseteq T_{2}$ then $H\left(T_{1}\right) \subseteq H\left(T_{2}\right)$
- Analogy for real numbers r and s : If $r \leq s$ then $\lfloor r\rfloor \leq\lfloor s\rfloor$
- Conservative approximations
- A pair of functions $\Psi=\left(\Psi_{1}, \Psi_{u}\right)$ is a conservative approximation if $\Psi_{u}\left(T_{1}\right)$ $\subseteq \Psi_{1}\left(T_{2}\right)$ implies $T_{1} \subseteq T_{2}$
- Analogy: $\lceil\mathrm{r}\rceil \leq$ Ls」implies $\mathrm{r} \leq \mathrm{s}$
- Abstract implies detailed

Trace and Trace Structure Algebras

Deriving Conservative Approximations

Homomorphism: mapping that commutes with the operations of projection, renaming and concatenation on traces

Homomorphism

- From metric to non-metric
- Must define a notion of event in the metric model
- Must define how to construct the corresponding vertex set
-From non-metric to pre-post
- Simply remove the intermediate steps and keep only the endpoints

Metric to Non-Metric Traces

Equivalent traces

- Event: point in time where the function changes value
- Homomorphism discards nonevent points
- The information about metric time is effectively lost

From Metric to Non-metric Time

- f is stable at t_{0} if there is $\varepsilon>0$ such that f is constant on $\left[t_{0}-\varepsilon, t_{0}\right.$]
- f has an event at t_{0} if it is not stable
- Vertex Set $V=\left\{t_{0} / f\right.$ has an event at $\left.t_{0}\right\}$

Building the Upper Bound
Let P be a set of traces, and consider the natural extension to sets $h(P)$ of h

- Clearly $P \subseteq h^{-1}(h(P))$
- Because h is many-to-one
- This indeed is an upper bound!
- Equality holds if h is one-to-one
- Hence define
- $\Psi_{u}(T)=(\gamma, h(P))$

Building the Upper Bound

Building the Lower Bound

- We want $P \supseteq h^{-1}(\mathrm{lb}$ of P$)$
- If x is not in P, then $h(x)$ should not be in the lower bound of P
- Hence define
- $\Psi_{l}(T)=h(P)-h\left(B_{c}(A)-P\right)$
- There is a tighter lower bound

Building the Lower Bound

Conservative Approximations: Inverses

- Apply Ψ_{u}
- Apply Ψ_{1}
-Consider T such that

$$
\Psi_{u}(T)=\Psi_{l}(T)=T^{\prime}
$$

Conservative Approximations: Inverses

- Apply Ψ_{u}
- Apply Ψ_{1}
-Consider T such that

$$
\Psi_{u}(T)=\Psi_{l}(T)=T^{\prime}
$$

- Then $\Psi_{\text {inv }}\left(T^{\prime}\right)=T$

Conservative Approximations: Inverses

- Apply Ψ_{u}
- Apply Ψ_{1}
- Consider T such that

$$
\Psi_{u}(T)=\Psi_{l}(T)=T^{\prime}
$$

- Then $\Psi_{\text {inv }}\left(T^{\prime}\right)=T$
-Can be used to embed high-level model in low level

Combining MoCs

Want to compose T_{1} and T_{2} from different trace structure algebras

- Construct a third, more detailed trace algebra, with homomorphisms to the other two
- Construct a third trace structure algebra
-Construct cons. approximations and their inverses
- Map T_{1} and T_{2} to $T_{1}{ }^{\prime}$ and $T_{2}{ }^{\prime}$ in the third trace structure algebra
- Compose $\mathrm{T}_{1}{ }^{\prime}$ and $\mathrm{T}_{2}{ }^{\prime}$

Conclusions

- Semantic foundations for the Metropolis meta-model
- All models of computation of importance "reside" in a unified framework
- They may be better understood and optimized
- Trace Algebra used as the underlying mathematical machinery
- Showed how to formalize a semantic domain for several models of computation
- Conservative approximations and their inverses used to relate different models

