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MBD: Code generation

High level input models
(Simulink, Modelica, …)

Target code
……

Direct code generation 
- No significant restructuring
- Low level optimization
- Manual partition

e.g. Mathworks RTW, dSpace TargetLink
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Separation of Concerns (ca. 1990)



Platform
Design-Space

Export

Platform
Mapping

Architectural SpaceApplication Space

Application Instance Platform Instance

Platform-Based Design

Platform: library of resources defining an abstraction layer with interfaces that allow 
legal connections 

• Resources do contain virtual components i.e., placeholders that will be customized 
in the implementation phase to meet constraints

• Very important resources are interconnections and communication protocols
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Learning from logic synthesis
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High level function model Gate library (platform)

Function model 
in netlist

Gate library in 
netlist

Technology Mapping 
(covering ) 

Mapped design

- Separation of func and arch
- Common language for func and 
arch netlists (Boolean logic,  
NAND2 gate)
- Automatic mapping

restructuring restructuring
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Our software synthesis flow
Function Model Architecture Platform

restructuring restructuring

Stage 1: Common modeling 
domain (CMD) selection
Common semantics for func and arch
Primitives to decide abstraction level

Function Model
in CMD

T2T1

T5

T3

T6
T4 Architecture 

Model in CMD
Stage 2: Automatic mapping

E1 E2 E3

……
B1

E1 E2 E3

……
B1

T1 T2

T3
T4

Mapped Design 
in CMD

Stage 3: Code generation



Challenges in the flow 

• Stage 1: Common modeling domain selection
 Various models of computation exist in system level.

 Trade-off between expressiveness and ease of manipulation when 
selecting the common semantics.

 Trade-off between granularity and optimality when selecting the 
primitives.

• Stage 2: Automatic mapping
 Various constraints and objectives.

 Domain-specific algorithms may be used albeit not necessary.

• Stage 3: Code generation
 Communication interface synthesis maybe needed to guarantee 

correct semantics.



Modeling domain

• Semantic domain Q - the language
 Formally defined as trace-based agent algebra [1].
 Q.D: domain of agents - “building blocks”.
 Q.A: master alphabet – “set of all signals between blocks”.
 Q.α : Q.D -> 2Q.A, each agent has an alphabet – “each block has a 

set of signals”
 Operators: renaming, projection and parallel composition –

“rules to initialize and compose blocks”

• Primitives P – abstraction level
 Primitives are a set of agents in a semantic domain,  P    Q.D .
 No agent in P can be constructed from other agents in P. 

• Modeling domain CQ(P): all agents constructed from 
primitives P by applying operators in semantic domain Q.



[1]  R. Passerone, Semantic Foundations for Heterogeneous Systems. PhD thesis, University of California, 
Berkeley, 2004.



Common modeling domain (CMD)

• A model is an agent in the modeling domain.
• Function model f    F, architecture model a    A.
• B(s) denotes the behavior of model s.
• Modeling domain M is a common modeling domain between f and 

a if there exists f’    M and a’    M s.t.  B(f’)     B(f) and B(a’)    B(a).



  

Behavior of original 
function model f in F

Behavior of original 
architecture model a in A

Behavior of function 
model f’ in CMD

Behavior of architecture 
model a’ in CMD

O

Λ

• f and a may have different semantics 
or abstraction level – hard to explore o.
• f’ and a’ in CMD – mapping space Λ
can be formally explored.
• Λ  o – mapped behavior is legal.

Illustration of mapping space in CMD



CMD selection
• Ancestor-child relation between modeling domains.

 Define Ф(M) = {B(s) | s CQ(P) } – set of all agent behavior.

 M1 = CQ1
(P1) is the ancestor of M2 = CQ2

(P2) iff Ф(M2) Ф(M1).

• Search CMDs on modeling domain relation graph (directed 
edges representing ancestor-child relation).





F
A

D

C

Original Function
Modeling Domain Original Architecture

Modeling Domain

Common Ancestor Modeling 
Domain of F and A 

CMD Selection

expressive but too 
complex to explore

may lose behavior but 
tractable mapping



CMD selection contd.

• Two design aspects when selecting CMD C = CQ(P)

 Semantics – decided by semantic domain Q

o Expressiveness vs. analyzability, e.g. dataflow vs. static dataflow.

o May first choose semantic domain for common ancestor domain 
D, then refine it in C.

 Abstraction level – depends on primitives P

o Explore different abstraction level by choosing different primitives.

o Carried out when selecting C as child domain of D.

 For both, it is a trade-off between the size of mapping space and 
complexity.



Covering problem after CMD selection

• Symbols:
 Function primitive instances : 

 Architecture primitive instances :

 Mapping decision variables : 

 Architecture selection variables:

 Quantities (power, area, bandwidth…):

 General covering formulation 
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Function covering constraints 

Architecture selection constraints 

Quantity constraints 

Objective functions

Domain specific.
Determines 
complexity!
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Case study: active safety vehicle

• Functional correctness and cost-efficiency are both important 
for active safety applications.

• Function and architecture mismatch. 

Function model
• synchronous model.
• no message loss or duplication.

Architecture platform
• clock drift between distributed ECUs, 
asynchronous communication.
• data loss and duplication exist.

SwTask

1_1

MW 1
Bus

Sender

1

Bus

SwTask

1_m1

MW i

SwTask

i_1

SwTask

i_mi
…... …...

Bus

Receiver

1

Bus

Receiver

i

Bus

Sender

i

send

receive

send

receive

………

mismatch



Stage 1: CMD selection – common semantics

D = C PN (PD)

F = C SR (PF)

A = C LTTA (PA)

C1 = 
C LTTA (P1=PF’ U PA)

C2 =
C SR (P2=PF U PA’)

Original Function
Modeling Domain

Original Architecture
Modeling Domain

CMD Selection

1. Process Networks (PN): expressive 
but high modeling complexity. Need 
transformation of both func and arch 
models.

2. Loosely time triggered architecture 
(LTTA): transformation of func model to 
support asynchronous communication.

3. Synchronous reactive (SR): 
transformation of the arch to support 
synchronous communication, by 
applying following protocols.

• Clock synchronization.
• Constraints on task periods.

Chosen in this case study



Stage 2: covering problem

Functional Model Architectural Model

Covering variables
- Task to ECU
- Signal to message
- Message selection
- Priority
- Period

Quantity constraints 
and objective functions 
- End-to-end latency
- Utilization
- Extensibility 
- ……

Variety of algorithms
- mathematical programming
- heuristics
- meta-heuristics
- machine learning
- ……

ECU1 ECU2

ECU3 ECU4

BUS1

BUS2

IR
Sensor

Wheel
Sensor

Fusion
Task

Object
ID Task

Brake 
Act.

Nav.
Task

150 ms

Primitives: tasks, signals Primitives: ECUs, messages on buses



Stage 2: covering problem contd.

• Worst case analysis for CAN systems with periodic tasks and messages.
• A complete formulation with all design variables does not scale for 

industrial size problems.
• We start with tackling following sub-problems.

Problems Period
Synthesis [1]

Allocation & Priority
Synthesis [2]

Extensibility
Optimization [3, 4]

Variables Period Allocation
Priority

Allocation
Priority

Objective Latency Latency Extensibility

Approach Geometric
programming (GP)

Mixed integer linear 
programming (MILP)

Multi-step Heuristic

*1+ “Period Optimization for Hard Real-time Distributed Automotive Systems”, 44th DAC, 2007. 
*2+ “Definition of Task Allocation and Priority Assignment in Hard Real-Time Distributed Systems”, 28th RTSS, 

2007.
*3+ “Optimizing Extensibility in Hard Real-time Distributed Systems”, 15th RTAS, 2009.
*4+ “Optimizing the Software Architecture for Extensibility in Hard Real-Time Distributed Systems”, TII, 2010.



Allocation & priority synthesis (MILP based)

Step1:
Synthesize task allocation
(using MILP)

Step2:
Synthesize signal packing,  
task and message priorities
(using MILP)

Constraints:
End-to-end latency on given paths
Utilization bound on ECUs and buses
Objective:
Sum of latencies on given paths

Design inputs:
Task worst case execution times
Task and signal periods
Architecture topology, bus speeds

Heuristic:
Task and signal priorities



After mapping
- Meet all requirements
- Total latency from  36486ms in 
manual design to 12900ms

Allocation & priority synthesis results

End to end 
latencies
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Extensibility optimization (MILP and heuristic) 

Initial Task Allocation
(MILP)

Signal Packing and 
Message Allocation
(Greedy Heuristic)

Task and Message 
Priority Assignment
(Iterative Heuristic)

Task Re-allocation
(Heuristic for 
incremental changes)

Reach Stop 
Condition? 

Yes

End

No

Initial Task and Signal 
Priority (Heuristic)



Extensibility optimization results
• Same active safety vehicle as in allocation and priority synthesis.
• Single-bus and dual-bus options.
• Parameter K to trade off between extensibility and latency. 
• Compared with a simulated annealing algorithm: maximum 

extensibility within 0.3%, runtime 0.5 hour vs. 12 hours.
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Case studies in other domains

• Building automation domain [1]
 Similar semantics as in automotive – synchronous function model and 

LTTA architecture platform.

 Also choose SR as the common semantics, however additional timing 
constraints are added to the architecture for preserving synchronism, 
as we consider the physical interaction with environment. 

 Mapping leverages COSI for communication network synthesis.

• Multimedia domain [2]
 JPEG encoder application. Intel MXP architecture platform.

 Semantics for both function and architecture are dataflow.

 Challenge is to choose the proper abstraction level. Different levels are 
explored and compared through choices of primitives. 

*1+ “A Design Flow for Building Automation and Control Systems”, 31st RTSS, 2010. 
*2+ “JPEG Encoding on the Intel MXP5800: A Platform-Based Design Case Study”, ESTIMedia’05, 2005.



Concluding remarks

• Software (and hardware) synthesis based on a formal 
mapping procedure
 Formally determines the semantics and abstraction level of the design 

by choosing a common modeling domain.

 Automatic and optimal mapping algorithms.

 Generality – applied to various domains with different models of 
computation as well as different implementation platforms. Domain-
specific mapping algorithms may be leveraged in the framework.

 Optimality – trade-off between complexity and mapping space 
through the selection of CMD. 

 Reusability – common semantic selection requires designers’ 
expertise. However proper selection is typically general for particular 
domains.


