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Systems

What is a system?
— Everything is a system!

— A system is something that has: inputs, outputs, state;
state evolves in time, given (past state and) inputs;
outputs are produced from state and inputs, at a given
time.

Real vs. mathematical systems:
— The latter are models of (real or IMAGINARY) systems

Synchronous models = models of synchronous
systems.

What does synchronous mean?



Fundamental characteristics of the
synchronous MoC

* Notion of synchronous round (or cycle)

inputs inputs
l i l i rounds
outputs @ outputs

round 1 round 2
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Fundamental characteristics of the
synchronous MoC

Notion of synchronous round (or cycle)
Concurrency

Determinism (most of the time)

— Same (sequence of) inputs => same (sequence of)
outputs

Contrast this to:
— Concurrency with threads:
* Non-deterministic: results depend on interleaving

— Concurrency in Kahn Process Networks:
* Asynchronous (interleaving), but still deterministic
* Needs unbounded buffers in general, for communication



Example: synchronous block diagram
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Example: synchronous block diagram
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Example: FIR filter

1 1 1
y(n) = 3 x(n) +§ X(n—1) +§ X(n—2)

Where is the synchronous round here?
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Example: sequential logic diagram
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count
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Where is the synchronous round here?
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Example: control loop

lnlitialize state;
while (true) do
read 1nputs;
compute outputs;
update state;
write outputs;
end while;

Where is the synchronous round here?
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Example: control loop (v2)

lnlitialize state;
while (true) do
awalt clock tick;
read 1nputs;
compute outputs;
update state;
write outputs;
end while;



Is this an important model of
computation?

 Yes!

— Extremely widespread, both in terms of
models/languages, and in terms of applications
 Examples of applications:
— Synchronous digital circuits
— 99% (?) of control software

e Read-compute-write control loops

* Nuclear, avionics, automotive, ...

— Multimedia, ...



Is this an important model of

computation?

c.f. Simulink to FPGA,
or to HDL
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Engine control model in Simulink

Copyright The Mathworks
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Is this an important model of
computation?

* Yes!

— Extremely widespread, both in terms of
models/languages, and in terms of applications

 Examples of models and languages:
— Mealy/Moore machines
— Verilog, VHDL, ...
— (discrete-time) Simulink
— Synchronous languages
— (Synchronous) Statecharts
— The synchronous-reactive (SR) domain in Ptolemy Il



Myths about synchronous models

* Synchronous models have zero-time semantics

— Synchronous semantics are essentially untimed: they do
not have a quantitative notion of time.

— Famous Esterel statements [Berry-Gonthier ‘92]:
* every 1000 MILLISEC do emit SEC end
* every 1000 MILLIMETER do emit METER end
— Synchronous models can capture both time-triggered
and event-triggered systems. E.g.:
* Do something every 20ms

* Do something whenever you receive an interrupt from the
engine

S. Tripakis — EE 249 — The Synchronous MoC

14



Example: control loop (v3)

lnlitialize state;
while (true) do
awalt clock tick
or any other i1nterrupt;
read 1nputs;
compute outputs;
update state;
write outputs;
end while;
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Myths about synchronous models
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Myths about synchronous models

* Synchronous models are non-implementable

(because zero-time is impossible
—?7??

to achieve)

Real-Time Workshop
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Benefits of synchronous models

* Deterministic:
— Easier to understand, easier to verify

— More light-weight than asynchronous:
* No interleaving => less state explosion

* Simpler SW implementations:
— No operating system required

— Static scheduling, no memory allocations, no dynamic
creation of processes, ...

* Simpler timing/schedulability analysis
— Often simpler WCET analysis also: no loops



Asynchronous vs. Synchronous
Product

component automata asynchronous synchronous

product product
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Lecture plan

e Part 1: Single-rate synchronous models
e Part 2: Multi-rate synchronous models

e Part 3: Feedback and Causality
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Part 1: Single-rate synchronous models

Moore/Mealy machines

Synchronous block diagrams

— Inspired by discrete-time Simulink, and SCADE

Lustre
Esterel
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Moore Machines

States: {q0, q1, g2, q3} deterministic
Initial state: qO
Input symbols: {x,y,z} S N

Output symbols: {a,b,c}
Output function:
— Out : States -> Outputs

Transition function:
— Next: States x Inputs -> States

Where is the synchronous round here?
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Moore machine: a circuit view

X(n) —

-

s(n)

oy

clock
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Mealy Machines

States: {SO, S1, S2} 1

0/0

P Nye

Initial state: SO <N

Input symbols: {0,1} @ @
e~

Output symbols: {0,1} o

Output function: » /

— Out : States x Inputs -> Outputs

Transition function:
— Next: States x Inputs -> States

Where is the synchronous round here?
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Mealy machine: a circuit view

x(n)

clock

s(n)

Is this a “purely synchronous” model?
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Moore vs. Mealy machines
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Moore vs. Mealy machines

* Every Moore machine is also a Mealy machine
— Why?

* |sit possible to transform a Mealy machine to
a Moore machine?



Synchronous block diagrams

Throttle ‘ Engine

Gearset and
Shift Mechanism

brake

* Physical models often described in
continuous-time

e Controller part (e.g., Transmission Control
Unit) is discrete-time



Synchronous block diagrams
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Example: FIR filter

1 1 1
y(n) = 3 x(n) +§ X(n—1) +§ X(n—2)

Y(0) =2 X(O) + 8, () +,(0)

S,(n+1) =x(n)
S,(n+1)=S5,(n)
S,(0) =initial state
S, (0) =Iinitial state

What is the Mealy machine for this diagram?
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Hierarchy in synchronous block
diagrams




Hierarchy in synchronous block
diagrams

Fundamental modularity concept
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Semantics of hierarchical SBDs

* Can we define the semantics of a composite
SBD as a Mealy machine?

— In particular, with a pair of (Out, Next) functions?



Problem with “monolithic” semantics

False 1/0 dependencies

=>

Model not usable in some contexts

x1 »\’, A —> vl P.out (x1, x
{
\ y]_ =
I V2 i
y2
X2 —) B return
}

2) returns

A.out ( x1
B.out ( x2

(yvl, v2);

).
).

(v1l,

14
14

y2)
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[DATE’08, RTAS’08, POPL'09]

Solution

Generalize from a single, to MANY output functions

P.outl( inl ) returns outl {
—» A )—> return A.out( inl );
=)
P.out2( in2 ) returns out?2 {
) ' B ' : return B.out ( in2 );
}

Interesting questions:
How many output functions do we need?
How to compute them?
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Lustre

* The FIR filter in Lustre:

node fir (x : real) returns (y : real);

var
sl, s2 : real;
let
sl = 0 -> pre x;
s2 = 0 -> pre sl;

y = x/3 + s1/3 + s2/3;
tel

<l
N~
[

b




Lustre

* The FIR filter in Lustre:

node fir (x : real) returns (y : real);

var
sl, s2 : real;
let
sl = 0 -> pre x;

s2 = 0 -> pre sl;

y = x/3 + s1/3 + s2/3;
tel

<l
N~
[

b
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Lustre

* The FIR filter in Lustre:

node fir (x : real) returns
var

sl, s2 : real;
let

y = x/3 + s1/3 + s2/3;
s2 0 -> pre sl;
sl = 0 -> pre x;

tel

What has changed? Is this correct?
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Lustre

* The FIR filter in Lustre (no explicit state vars):

node fir (x : real) returns (y : real);
let

y = x/3
+ (0 -> pre x)/3
+ (0 -> (0 -> pre pre x))/3;
tel

3
By
By
A,
[ -—I

[Nl

V4

yln]

@
@




Exercise

* Write a counter in Lustre



Esterel

ne FIR filter in Esterel:

module FIR:

input x double;
output y double;
var sl := 0 double, s2 := 0
loop
await x ;
emit y(x/3 + s1/3 + s2/3)
s2 := sl ;
sl := x ;
end loop

end var.

.
4

double in
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Esterel

* The FIR filter in Esterel:

module FIR:
input x :
output y :

double;
double;
var sl := 0 : double, s2 := 0
loop
await x ;
emit y(x/3 + s1/3 + s2/3) ;
sl := x ;
s2 := sl ;
end loop
end var.

: double in

What has changed? Is this correct?
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Esterel

* A speedometer in Esterel:

module SPEEDOMETER:
input sec, cm;
output speed : double;
loop
var cpt := 0 : double in
abort
loop
await cm ;
cpt (= cpt + 1.0
end loop
when sec do
emit speed(cpt)
end abort
end var
end loop.
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Lustre

* The speedometer in Lustre:

node speedometer (sec, cm: bool) returns (speed: real);
var

cptl, cpt2 : int;

spl, sp2 : real;

let
cptl = counter(cm, sec);
spl = if sec then real (cptl) else 0.0;
cpt2 = counter(sec, cm);
sp2 = if (cm and (cpt2 > 0))
then 1.0/ (real (cpt2))
else 0.0;
speed = max(spl, sp2);

tel
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Part 2: Multi-rate synchronous models

* Synchronous block diagrams with triggers
— Inspired by discrete-time Simulink, and SCADE

e Lustre with when/current
 What about Esterel?
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Triggered and timed synchronous block

diagrams

* Motivated by Simulink, SCADE

Triggered block

Constant

Simulink/Stateflow diagram

Inline Parametars = on

f:Ia. 1in Dizcrete-Time

KTs

P

z—1

Integrator
Te=1

/

Sample time
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Triggered synchronous block diagrams

TRIGGER

/

P

multi-rate /

models: A ),
B executed only when

trigger = true D » B I C Ir—

« All signals “present” always /
But not all updated at the /

same time /
« E.g., output of B updated only N

when trigger is true TRIGGERED need initial

value in case

trigger = false
. _ _ . at n = 0 (initial
Question: do triggers increase expressiveness? round)
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Trigger elimination

» B
init:v
- > ‘
oy 4 b >E—.
L’l |i11it:v
— C P P d rr—
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Trigger elimination: atomic blocks

(b) eliminating the trigger from a uni
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“static”
multi-rate
models

“TIMED”
BLOCKS

/

Timed diagrams

—

A

(3,1)

—

/A

(2,0)

\\ //
(period, phase)
specifications
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Timed diagrams =
statically triggered diagrams

(3,1)

(2,0)

where

produces:

(3,1) (2,0)
A 4 A 4
—» A p—» B P C
(2,0)
v
true, false, true, false, ..




Multi-clock synchronous programs in
Lustre

* Then when and current operators:

node A(x: int, b: bool) returns (y: int);
let
y = current (x when b);

tel
x: 01 2 3 4 5
b: T F TFFT
X when b: 0 2 5
v: 00 2 2 2 5
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Multi-clock synchronous programs in
Lustre

node A(x1l,x2: int, b: bool) returns (y: int);
let

y = x1 + (x2 when b);
tel

What is the meaning of this program?

Forbidden in Lustre
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Multi-clock synchronous programs in
Lustre

* |[n Lustre, every signal has a clock = “temporal”
type
* The clock-calculus: a sort of type checking

— Only signals with same clock can be added,
multiplied, ...

— How to check whether two clocks (i.e., boolean
signals) are the same?

* Problem undecidable in general
* |In Lustre, check is syntactic



Multi-rate in Esterel

MILLISEC™ every 1000 MILLISEC do
emit SEC —> SEC

end

||

every 1000 MILLIMETER do
emit METER

MILLIMETER ™ end —> METER




Part 3: Feedback and Causality

* Vanilla feedback:
— Cyclic dependencies “broken” by registers, delays, ...

* Unbroken cyclic dependencies:
— Lustre/SBD solution: forbidden

— Esterel/HW solution: forbidden unless if it makes
sense

* Malik’s example
e Constructive semantics
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Feedback in Lustre

node counter () returns (c : int);

let OK
c=0-> (pre c) + 1;

tel

node counter () returns (c : int);

let

Rejected
c=0->c + 1;

tel



Feedback in Synchronous Block
Diagrams

Rejected, unless A or B is Moore machine

e Same as Lustre:

S. Tripakis — EE 249 — The Synchronous MoC

58



Z

What about this?

o | [
< | | <=z
= 1f ¢ then
F(G(x))
else ¢ "
G(F(x)) f 1

Cyclic combinational circuit.
Useful: equivalent acyclic circuit is almost 2x larger
[Malik’94]
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Can we give meaning to cyclic
synchronous models?

* Think of them as fix-point equations:
—x = F(x)

* What is the meaning of these:
—X = not x
—X = X

* |s unique solution enough?

—X = X Or not x
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Can we give meaning to cyclic
synchronous models?

* Think of them as fix-point equations:
—x = F(x)

* What is the meaning of these:
—X = not x
—X = X

* |s unique solution enough?

—X = X or not x 0 0
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Can we give meaning to cyclic
synchronous models?

* Think of them as fix-point equations:
—x = F(x)

* What is the meaning of these:
—X = not x
—X = X

* |s unique solution enough?

—X = X or not x 0 1
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Can we give meaning to cyclic
synchronous models?

* Think of them as fix-point equations:
—x = F(x)

* What is the meaning of these:
—X = not x
—X = X

* |s unique solution enough?

—X = X or not x 0 1
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Can we give meaning to cyclic
synchronous models?

* Think of them as fix-point equations:
—x = F(x)

* What is the meaning of these:
—X = not x
—X = X

* |s unique solution enough?

—X = X or not x 0 0
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Constructive semantics

e Reason in constructive logic instead of
classical logic

* “Xornotx” not an axiom
* Then we cannot prove x=1 from:

—X = X Oor not x



Constructive semantics

 Fix-point analysis in a flat CPO: True False

— Start with “bottom” (undefined), N/
iterate until fix-point is reached: 1

e Guaranteed in finite number of
iterations, because no. signals and no.
values are both finite

— |If solution contains no undefined
values, then circuit is constructive

* |In our example:
—X = X or not x
— Bottom is the fix-point | 1
— Circuit not constructive




Constructive semantics: theoretical
basis

* Kleene fixed point theorem:

—let L bea CPOand f: L - L be a continuous (and
therefore monotone) function. Then f has a least
fixed point equal to sup { bot, f(bot), f(f(bot)), ... }

* In our flat CPO, continuous = monotone:
— Non-monotone: f(bot) > f(a), where a is not bot
— Not a realistic function

* |n out flat CPO, termination is guaranteed.


http://en.wikipedia.org/wiki/Scott_continuity
http://en.wikipedia.org/wiki/Monotone_function

Constructive semantics

e Another example: g
P =D
—X = a and not y

—y = b and not x ?J__C ;

* Here we have external inputs,

must try for all possible input
combinations

Ia

T

e Exercise!
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Summary

* Synchronous model of computation:
— Widespread, many languages, many applications

— Easier to understand, easier to verify (than asynchronous
interleaving)

— Interesting semantically

e To go further:

— Interesting implementation problems: how to preserve the
properties that the synchronous abstraction provides
(determinism, values, ...) during implementation?

* Especially on asynchronous, distributed execution platforms
— How to add dynamicity, adaptivity, reconfigurability, ... ?



Questions?
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From Mealy to Moore
00/0, 01/1

Mealy Machine

.

10/0, 01/0

00
Moore Machine ;AO@
1

01 00

01

10
01



Moore vs. Mealy machines

* Every Moore machine is also a Mealy machine
— Why?

* Every Mealy machine can be transformed to
an equivalent Moore machine

— How?
— What's the cost?
— What does “equivalent” mean?



