
EE249 Lecture

Taken from

Roberto Passerone PhD Thesis

Heterogeneous Models of Computation: An
Abstract Algebra Approach

Objectives

Provide the foundation to represent different semantic

domains for the Metropolis metamodel

Study the problem of heterogeneous interaction

Formalize concepts such as abstraction and refinement

An Example of Interaction

Combine a synchronous model with a dataflow model

Synchronous model

 Total order of event

Data flow model

 Partial order of events

Discrete Time model

 Metric order of events

An Example of Heterogeneous
Interaction

The interaction is derived from a common refinement

of the heterogeneous models

The resulting interaction depends on the particular

refinements employed

Our objective is to derive the consequences of the

interaction at the higher levels of abstraction

Data Flow Model

Assume signals take values from a set V

Each signal is a sequence from V (an element of V*)

Let A be the set of signals

One behavior is a function

 f : A V*

A data-flow agent is a set of those behaviors

a b c d ……………………………

Data flowe f g h ……………………………

i j k l ……………………………

Synchronous Model

Signals are again sequences from V (elements of V*)

… But are synchronized

One element of the sequence is g : A V

One behavior is a sequence of those functions

 <gi> (A V)*

A synchronous agent is a set of those sequences

…

…

…

g1

…

…

…

g2

…

…

…

g3

…

…

…

g4 …

Synchronous

Discrete Time Model

Assume time is represented by the positive integers N

Then define a behavior

 h: N (A V)

A discrete time agent is a set of those functions

…

…

…

1

…

…

…

2

…

…

…

3

…

…

…

4 …

Discrete Time

Discrete to Synchronous Abstraction

Synchronous

Discrete

ba b c e e

gg j j l m

on p p r s

a b e

g j l

n p r

Discrete to Data Flow Abstraction

Data flow

Discrete

ba b c e e

gg j j l m

on p p r s

b a c e

g j l m

on p r s

b a c e

g j l m

on p r s

Interaction Propagation

Synchronous Data flow

Discrete

T1
T2

V1 V2V

W1 W2

U1 U2

1. Refinement
2. Composition
3. Projection
4. Abstraction

Objectives

 Provide a semantic foundations for integrating different
models of computation
 Independent of the design language

 Maximize flexibility for using different levels of
abstraction
 For different parts of the design

 At different stages of the design process

 For different kinds of analysis

 Support many forms of abstraction

 Model of computation (model of time, synchronization, etc.)

 Scoping

 Structure (hierarchy)

Overview

P1 P2M

S

P1.pZ.write() P2.pX.read()

pX pZ pX pZ

M’ M’

Meta Model

Pre-Post

Process Networks

Data Flow

Discrete Time

Non-metric Time

Continuous Time

Agent Algebras

Conservative Approximations

Domain of agents with operations: projection, renaming and composition

Scope

 Concentrate on

 Natural semantic domains (sets of agents)

 Relations and functions over semantic domains

 Relationships between semantic domains and their
relations and functions

Defer worrying about specific abstract syntaxes and
semantic functions

 Convenient for manual, formal reasoning

 De-emphasizing executable and finitely-representable
models (for now)

Agents and Behaviors

 For each model of computation we always distinguish between

 the domain of individual behaviors

 the domain of agents

 For different models of computation individual behaviors can be

very different mathematical objects

 We always call these objects traces

 The nature of the elements of the carrier is irrelevant!

 An agent is primarily a set P of traces

 We call them trace structures

 Also includes the signature: T = (, P)

Trace structure algebra

Composition
Scoping

Instantiation

Trace algebra

Projection
Renaming

Concatenation

Trace and Trace Structure Algebras

Model of individual behaviors

Model of agents
(semantic domain)

A trace structure
contains a set

of traces

Set of traces

C

Set of trace
structures

A

Essential Elements

Must be able to name elements of the model

 Variables, actions, signals, states

 We do not distinguish among them and refer to them collectively as
a set of signals W

 Each agent has an alphabet and a signature

 Alphabet: A W

 Signature: = A, = (I, O), etc.

 The operations on traces and trace structures must satisfy
certain axioms

 The axioms formalize the intuitive meaning of the operations

 They also provide hypothesis used in proving theorems

 Trade-off between generality and structure

Metric Time Traces

 = (VR , VN , MI , MO)

x = (, d, f)

f(v) = [0, d] -> R

f(n) = [0, d] -> N

f(a) = [0, d] -> { 0, 1 }

 Model time as a metric space

 Can talk about the difference in time between points in the
behavior in quantitative terms

 Able to specify timing constraints in quantitative terms

 Able to represent continuous as well as discrete behavior

 Projection and renaming easily defined on the functions

Metric Time Model: Traces

 A trace x models one execution

of a hybrid system:

 Signature = (

VR: real valued var’s,

VN: integer valued var’s,

MI: input actions,

MO: output actions)

 The alphabet A of x is the union

of the components of

 d is a non-negative real number

 Length (in time) of x

 Can be infinity

 f gives values as a function of

time:

f: VR --> [0, d] --> R,

f: VN --> [0, d] --> N,

f: MI --> [0, d] --> {0, 1},

f: MO --> [0, d] --> {0, 1}.

Metric Time Model: Operations on Traces

 Let x’ = proj(B)(x)

 represents scoping

 B is a subset of A

 ’ and f’ are restricted to
variables and actions in B

 d’ = d

 Let x’ = rename(r)(x)

 represents instantiation

 r is a one-to-one function
with domain A

 variables and actions in ’ and
f’ are renamed by r

 d’ = d

 Let x’’ = x • x’

(concatenation)

 represents sequential
composition

 ’ = , d is finite, and end of
x matches beginning of x’

 ’’ =

 d’’ = d + d’

 f’’(v, t) is equal to
f(v, t) for t d

f’(v, t - d) for t d

Metric Time Model: Trace Structures

 A trace structure T = (, P) models a process or an agent of a hybrid
system

 P is a set of traces with signature

Traits:

 T refines T’ if P P’

 Natural model for physical components (such as those described with
differential equations, possibly with discrete control variables)

 Too detailed for many other aspects of embedded systems

 Not a finite representation

 Finite representations, synthesis and verifications algorithms are clearly
important, but not a focus of this class

 Trace structures constructed the same way for any trace algebra

Metric Time Model:
Operations on Trace Structures

 Let T’ = proj(B)(T)

 B is a subset of A

 ’ is restricted to variables
and actions in B

 P’ = proj(B)(P)

 Let T’ = rename(r)(T)

 r is a one-to-one function
with domain A

 variables and actions in ’ are
renamed by r

 P’ = rename(r)(P)

 Let T’’ = T || T’ (par. comp.)

 ’’ combines and ’

 P’’ maximal set s.t.

P = proj(A)(P’’)

P’ = proj(A’)(P’’)

 Let x’’ = x • x’ (seq. comp.)

 ’ =

 P’’ = P • P’ (roughly)

Non-metric Time Traces

 = (VR , VN , MI , MO)

x = (, L)

m(t) = VR -> R
VN -> N

M -> { 0, 1 }

 Model time as a non-metric space

 Can only talk about precedence in time (including dense time)

 Based on Totally Ordered Multi-Sets

 Totally ordered vertex set V

 Labeling function from the vertex set V to a set of actions S

 We do not distinguish isomorphic vertex sets

Relationships between Semantic Domains

 Each semantic domain has a refinement order

 Based on trace containment

 T1 T2 means T1 is a refinement of T2

 Guiding intuition: T1 T2 means T1 can be substituted for T2

 Abstraction mapping

 If a function H between semantic domains is monotonic, detailed implies

abstract: If T1 T2 then H(T1) H(T2)

 Analogy for real numbers r and s: If r s then r s

 Conservative approximations

 A pair of functions = (l, u) is a conservative approximation if u(T1)

 l(T2) implies T1 T2

 Analogy: r s implies r s

 Abstract implies detailed

Trace structure algebra

A’

Trace algebra

C’
“Abstract” Domain

Trace structure algebra

A

Trace algebra

C
“Detailed” Domain

Trace and Trace Structure Algebras

u l
inv

Lower
Bound

Upper
Bound

Deriving Conservative Approximations

Trace structure algebra

A’

Trace structure algebra

A

Trace algebra

C

Trace algebra

C’

Homomorphism
h

u l
inv

“Abstract” Domain

“Detailed” Domain

Derive

Homomorphism: mapping that commutes with the operations of
projection, renaming and concatenation on traces

Homomorphism

From metric to non-metric

 Must define a notion of event in the metric model

 Must define how to construct the corresponding vertex set

From non-metric to pre-post

 Simply remove the intermediate steps and keep only the end-
points

Metric to Non-Metric Traces

Equivalent traces

 Event: point in time where
the function changes value

 Homomorphism discards non-
event points

 The information about
metric time is effectively
lost

From Metric to Non-metric Time

• f is stable at t0 if there is > 0 such that f is constant on [t0 - , t0]

• f has an event at t0 if it is not stable

• Vertex Set V = { t0 | f has an event at t0 }

Building the Upper Bound

Let P be a set of traces, and consider the natural
extension to sets h(P) of h

Clearly P h-1(h(P))
 Because h is many-to-one

 This indeed is an upper bound!

 Equality holds if h is one-to-one

Hence define
 u(T) = (, h(P))

Building the Upper Bound

P

h(P)

h-1(h(P))

Building the Lower Bound

We want P h-1(lb of P)

If x is not in P, then h(x) should not be in the lower

bound of P

Hence define

 l(T) = h(P) – h(BC(A) – P)

There is a tighter lower bound

Building the Lower Bound

h(BC(A) – P)

BC(A) - P

h-1(h(P) - h(BC(A) – P))

h(P) - h(BC(A) – P)

Conservative Approximations: Inverses

Apply u

u

Consider T such that

u(T) = l(T) = T’

l

Apply l

Conservative Approximations: Inverses

Apply u

u

Then inv(T’) = T

Consider T such that

u(T) = l(T) = T’

l

Apply l

Can be used to embed
high-level model in low
level

Conservative Approximations: Inverses

Apply u

inv

Then inv(T’) = T

Consider T such that

u(T) = l(T) = T’

Apply l

Combining MoCs
Want to compose T1 and T2
from different trace structure
algebras

T1
T2 Construct a third, more

detailed trace algebra, with

homomorphisms to the other

two

Construct a third trace

structure algebra

Construct cons.

approximations and their

inverses

Map T1 and T2 to T1’ and T2’

in the third trace structure

algebra

Compose T1’ and T2’

inv

T1’

T2’

Conclusions

 Semantic foundations for the Metropolis meta-model

 All models of computation of importance “reside” in a unified
framework

 They may be better understood and optimized

 Trace Algebra used as the underlying mathematical machinery

 Showed how to formalize a semantic domain for several models of
computation

 Conservative approximations and their inverses used to relate
different models

