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Objectives

Provide the foundation to represent different semantic 

domains for the Metropolis metamodel

Study the problem of heterogeneous interaction

Formalize concepts such as abstraction and refinement



An Example of Interaction

Combine a synchronous model with a dataflow model

Synchronous model

 Total order of event

Data flow model

 Partial order of events

Discrete Time model

 Metric order of events



An Example of Heterogeneous 
Interaction

The interaction is derived from a common refinement

of the heterogeneous models

The resulting interaction depends on the particular 

refinements employed

Our objective is to derive the consequences of the 

interaction at the higher levels of abstraction



Data Flow Model

Assume signals take values from a set V

Each signal is a sequence from V (an element of V*)

Let A be the set of signals

One behavior is a function

 f : A  V*

A data-flow agent is a set of those behaviors
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Synchronous Model

Signals are again sequences from V (elements of V*)

… But are synchronized

One element of the sequence is g : A  V

One behavior is a sequence of those functions

 <gi>  ( A  V )*

A synchronous agent is a set of those sequences

…

…

…

g1

…

…

…

g2

…

…

…

g3

…

…

…

g4 …

Synchronous



Discrete Time Model

Assume time is represented by the positive integers N

Then define a behavior

 h: N  ( A  V )

A discrete time agent is a set of those functions
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Discrete Time



Discrete to Synchronous Abstraction

Synchronous

Discrete

ba b c e e
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Discrete to Data Flow Abstraction

Data flow

Discrete
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Interaction Propagation

Synchronous Data flow

Discrete

T1
T2

V1 V2V

W1 W2

U1 U2

1. Refinement
2. Composition
3. Projection
4. Abstraction



Objectives

 Provide a semantic foundations for integrating different 
models of computation
 Independent of the design language

 Maximize flexibility for using different levels of 
abstraction
 For different parts of the design

 At different stages of the design process

 For different kinds of analysis

 Support many forms of abstraction

 Model of computation (model of time, synchronization, etc.)

 Scoping

 Structure (hierarchy)



Overview

P1 P2M

S

P1.pZ.write()  P2.pX.read()

pX pZ pX pZ

M’ M’

Meta Model

Pre-Post

Process Networks

Data Flow

Discrete Time

Non-metric Time

Continuous Time

Agent Algebras

Conservative Approximations

Domain of agents with operations: projection, renaming and composition



Scope

 Concentrate on

 Natural semantic domains (sets of agents)

 Relations and functions over semantic domains

 Relationships between semantic domains and their 
relations and functions

Defer worrying about specific abstract syntaxes and 
semantic functions

 Convenient for manual, formal reasoning

 De-emphasizing executable and finitely-representable 
models (for now)



Agents and Behaviors

 For each model of computation we always distinguish between

 the domain of individual behaviors

 the domain of agents

 For different models of computation individual behaviors can be 

very different mathematical objects

 We always call these objects traces

 The nature of the elements of the carrier is irrelevant!

 An agent is primarily a set P of traces

 We call them trace structures

 Also includes the signature: T = ( , P )



Trace structure algebra

Composition
Scoping

Instantiation

Trace algebra

Projection
Renaming

Concatenation

Trace and Trace Structure Algebras

Model of individual behaviors

Model of agents
(semantic domain)

A trace structure
contains a set

of traces

Set of traces

C

Set of trace
structures

A



Essential Elements

Must be able to name elements of the model

 Variables, actions, signals, states

 We do not distinguish among them and refer to them collectively as 
a set of signals W

 Each agent has an alphabet and a signature

 Alphabet:    A  W

 Signature:    = A,  = ( I, O ), etc.

 The operations on traces and trace structures must satisfy 
certain axioms

 The axioms formalize the intuitive meaning of the operations

 They also provide hypothesis used in proving theorems

 Trade-off between generality and structure



Metric Time Traces

 = ( VR , VN , MI , MO )

x = ( , d, f )

f( v ) = [ 0, d ] -> R

f( n ) = [ 0, d ] -> N

f( a ) = [ 0, d ] -> { 0, 1 }

 Model time as a metric space

 Can talk about the difference in time between points in the 
behavior in quantitative terms

 Able to specify timing constraints in quantitative terms

 Able to represent continuous as well as discrete behavior

 Projection and renaming easily defined on the functions



Metric Time Model: Traces

 A trace x models one execution 

of a hybrid system:

 Signature  = ( 

VR: real valued var’s,

VN: integer valued var’s,

MI: input actions,

MO: output actions)

 The alphabet A of x is the union 

of the components of 

 d is a non-negative real number

 Length (in time) of x

 Can be infinity

 f gives values as a function of 

time:

f: VR --> [0, d] --> R,

f: VN --> [0, d] --> N,

f: MI --> [0, d] --> {0, 1},

f: MO --> [0, d] --> {0, 1}.



Metric Time Model: Operations on Traces

 Let x’ = proj(B)(x)

 represents scoping

 B is a subset of A

 ’ and f’ are restricted to 
variables and actions in B

 d’ = d

 Let x’ = rename(r)(x)

 represents instantiation

 r is a one-to-one function 
with domain A

 variables and actions in ’ and 
f’ are renamed by r

 d’ = d

 Let x’’ = x • x’ 

(concatenation)

 represents sequential 
composition

 ’ = , d is finite, and end of 
x matches beginning of x’

 ’’ = 

 d’’ = d + d’

 f’’(v, t) is equal to
f(v, t) for t  d

f’(v, t - d) for t  d



Metric Time Model: Trace Structures

 A trace structure T = (, P) models a process or an agent of a hybrid 
system

 P is a set of traces with signature 

Traits:

 T refines T’ if P  P’

 Natural model for physical components (such as those described with 
differential equations, possibly with discrete control variables)

 Too detailed for many other aspects of embedded systems

 Not a finite representation

 Finite representations, synthesis and verifications algorithms are clearly 
important, but not a focus of this class

 Trace structures constructed the same way for any trace algebra



Metric Time Model: 
Operations on Trace Structures

 Let T’ = proj(B)(T)

 B is a subset of A

 ’ is restricted to variables 
and actions in B

 P’ = proj(B)(P)

 Let T’ = rename(r)(T)

 r is a one-to-one function 
with domain A

 variables and actions in ’ are 
renamed by r

 P’ = rename(r)(P)

 Let T’’ = T || T’ (par. comp.)

 ’’ combines  and ’

 P’’ maximal set s.t.

P = proj(A)(P’’)

P’ = proj(A’)(P’’)

 Let x’’ = x • x’ (seq. comp.)

 ’ = 

 P’’ = P • P’ (roughly)



Non-metric Time Traces

 = ( VR , VN , MI , MO )

x = ( , L )

m( t ) = VR -> R
VN -> N

M -> { 0, 1 }

 Model time as a non-metric space

 Can only talk about precedence in time (including dense time)

 Based on Totally Ordered Multi-Sets

 Totally ordered vertex set V

 Labeling function  from the vertex set V to a set of actions S

 We do not distinguish isomorphic vertex sets



Relationships between Semantic Domains

 Each semantic domain has a refinement order

 Based on trace containment

 T1  T2 means T1 is a refinement of T2

 Guiding intuition: T1  T2 means T1 can be substituted for T2

 Abstraction mapping

 If a function H between semantic domains is monotonic, detailed implies 

abstract: If T1  T2 then H(T1)  H(T2)

 Analogy for real numbers r and s: If r  s then r  s

 Conservative approximations

 A pair of functions  = (l, u) is a conservative approximation if u(T1)  

 l(T2)   implies  T1  T2

 Analogy: r  s implies r  s

 Abstract implies detailed



Trace structure algebra

A’

Trace algebra

C’
“Abstract” Domain

Trace structure algebra

A

Trace algebra

C
“Detailed” Domain

Trace and Trace Structure Algebras

u l
inv

Lower
Bound

Upper
Bound



Deriving Conservative Approximations

Trace structure algebra

A’

Trace structure algebra

A

Trace algebra

C

Trace algebra

C’

Homomorphism
h

u l
inv

“Abstract” Domain

“Detailed” Domain

Derive

Homomorphism: mapping that commutes with the operations of 
projection, renaming and concatenation on traces



Homomorphism

From metric to non-metric

 Must define a notion of event in the metric model

 Must define how to construct the corresponding vertex set

From non-metric to pre-post

 Simply remove the intermediate steps and keep only the end-
points



Metric to Non-Metric Traces

Equivalent traces

 Event: point in time where 
the function changes value

 Homomorphism discards non-
event points

 The information about 
metric time is effectively 
lost



From Metric to Non-metric Time

• f  is stable at t0 if there is  > 0 such that f  is constant on [ t0 -  , t0 ]

• f  has an event at t0 if it is not stable

• Vertex Set   V = { t0 |  f  has an event at t0 }



Building the Upper Bound

Let P be a set of traces, and consider the natural 
extension to sets h( P ) of h

Clearly P  h-1( h( P ) )
 Because h is many-to-one

 This indeed is an upper bound!

 Equality holds if h is one-to-one

Hence define
 u( T ) = ( , h( P ) )



Building the Upper Bound

P

h(P)

h-1( h( P ) )



Building the Lower Bound

We want P  h-1( lb of P )

If x is not in P, then h( x ) should not be in the lower 

bound of P

Hence define

 l( T ) = h( P ) – h( BC( A ) – P )

There is a tighter lower bound



Building the Lower Bound

h( BC(A) – P )

BC( A ) - P

h-1( h( P ) - h( BC(A) – P ) )

h( P ) - h( BC(A) – P )



Conservative Approximations: Inverses

Apply u

u

Consider T such that

u( T ) = l( T ) = T’

l

Apply l



Conservative Approximations: Inverses

Apply u

u

Then inv(T’) = T

Consider T such that

u( T ) = l( T ) = T’

l

Apply l



Can be used to embed 
high-level model in low 
level

Conservative Approximations: Inverses

Apply u

inv

Then inv(T’) = T

Consider T such that

u(T) = l(T) = T’

Apply l



Combining MoCs
Want to compose T1 and T2
from different trace structure 
algebras

T1
T2 Construct a third, more 

detailed trace algebra, with 

homomorphisms to the other 

two

Construct a third trace 

structure algebra

Construct cons. 

approximations and their 

inverses

Map T1 and T2 to T1’ and T2’ 

in the third trace structure 

algebra

Compose T1’ and T2’

inv

T1’

T2’



Conclusions

 Semantic foundations for the Metropolis meta-model

 All models of computation of importance “reside” in a unified 
framework

 They may be better understood and optimized

 Trace Algebra used as the underlying mathematical machinery

 Showed how to formalize a semantic domain for several models of 
computation

 Conservative approximations and their inverses used to relate 
different models


