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Systems 

• What is a system?
– Everything is a system!
– A system is something that has: inputs, outputs, state; 

state evolves in time, given (past state and) inputs; 
outputs are produced from state and inputs, at a given 
time.

• Real vs. mathematical systems:
– The latter are models of (real or IMAGINARY) systems

• Synchronous models = models of synchronous 
systems.

• What does synchronous mean?
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Fundamental characteristics of the 
synchronous MoC

• Notion of synchronous round (or cycle)
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Fundamental characteristics of the 
synchronous MoC

• Notion of synchronous round (or cycle)
• Concurrency 
• Determinism (most of the time)

– Same (sequence of) inputs => same (sequence of) 
outputs

• Contrast this to:
– Concurrency with threads:

• Non-deterministic: results depend on interleaving

– Concurrency in Kahn Process Networks:
• Asynchronous (interleaving), but still deterministic
• Needs unbounded buffers in general, for communication
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Example: synchronous block diagram 
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Example: synchronous block diagram 
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Example: FIR filter
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Where is the synchronous round here?
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Example: sequential logic diagram
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Where is the synchronous round here?
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Example: control loop
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initialize state;

while (true) do

read inputs;

compute outputs;

update state;

write outputs;

end while;

Where is the synchronous round here?
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Example: control loop (v2)
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initialize state;

while (true) do

await clock tick;

read inputs;

compute outputs;

update state;

write outputs;

end while;
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Is this an important model of 
computation?

• Yes!

– Extremely widespread, both in terms of 
models/languages, and in terms of applications

• Examples of applications:

– Synchronous digital circuits

– 99% (?) of control software

• Read-compute-write control loops

• Nuclear, avionics, automotive, …

– Multimedia, …
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Is this an important model of 
computation?

12

Copyright The Mathworks

Engine control model in Simulink

HW SW ++
c.f. Simulink to FPGA, 

or to HDL
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Is this an important model of 
computation?

• Yes!
– Extremely widespread, both in terms of 

models/languages, and in terms of applications

• Examples of models and languages:
– Mealy/Moore machines
– Verilog, VHDL, …
– (discrete-time) Simulink
– Synchronous languages
– (Synchronous) Statecharts
– The synchronous-reactive (SR) domain in Ptolemy II
– …
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Myths about synchronous models

• Synchronous models have zero-time semantics
– Synchronous semantics are essentially untimed: they do 

not have a quantitative notion of time.

– Famous Esterel statements [Berry-Gonthier ‘92+:
• every 1000 MILLISEC do emit SEC end

• every 1000 MILLIMETER do emit METER end

– Synchronous models can capture both time-triggered
and event-triggered systems. E.g.:

• Do something every 20ms

• Do something whenever you receive an interrupt from the 
engine
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Example: control loop (v3)
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initialize state;

while (true) do

await clock tick

or any other interrupt;

read inputs;

compute outputs;

update state;

write outputs;

end while;

S. Tripakis – EE 249 – The Synchronous MoC



Myths about synchronous models

• But:
– The synchronous cycles 

could be interpreted as 
discrete time: 0, 1, 2, 3, …, 
in which case we have a 
discrete-time semantics…

– … and this can also be seen 
as an abstraction of real-
time:

– C.f. timing analysis of 
digital circuits

– C.f. WCET analysis of 
synchronous control loops

16S. Tripakis – EE 249 – The Synchronous MoC



Myths about synchronous models

• Synchronous models are non-implementable
(because zero-time is impossible to achieve)

– ???
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Real-Time Workshop
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Benefits of synchronous models

• Deterministic:
– Easier to understand, easier to verify

– More light-weight than asynchronous:
• No interleaving => less state explosion

• Simpler SW implementations:
– No operating system required

– Static scheduling, no memory allocations, no dynamic 
creation of processes, …

• Simpler timing/schedulability analysis
– Often simpler WCET analysis also: no loops
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Asynchronous vs. Synchronous 
Product
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Lecture plan

• Part 1: Single-rate synchronous models

• Part 2: Multi-rate synchronous models

• Part 3: Feedback and Causality
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Part 1: Single-rate synchronous models

• Moore/Mealy machines

• Synchronous block diagrams

– Inspired by discrete-time Simulink, and SCADE

• Lustre

• Esterel
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Moore Machines

22

• States: {q0, q1, q2, q3}

• Initial state: q0

• Input symbols: {x,y,z}

• Output symbols: {a,b,c}

• Output function:
– Out : States -> Outputs

• Transition function:
– Next: States x Inputs -> States

Where is the synchronous round here?

deterministic
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Moore machine: a circuit view
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Next Out

clock

x(n)

y(n)

s(n)
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Mealy Machines

24

• States: {S0, S1, S2}

• Initial state: S0

• Input symbols: {0,1}

• Output symbols: {0,1}

• Output function:
– Out : States x Inputs -> Outputs

• Transition function:
– Next: States x Inputs -> States

Where is the synchronous round here?
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Mealy machine: a circuit view
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Next Out

clock

x(n)

y(n)

s(n)

Is this a “purely synchronous” model?
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Moore vs. Mealy machines
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Moore or Mealy?

Moore or Mealy?

S. Tripakis – EE 249 – The Synchronous MoC



Moore vs. Mealy machines

• Every Moore machine is also a Mealy machine

– Why?

• Is it possible to transform a Mealy machine to 
a Moore machine?
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Synchronous block diagrams

• Physical models often described in 
continuous-time

• Controller part (e.g., Transmission Control 
Unit) is discrete-time
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Synchronous block diagrams
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Example: FIR filter
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What is the Mealy machine for this diagram?
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Hierarchy in synchronous block 
diagrams 

A B

P
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Hierarchy in synchronous block 
diagrams  

Fundamental modularity concept

P
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Semantics of hierarchical SBDs

• Can we define the semantics of a composite 
SBD as a Mealy machine?

– In particular, with a pair of (Out, Next) functions?
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Problem with “monolithic” semantics

A

B

P

P.out(x1, x2) returns (y1, y2)

{

y1 := A.out( x1 );

y2 := B.out( x2 );

return (y1, y2);

}

x1

x2
y2

y1

False I/O dependencies 
=> 

Model not usable in some contexts
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Solution

• Generalize from a single, to MANY output functions

P.out1( in1 ) returns out1 {

return A.out( in1 );

}

P.out2( in2 ) returns out2 {

return B.out( in2 );

}

A

B

P

*DATE’08, RTAS’08, POPL’09+
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Interesting questions: 
How many output functions do we need?

How to compute them?



Lustre

• The FIR filter in Lustre:

36

node fir (x : real) returns (y : real);

var

s1, s2 : real;

let

s1 = 0 -> pre x;

s2 = 0 -> pre s1;

y = x/3 + s1/3 + s2/3;

tel
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Lustre

• The FIR filter in Lustre:

37

node fir (x : real) returns (y : real);

var

s1, s2 : real;

let

s1 = 0 -> pre x;

s2 = 0 -> pre s1;

y = x/3 + s1/3 + s2/3;

tel
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Lustre

• The FIR filter in Lustre:

38

node fir (x : real) returns (y : real);

var

s1, s2 : real;

let

y = x/3 + s1/3 + s2/3;

s2 = 0 -> pre s1;

s1 = 0 -> pre x;

tel

What has changed? Is this correct?
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Lustre

• The FIR filter in Lustre (no explicit state vars):
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node fir (x : real) returns (y : real);

let

y = x/3 

+ (0 -> pre x)/3 

+ (0 -> (0 -> pre pre x))/3;

tel
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Exercise

• Write a counter in Lustre
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Esterel

• The FIR filter in Esterel:
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module FIR:

input  x : double;

output y : double;        

var s1 := 0 : double, s2 := 0 : double in 

loop

await x ;

emit y(x/3 + s1/3 + s2/3) ;

s2 := s1 ;

s1 := x ;

end loop

end var.
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Esterel

• The FIR filter in Esterel:
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module FIR:

input  x : double;

output y : double;        

var s1 := 0 : double, s2 := 0 : double in 

loop

await x ;

emit y(x/3 + s1/3 + s2/3) ;

s1 := x ;

s2 := s1 ;

end loop

end var.

What has changed? Is this correct?
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Esterel

• A speedometer in Esterel:
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module SPEEDOMETER:

input sec, cm;                % pure signals

output speed : double;        % valued signal

loop                 

var cpt := 0 : double in 

abort 

loop 

await cm ; 

cpt := cpt + 1.0 

end loop

when sec do 

emit speed(cpt) 

end abort

end var

end loop. 
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Lustre

• The speedometer in Lustre:
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node speedometer(sec, cm: bool) returns (speed: real);

var

cpt1, cpt2 : int;

sp1, sp2 : real;

let

cpt1  = counter(cm, sec);

sp1   = if sec then real(cpt1) else 0.0;

cpt2  = counter(sec, cm);

sp2   = if (cm and (cpt2 > 0)) 

then 1.0/(real(cpt2)) 

else 0.0;

speed = max(sp1, sp2);

tel
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Part 2: Multi-rate synchronous models

• Synchronous block diagrams with triggers

– Inspired by discrete-time Simulink, and SCADE

• Lustre with when/current

• What about Esterel?
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Triggered and timed synchronous block 
diagrams

• Motivated by Simulink, SCADE

Triggered block

Simulink/Stateflow diagram Sample time
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Triggered synchronous block diagrams

A

B C

P

TRIGGERED
BLOCK

TRIGGER

multi-rate
models:

• B executed only when 

trigger = true

• All signals “present” always

• But not all updated at the 

same time

• E.g., output of B updated only 

when trigger is true
need initial 

value in case 

trigger = false

at n = 0 (initial 

round)

v

Question: do triggers increase expressiveness?
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Trigger elimination
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Trigger elimination: atomic blocks
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Timed diagrams

A

(3,1)

B
C

P

“TIMED”
BLOCKS

“static”
multi-rate
models (2,0)

(period, phase)
specifications
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Timed diagrams = 
statically triggered diagrams

A

(3,1)

B
C

P

(2,0)
A B C

P

(3,1) (2,0)

=

(2,0)
where

produces: true, false, true, false, …
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Multi-clock synchronous programs in 
Lustre

• Then when and current operators:

52

node A(x: int, b: bool) returns (y: int);

let

y = current (x when b);

tel

0 1 2 3 4 5 ...

T F T F F T ...

0   2     5 ...

0 0 2 2 2 5 ...

x:

b:

x when b:

y:
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Multi-clock synchronous programs in 
Lustre

53

node A(x1,x2: int, b: bool) returns (y: int);

let

y = x1 + (x2 when b);

tel

What is the meaning of this program?

Forbidden in Lustre
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Multi-clock synchronous programs in 
Lustre

• In Lustre, every signal has a clock = “temporal” 
type

• The clock-calculus: a sort of type checking

– Only signals with same clock can be added, 
multiplied, …

– How to check whether two clocks (i.e., boolean
signals) are the same? 

• Problem undecidable in general

• In Lustre, check is syntactic
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Multi-rate in Esterel
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every 1000 MILLISEC do 

emit SEC

end

||

every 1000 MILLIMETER do

emit METER 

end

MILLISEC 

MILLIMETER 

SEC

METER

S. Tripakis – EE 249 – The Synchronous MoC



Part 3: Feedback and Causality

• Vanilla feedback:

– Cyclic dependencies “broken” by registers, delays, …

• Unbroken cyclic dependencies:

– Lustre/SBD solution: forbidden

– Esterel/HW solution: forbidden unless if it makes 
sense

• Malik’s example

• Constructive semantics
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Feedback in Lustre

57

node counter() returns (c : int);

let

c = 0 -> (pre c) + 1;

tel

node counter() returns (c : int);

let

c = 0 -> c + 1;

tel

OK

Rejected
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Feedback in Synchronous Block 
Diagrams

• Same as Lustre:

58

A B

Rejected, unless A or B is Moore machine
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What about this?

59

Cyclic  combinational circuit.
Useful: equivalent acyclic circuit is almost 2x larger

[Malik’94]

z = if c then 

F(G(x))

else

G(F(x))
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Can we give meaning to cyclic 
synchronous models?

• Think of them as fix-point equations:
– x = F(x)

• What is the meaning of these:
– x = not x

– x = x

• Is unique solution enough?

– x = x or not x
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Can we give meaning to cyclic 
synchronous models?

• Think of them as fix-point equations:
– x = F(x)

• What is the meaning of these:
– x = not x

– x = x

• Is unique solution enough?

– x = x or not x

61

0

1

0
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Can we give meaning to cyclic 
synchronous models?

• Think of them as fix-point equations:
– x = F(x)

• What is the meaning of these:
– x = not x

– x = x

• Is unique solution enough?

– x = x or not x
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1

1

0
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Can we give meaning to cyclic 
synchronous models?

• Think of them as fix-point equations:
– x = F(x)

• What is the meaning of these:
– x = not x

– x = x

• Is unique solution enough?

– x = x or not x
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Can we give meaning to cyclic 
synchronous models?

• Think of them as fix-point equations:
– x = F(x)

• What is the meaning of these:
– x = not x

– x = x

• Is unique solution enough?

– x = x or not x
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0
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Constructive semantics

• Reason in constructive logic instead of 
classical logic

• “x or not x” not an axiom

• Then we cannot prove x=1 from:

– x = x or not x
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Constructive semantics

• Fix-point analysis in a flat CPO:
– Start with “bottom” (undefined), 

iterate until fix-point is reached:
• Guaranteed in finite number of 

iterations, because no. signals and no. 
values are both finite

– If solution contains no undefined 
values, then circuit is constructive

• In our example:
– x = x or not x

– Bottom is the fix-point
– Circuit not constructive
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Т

False

Т
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Constructive semantics: theoretical 
basis

• Kleene fixed point theorem:
– Let L be a CPO and f : L → L be a continuous (and 

therefore monotone) function. Then f has a least 
fixed point equal to sup { bot, f(bot), f(f(bot)), … }

• In our flat CPO, continuous = monotone:
– Non-monotone: f(bot) > f(a), where a is not bot

– Not a realistic function

• In out flat CPO, termination is guaranteed.
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Constructive semantics

• Another example:
– x = a and not y

– y = b and not x

• Here we have external inputs, 
must try for all possible input 
combinations

• Exercise!
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Summary

• Synchronous model of computation:
– Widespread, many languages, many applications
– Easier to understand, easier to verify (than asynchronous 

interleaving)
– Interesting semantically

• To go further:
– Interesting implementation problems: how to preserve the 

properties that the synchronous abstraction provides 
(determinism, values, …) during implementation?

• Especially on asynchronous, distributed execution platforms

– How to add dynamicity, adaptivity, reconfigurability, … ?
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Questions?
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Back-up slides
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Mealy Machine

A0/0

A1/1

B/0

10

10

00

10
01

01

00
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A
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00/1

00/0, 01/1 10/0,  01/0

Moore Machine

From Mealy to Moore
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Moore vs. Mealy machines

• Every Moore machine is also a Mealy machine

– Why?

• Every Mealy machine can be transformed to 
an equivalent Moore machine

– How?

– What’s the cost?

– What does “equivalent” mean?
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