
Software (System) Synthesis: 
Raising the Level of Abstraction

Alberto Sangiovanni Vincentelli
Department of EECS

University of California at Berkeley
Qi Zhu

Intel Researcn, Oregon 



Outline

• Lesson learned from logic synthesis

• ‘Software’ Synthesis Flow and Algorithms

• Case Studies



MBD: Code generation

High level input models
(Simulink, Modelica, …)

Target code
……

Direct code generation 
- No significant restructuring
- Low level optimization
- Manual partition

e.g. Mathworks RTW, dSpace TargetLink



Specification

Analysis

D
ev

e
lo

p
m

e
n

t 
P

ro
ce

ss

BusesBuses

Matlab
CPUs Buses Operating

Systems

Behavior Components       Virtual Architectural Components

C-Code

IPs

Dymola

ECU-1 ECU-2

ECU-3
Bus

f1 f2

f3

Behavior Platform

Mapping

Performance
Analysis

Refinement

Evaluation of
Architectural 

and Partitioning 
Alternatives

Implementation

Separation of Concerns (ca. 1990)



Platform
Design-Space

Export

Platform
Mapping

Architectural SpaceApplication Space

Application Instance Platform Instance

Platform-Based Design

Platform: library of resources defining an abstraction layer with interfaces that allow 
legal connections 

• Resources do contain virtual components i.e., placeholders that will be customized 
in the implementation phase to meet constraints

• Very important resources are interconnections and communication protocols

©  Alberto Sangiovanni-
Vincentelli. All rights reserved.

5



Learning from logic synthesis

d+e b+h

t4’

at2+c

t1t3+fgh

b’ h’

a

d’ e’
g

f

c

inv(1) nand2(2)

nor(2)

aoi21 (3)

xor (5)

nand3 (3)

oai22 (4)

nor3 (3)F

f

g
d

e

h

b
a

c

nand3(3)

oai21(3)

oai21 (3)

and2(3)

inv(1)
nand2(2)

High level function model Gate library (platform)

Function model 
in netlist

Gate library in 
netlist

Technology Mapping 
(covering ) 

Mapped design

- Separation of func and arch
- Common language for func and 
arch netlists (Boolean logic,  
NAND2 gate)
- Automatic mapping

restructuring restructuring



Outline

• Lesson learned from logic synthesis

• ‘Software’ Synthesis Flow and Algorithms

• Case Studies



Our software synthesis flow
Function Model Architecture Platform

restructuring restructuring

Stage 1: Common modeling 
domain (CMD) selection
Common semantics for func and arch
Primitives to decide abstraction level

Function Model
in CMD

T2T1

T5

T3

T6
T4 Architecture 

Model in CMD
Stage 2: Automatic mapping

E1 E2 E3

……
B1

E1 E2 E3

……
B1

T1 T2

T3
T4

Mapped Design 
in CMD

Stage 3: Code generation



Challenges in the flow 

• Stage 1: Common modeling domain selection
 Various models of computation exist in system level.

 Trade-off between expressiveness and ease of manipulation when 
selecting the common semantics.

 Trade-off between granularity and optimality when selecting the 
primitives.

• Stage 2: Automatic mapping
 Various constraints and objectives.

 Domain-specific algorithms may be used albeit not necessary.

• Stage 3: Code generation
 Communication interface synthesis maybe needed to guarantee 

correct semantics.



Modeling domain

• Semantic domain Q - the language
 Formally defined as trace-based agent algebra [1].
 Q.D: domain of agents - “building blocks”.
 Q.A: master alphabet – “set of all signals between blocks”.
 Q.α : Q.D -> 2Q.A, each agent has an alphabet – “each block has a 

set of signals”
 Operators: renaming, projection and parallel composition –

“rules to initialize and compose blocks”

• Primitives P – abstraction level
 Primitives are a set of agents in a semantic domain,  P    Q.D .
 No agent in P can be constructed from other agents in P. 

• Modeling domain CQ(P): all agents constructed from 
primitives P by applying operators in semantic domain Q.



[1]  R. Passerone, Semantic Foundations for Heterogeneous Systems. PhD thesis, University of California, 
Berkeley, 2004.



Common modeling domain (CMD)

• A model is an agent in the modeling domain.
• Function model f    F, architecture model a    A.
• B(s) denotes the behavior of model s.
• Modeling domain M is a common modeling domain between f and 

a if there exists f’    M and a’    M s.t.  B(f’)     B(f) and B(a’)    B(a).



  

Behavior of original 
function model f in F

Behavior of original 
architecture model a in A

Behavior of function 
model f’ in CMD

Behavior of architecture 
model a’ in CMD

O

Λ

• f and a may have different semantics 
or abstraction level – hard to explore o.
• f’ and a’ in CMD – mapping space Λ
can be formally explored.
• Λ  o – mapped behavior is legal.

Illustration of mapping space in CMD



CMD selection
• Ancestor-child relation between modeling domains.

 Define Ф(M) = {B(s) | s CQ(P) } – set of all agent behavior.

 M1 = CQ1
(P1) is the ancestor of M2 = CQ2

(P2) iff Ф(M2) Ф(M1).

• Search CMDs on modeling domain relation graph (directed 
edges representing ancestor-child relation).





F
A

D

C

Original Function
Modeling Domain Original Architecture

Modeling Domain

Common Ancestor Modeling 
Domain of F and A 

CMD Selection

expressive but too 
complex to explore

may lose behavior but 
tractable mapping



CMD selection contd.

• Two design aspects when selecting CMD C = CQ(P)

 Semantics – decided by semantic domain Q

o Expressiveness vs. analyzability, e.g. dataflow vs. static dataflow.

o May first choose semantic domain for common ancestor domain 
D, then refine it in C.

 Abstraction level – depends on primitives P

o Explore different abstraction level by choosing different primitives.

o Carried out when selecting C as child domain of D.

 For both, it is a trade-off between the size of mapping space and 
complexity.



Covering problem after CMD selection

• Symbols:
 Function primitive instances : 

 Architecture primitive instances :

 Mapping decision variables : 

 Architecture selection variables:

 Quantities (power, area, bandwidth…):

 General covering formulation 

),...,,( 21 nfffF 

),...,,( 21 maaaA 

jas

tataf jji
QQ ,,,

ji afd ,

Function covering constraints 

Architecture selection constraints 

Quantity constraints 

Objective functions

Domain specific.
Determines 
complexity!



Outline

• Lesson learned from logic synthesis

• ‘Software’ Synthesis Flow and Algorithms

• Case Studies



Case study: active safety vehicle

• Functional correctness and cost-efficiency are both important 
for active safety applications.

• Function and architecture mismatch. 

Function model
• synchronous model.
• no message loss or duplication.

Architecture platform
• clock drift between distributed ECUs, 
asynchronous communication.
• data loss and duplication exist.

SwTask

1_1

MW 1
Bus

Sender

1

Bus

SwTask

1_m1

MW i

SwTask

i_1

SwTask

i_mi
…... …...

Bus

Receiver

1

Bus

Receiver

i

Bus

Sender

i

send

receive

send

receive

………

mismatch



Stage 1: CMD selection – common semantics

D = C PN (PD)

F = C SR (PF)

A = C LTTA (PA)

C1 = 
C LTTA (P1=PF’ U PA)

C2 =
C SR (P2=PF U PA’)

Original Function
Modeling Domain

Original Architecture
Modeling Domain

CMD Selection

1. Process Networks (PN): expressive 
but high modeling complexity. Need 
transformation of both func and arch 
models.

2. Loosely time triggered architecture 
(LTTA): transformation of func model to 
support asynchronous communication.

3. Synchronous reactive (SR): 
transformation of the arch to support 
synchronous communication, by 
applying following protocols.

• Clock synchronization.
• Constraints on task periods.

Chosen in this case study



Stage 2: covering problem

Functional Model Architectural Model

Covering variables
- Task to ECU
- Signal to message
- Message selection
- Priority
- Period

Quantity constraints 
and objective functions 
- End-to-end latency
- Utilization
- Extensibility 
- ……

Variety of algorithms
- mathematical programming
- heuristics
- meta-heuristics
- machine learning
- ……

ECU1 ECU2

ECU3 ECU4

BUS1

BUS2

IR
Sensor

Wheel
Sensor

Fusion
Task

Object
ID Task

Brake 
Act.

Nav.
Task

150 ms

Primitives: tasks, signals Primitives: ECUs, messages on buses



Stage 2: covering problem contd.

• Worst case analysis for CAN systems with periodic tasks and messages.
• A complete formulation with all design variables does not scale for 

industrial size problems.
• We start with tackling following sub-problems.

Problems Period
Synthesis [1]

Allocation & Priority
Synthesis [2]

Extensibility
Optimization [3, 4]

Variables Period Allocation
Priority

Allocation
Priority

Objective Latency Latency Extensibility

Approach Geometric
programming (GP)

Mixed integer linear 
programming (MILP)

Multi-step Heuristic

*1+ “Period Optimization for Hard Real-time Distributed Automotive Systems”, 44th DAC, 2007. 
*2+ “Definition of Task Allocation and Priority Assignment in Hard Real-Time Distributed Systems”, 28th RTSS, 

2007.
*3+ “Optimizing Extensibility in Hard Real-time Distributed Systems”, 15th RTAS, 2009.
*4+ “Optimizing the Software Architecture for Extensibility in Hard Real-Time Distributed Systems”, TII, 2010.



Allocation & priority synthesis (MILP based)

Step1:
Synthesize task allocation
(using MILP)

Step2:
Synthesize signal packing,  
task and message priorities
(using MILP)

Constraints:
End-to-end latency on given paths
Utilization bound on ECUs and buses
Objective:
Sum of latencies on given paths

Design inputs:
Task worst case execution times
Task and signal periods
Architecture topology, bus speeds

Heuristic:
Task and signal priorities



After mapping
- Meet all requirements
- Total latency from  36486ms in 
manual design to 12900ms

Allocation & priority synthesis results

End to end 
latencies

Sensing & Object

Detection

Target

Object

Selection

Object

Fusion
Object

Tracking

ArbitrationFeatures

Map

GPS

Map2ADAS

Mid-Range

Forward

Object

Detection

and Fusion

Long-Range

Forward

Object

Detection

RF-MRR 

Object Data

LF-MRR 

Object Data

Forward-

Looking

Camera 

Object

Detection

Lane

Sense

Mid-Range

Rear

Object

Detection

and Fusion

Right Side

Object 

Detection

Front-LRR

Object Data

Front

Camera

Object Data

Front

Camera

Lane Data

Map

Data

GPS

Data

LR-MRR

Object Data

RR-MRR

Object Data

Wheel

Speed

Sensors

Rear

Fusion?

Forward

Object

Fusion

SAS, PAS, RWA, 

Yaw Rate, Lat 

Accel, VehSpd, 

Actual Gear,

Actual Direction of 

Travel

Vehicle

Path

Calc

Camera

Forward

Object List

Long-Range

Forward

Object List

Mid-Range

Forward 

Object List

Lane

Path

History

Forward

Lane Path

Estimation

Map

Lane Data

Optical

Lane Data

Rear

Lane

Path

FSRACC

ACP

TOS_LCA

TOS_VB

TOS_ACP

TOS_FCA

TOS_FSRACC

SBZA

LCA

SAPA

LK

LDW

VB

FCA

Optical 

Lane Data

Actuators

MSB_L

MSB_R

Haptic

Seat

Suspension

Steering

HW 

Troque

Brake

Park

Brake

HUD

OSRVM_R

OSRVM_L

DIC

Cluster

.

Raw Wheel

Speeds

Forward

Lane

Path

Forward

Lane

Path

Map

Lane Data

(Road Class)

.

.

Forward

ACP

Target

Data

Forward

Nearest

In-Path

Target

Data

.

.

.

.

.

HMI

Supervisor

.

.

.

Commanded

Damping

Hold

Vehicle

Commanded

Vehicle

Accel

Commanded

RWA

.

Commanded

Engine

Torque

.ACP

Criticality

Vector

ACP

Criticality

Vector

FSRACC

Brake &

Engine

Commands

ACP

Suspension,

Brake, &

Engine

Commands

.

VB

Brake &

Engine

Commands

.
Mid-Range

Rear

Object List

Forward
Object

List

Vehicle

Path

Optical 

Lane Data

Map

Lane Data

Go

Notifier

.

Left Side

Object 

Detection

.

.

.

.

TOS_SBZA

Left Side

Short-Range

(U/S ?)

Right Side

Short-Range

(U/S ?)

Left Side

Mid/Long 

Range

(Radar ?)

Right Side

Mid/Long 

Range

(Radar ?)

Left Side

Object

List

Right Side

Object

List

NAPA

LF-

MRR

RF-

MRR

Front-

LRR

Accel Pedal,

Brake Pedal,

Steering Whl,

Gear Lever Driver’s

Control

Commands

Front-

Camera

LR-

MRR

RR-

MRR

Mid-Range

Rear

Object List

Vehicle Motion DataVehicle Motion Data

Driver’s

Control

Commands

Map

Data

(Overpass)

Vehicl
e

Path

Lane

Function 

On/Off

Switch

Switch

Status .

ACC

Engaged

LDW

LED in

Switch ?
LED

Command

Chime
.

.

.

.

CSV DFD 1.6 - 

060119

Driver’s

Enable/Disable

Inputs

Switch

Switch

Turn 

Signal

Switches

Switch

Switch

AFS

Throttle

Long-Range

Forward

Object List?

Must fix all feature 

descriptions in your 

files

since the HMI 

Supervisor 

has been removed.

Switch

Status

Vehicle 

Motion

Control 

Supervisor

Feature Control 

Output Arbitrator

Other

Control Output

Arbitration

Commanded

Vehicle

Accel

ACP

Criticality

Vector BCM
Body

Function

Actuators

Switch

Status

Vehicle

Position

in the Lane

...ECU1 ECU2

...ECU20 ECU21

...

...ECU61 ECU62

Function Model
- 41 Tasks
- 83 Signals
- 171 paths

Architecture platform
- 9 ECUs
- single bus

Mapping



Extensibility optimization (MILP and heuristic) 

Initial Task Allocation
(MILP)

Signal Packing and 
Message Allocation
(Greedy Heuristic)

Task and Message 
Priority Assignment
(Iterative Heuristic)

Task Re-allocation
(Heuristic for 
incremental changes)

Reach Stop 
Condition? 

Yes

End

No

Initial Task and Signal 
Priority (Heuristic)



Extensibility optimization results
• Same active safety vehicle as in allocation and priority synthesis.
• Single-bus and dual-bus options.
• Parameter K to trade off between extensibility and latency. 
• Compared with a simulated annealing algorithm: maximum 

extensibility within 0.3%, runtime 0.5 hour vs. 12 hours.

0

5000

10000

15000

20000

25000

30000

16 17 18 19 20 21 22 23 24 25

To
ta

l L
at

en
cy

 (
m

s)

Task Extensibility

2 buses case 1 bus case

K=0
K=0

K=0.1

K=0.1

K=0.2K=0.5

K=0.2K=0.5

1 bus case manual



Case studies in other domains

• Building automation domain [1]
 Similar semantics as in automotive – synchronous function model and 

LTTA architecture platform.

 Also choose SR as the common semantics, however additional timing 
constraints are added to the architecture for preserving synchronism, 
as we consider the physical interaction with environment. 

 Mapping leverages COSI for communication network synthesis.

• Multimedia domain [2]
 JPEG encoder application. Intel MXP architecture platform.

 Semantics for both function and architecture are dataflow.

 Challenge is to choose the proper abstraction level. Different levels are 
explored and compared through choices of primitives. 

*1+ “A Design Flow for Building Automation and Control Systems”, 31st RTSS, 2010. 
*2+ “JPEG Encoding on the Intel MXP5800: A Platform-Based Design Case Study”, ESTIMedia’05, 2005.



Concluding remarks

• Software (and hardware) synthesis based on a formal 
mapping procedure
 Formally determines the semantics and abstraction level of the design 

by choosing a common modeling domain.

 Automatic and optimal mapping algorithms.

 Generality – applied to various domains with different models of 
computation as well as different implementation platforms. Domain-
specific mapping algorithms may be leveraged in the framework.

 Optimality – trade-off between complexity and mapping space 
through the selection of CMD. 

 Reusability – common semantic selection requires designers’ 
expertise. However proper selection is typically general for particular 
domains.


