Software (System) Synthesis:
Raising the Level of Abstraction

Alberto Sangiovanni Vincentelli
Department of EECS
University of California at Berkeley
Qi Zhu
Intel Researcn, Oregon

Outline

* Lesson learned from logic synthesis
e ‘Software’ Synthesis Flow and Algorithms
* Case Studies

MBD: Code generation

e.g. Mathworks RTW, dSpace TargetLink

High level input models L

(Simulink, Modelica, ...)

Treee Room Fant Mode!

Direct code generation

- No significant restructuring

- Low level optimization S~ -
- Manual partition

Target code L; J

Separation of Concerns (ca. 1990)

Behavior Components Virtual Architectural Components

\ L

N

4

Evaluation of
Architectural

Performance and Partitioning
Analysis Alternatives

- gy

Development Process

Platform-Based Design

Architectural Space

Application Instance Platform Instance

Platform Platform
Mapping Design-Space
Export

Platform: library of resources defining an abstraction layer with interfaces that allow
legal connections

* Resources do contain virtual components i.e., placeholders that will be customized
in the implementation phase to meet constraints

* Very important resources are interconnections and communication protocols

© Alberto Sangiovanni-
Vincentelli. All rights reserved.

Learning from logic synthesis

High level function model

T
|—44

t,t,+gh [e——

A
at,+c

Function model
in netlist

C

I_f
d+e b+h
_ % (covering)
resfructuring < >
>

Gate library (platform)

- Separation of func and arch

- Common language for func and
arch netlists (Boolean logic,
NAND2 gate)

- Automatic mapping

D D D

B B> >
=D

>
D D2

Technology Mapping

Mapped design

inv(1) nand2(2) > i’

>

nor(2)
3[}—[) nand3 (3)
a0i21 (3) D+ restructliring
0ai22 (4)

xor (5)

= U nor3 (3) Gate library in
netlist

Outline

* Lesson learned from logic synthesis
e ‘Software’ Synthesis Flow and Algorithms
* Case Studies

Our software synthesis flow

Function Model Architecture Platform

LI Stage 1: Common modeling | | |
| — domain (CMD) selection = "'| ; L ‘
%” Common semantics for func and arch ol .
Primitives to decide abstraction level ! ! !
r v v

restructuging

E1 E2 E3
L |

Architecture
Function Model

""" Model in CMD
in CMD \ Stage 2: Automatic mapping l
T1 T2

T4

E1 T3
Mapped Design |_ I

in CMD Bl |

E3
| o Stage 3: Code generation

Challenges in the flow

e Stage 1: Common modeling domain selection
= Various models of computation exist in system level.

= Trade-off between expressiveness and ease of manipulation when
selecting the common semantics.

= Trade-off between granularity and optimality when selecting the
primitives.

* Stage 2: Automatic mapping
= Various constraints and objectives.
= Domain-specific algorithms may be used albeit not necessary.

* Stage 3: Code generation

= Communication interface synthesis maybe needed to guarantee
correct semantics.

Modeling domain

 Semantic domain Q - the language

Formally defined as trace-based agent algebra [1].
Q.D: domain of agents - “building blocks”.
Q.A: master alphabet — “set of all signals between blocks”.

Q.a : Q.D -> 224, each agent has an alphabet — “each block has a
set of signals”

Operators: renaming, projection and parallel composition —
“rules to initialize and compose blocks”

* Primitives P — abstraction level

Primitives are a set of agents in a semantic domain, PC Q.D .
No agent in P can be constructed from other agents in P.

* Modeling domain C,(P): all agents constructed from
primitives P by applying operators in semantic domain Q.

[1] R. Passerone, Semantic Foundations for Heterogeneous Systems. PhD thesis, University of California,
Berkeley, 2004.

Common modeling domain (CMD)

* A modelisanagentinthe modeling domain.

* Function model f €F, architecture model a€ A.

* B(s) denotes the behavior of model s.

 Modeling domain M is a common modeling domain between f and
a if there exists f'’e M and a’e M s.t. B(f’) S B(f) and B(a’)= B(a).

Behavior of original

Behavior of original architecture modelain A

function model fin F

Behavior of architecture

Behavior of function model a”in CMD

model f”in CMD _ .
* f and a may have different semantics

or abstraction level — hard to explore o.
* f”and a’ in CMD — mapping space /A
can be formally explored.

* A € 0 — mapped behavior is legal.

lllustration of mapping space in CMD

CMD selection

* Ancestor-child relation between modeling domains.
* Define ®(M) ={B(s) | se C,(P) } — set of all agent behavior.
= M, = CQJ(PI) is the ancestor of M, = CQZ(PZ) iff ®(M,)c ®(M,).
e Search CMDs on modeling domain relation graph (directed
edges representing ancestor-child relation).

Common Ancestor Modeling
Domain of Fand A

©~_ expressive but too
complex to explore

Original Function) . _
Modeling Domain 1Ay lose behavior but Original Architecture

tractable mapping Modeling Domain

CMD selection contd.

* Two design aspects when selecting CMD C = C,(P)
= Semantics — decided by semantic domain Q

o Expressiveness vs. analyzability, e.g. dataflow vs. static dataflow.

o May first choose semantic domain for common ancestor domain
D, then refine it in C.

= Abstraction level — depends on primitives P
o Explore different abstraction level by choosing different primitives.

o Carried out when selecting C as child domain of D.

= For both, it is a trade-off between the size of mapping space and
complexity.

Covering problem after CMD selection

* Symbols:
= Function primitive instances : F=(f,f,,..f)
= Architecture primitive instances : A=(3,8,,..8p)
= Mapping decision variables : d fla,
= Architecture selection variables: S,
= Quantities (power, area, bandwidth...): Qrax Qa

= General covering formulation
& Vi eF, Y dpa =1

a_;EA_f'i-
— “G’ffz' = .F, a; é .Af!..l d_fz-._a,j =0

. . . D Haj‘ S "4! Z dfi,ﬂj = Sa;
Architecture selection constraints f.eF

\ Hf;, = J:,ﬂ-j = ./4, dfi.?ﬂj < Sa;
Quantity constraints | «<—— H, ;({dy, o, },{Qf..a;.t}> {Sa; }, {Qa; 1}) <O
Objective functions |e—— min Gi({dy, o, }:{Q7. a;.t} {Sa, }s {Qa,.t})

L
Function covering constraints

Outline

* Lesson learned from logic synthesis
e ‘Software’ Synthesis Flow and Algorithms
* Case Studies

Case study: active safety vehicle

* Functional correctness and cost-efficiency are both important
for active safety applications.

 Function and architecture mismatch.

Function model Architecture platform
e synchronous model. e clock drift between distributed ECUs,
* no message loss or duplication. asynchronous communication.

e data loss and duplication exist.

—————————————————————————————

—————————————————————————————

us us
Sender Receiver | | | | Receiver | | sender
i € b

Stage 1: CMD selection — common semantics

1. Process Networks (PN): expressive
but high modeling complexity. Need
transformation of both func and arch
models.

2. Loosely time triggered architecture
(LTTA): transformation of func model to
support asynchronous communication.

ra (P1=Pp U P,

S 3.Synchronous reactive (SR):
transformation of the arch to support
synchronous communication, by
applying following protocols.

* Clock synchronization.
 Constraints on task periods.

CMD Selection

Original Function

Modeling Domain
Original Architecture
Modeling Domain

Stage 2: covering problem

/ Functional Model

Primitives: tasks, signals/

~

/Quantity constraint

- End-to-end latency
- Utilization
- Extensibility

and objective functions

5

J

/ Architectural Model \

\ 4

ECU, |« ECU,

A

\Primitives: ECUs, messages on buse_y

\/

-

Covering variables
- Task to ECU

- Signal to message

- Message selection

- Priority

- Period

o

Variety of algorithms

- mathematical programming
- heuristics

- meta-heuristics

- machine learning

Stage 2: covering problem contd.

* Worst case analysis for CAN systems with periodic tasks and messages.

* A complete formulation with all design variables does not scale for
industrial size problems.

* We start with tackling following sub-problems.

Problems Period Allocation & Priority Extensibility
Synthesis [1] Synthesis [2] Optimization [3, 4]

Variables Period Allocation Allocation
Priority Priority

Objective Latency Latency Extensibility

Approach Geometric Mixed integer linear Multi-step Heuristic

programming (GP) programming (MILP)

[1] “Period Optimization for Hard Real-time Distributed Automotive Systems”, 44th DAC, 2007.

[2] “Definition of Task Allocation and Priority Assignment in Hard Real-Time Distributed Systems”, 28th RTSS,
2007.

[3] “Optimizing Extensibility in Hard Real-time Distributed Systems”, 15th RTAS, 2009.

[4] “Optimizing the Software Architecture for Extensibility in Hard Real-Time Distributed Systems”, Tll, 2010.

Allocation & priority synthesis (MILP based)
/ N (O R

onstraints: Design inputs:
End-to-end latency on given paths ' : :
yong P Task worst case execution times

Utilization bound on ECUs and buses . .
Task and signal periods

g:::g?‘ll:t:encies o given paths Architecture topology, bus speeds
% given p RN J

\ /

. .. Step1l:
Heuristic: : .
[Taskand sional briorities]—P Synthesize task allocation
gnap (using MILP)

Step2:

Synthesize signal packing,
task and message priorities
(using MILP)

Allocation & priority synthesis results

End to end
latencies

ECU1 ECU2
A d

ECU20 ECU21 .
r = *

ECU61 ECUG62
r v .l

Function Model
- 41 Tasks
- 83 Signals
- 171 paths
A\

After map/;l

- Meet qu ',ﬂ@ents

- Total late y from 36486ms in
manual des| p to 12900ms

Architecture platform
-9 ECUs
- single bus

Extensibility optimization (MILP and heuristic)

[

Initial Task and Signal]

Priority (Heuristic) J

Initial Task Allocation
(MILP)

Task Re-allocation
(Heuristic for
incremental changes)

A

No

Signal Packing and
Message Allocation
(Greedy Heuristic)

|

Task and Message
Priority Assighment
(Iterative Heuristic)

Reach Stop
Condition?

Extensibility optimization results

* Single-bus and dual-bus options.
* Parameter K to trade off between extensibility and latency.

 Compared with a simulated annealing algorithm: maximum
extensibility within 0.3%, runtime 0.5 hour vs. 12 hours.

Same active safety vehicle as in allocation and priority synthesis.

¢ 2 buses case m 1 bus case

30000

N
n
-
o
o

- K=0
50000 1 bus case manual K=0.1,6 ~ mK=0

nce K026m..
15000 K=0.5 K=0.1

10000
5000

k=0.5 " K=0.2

Total Latency (ms)

O I I I I I I I I

16 17 18 19 20 21 22 23 24
Task Extensibility

25

Case studies in other domains

* Building automation domain [1]

= Similar semantics as in automotive — synchronous function model and
LTTA architecture platform.

= Also choose SR as the common semantics, however additional timing
constraints are added to the architecture for preserving synchronism,
as we consider the physical interaction with environment.

= Mapping leverages COSI for communication network synthesis.
 Multimedia domain [2]

= JPEG encoder application. Intel MXP architecture platform.
= Semantics for both function and architecture are dataflow.

= Challenge is to choose the proper abstraction level. Different levels are
explored and compared through choices of primitives.

[1] “A Design Flow for Building Automation and Control Systems”, 315t RTSS, 2010.
[2] “JPEG Encoding on the Intel MXP5800: A Platform-Based Design Case Study”, ESTIMedia’05, 2005.

Concluding remarks

e Software (and hardware) synthesis based on a formal
mapping procedure

= Formally determines the semantics and abstraction level of the design
by choosing a common modeling domain.

= Automatic and optimal mapping algorithms.

= Generality — applied to various domains with different models of
computation as well as different implementation platforms. Domain-
specific mapping algorithms may be leveraged in the framework.

= Optimality — trade-off between complexity and mapping space
through the selection of CMD.

= Reusability — common semantic selection requires designers’
expertise. However proper selection is typically general for particular
domains.

