The Synchronous
Model of Computation

Stavros Tripakis

UC Berkeley
stavros@eecs.berkeley.edu

EE 249 Lecture —Sep 9, 2010

Systems

What is a system?
— Everything is a system!

— A system is something that has: inputs, outputs, state;
state evolves in time, given (past state and) inputs;
outputs are produced from state and inputs, at a given
time.

Real vs. mathematical systems:
— The latter are models of (real or IMAGINARY) systems

Synchronous models = models of synchronous
systems.

What does synchronous mean?

Fundamental characteristics of the
synchronous MoC

* Notion of synchronous round (or cycle)

inputs inputs
l i l i rounds
outputs @ outputs

round 1 round 2

S. Tripakis — EE 249 — The Synchronous MoC

Fundamental characteristics of the
synchronous MoC

Notion of synchronous round (or cycle)
Concurrency

Determinism (most of the time)

— Same (sequence of) inputs => same (sequence of)
outputs

Contrast this to:
— Concurrency with threads:
* Non-deterministic: results depend on interleaving

— Concurrency in Kahn Process Networks:
* Asynchronous (interleaving), but still deterministic
* Needs unbounded buffers in general, for communication

Example: synchronous block diagram

R —
—¥ A

- ABC | ACGB

rounds

Example: synchronous block diagram

R —
—¥ A

N ¢ —
deterministic concurrency
Al sk
C | C
| rounds

S. Tripakis — EE 249 — The Synchronous MoC

Example: FIR filter

1 1 1
y(n) = 3 x(n) +§ X(n—1) +§ X(n—2)

Where is the synchronous round here?

S. Tripakis — EE 249 — The Synchronous MoC

Example: sequential logic diagram

count Op) Os O
enable
count
up/ down
oL | e J
~J @ ~J @ —J @ —J @
Clock —+ — —
11&5 @—‘ 11'{ @—I 11’1’ @—‘ 11’{ Qr

Where is the synchronous round here?

S. Tripakis — EE 249 — The Synchronous MoC

Example: control loop

lnlitialize state;
while (true) do
read 1nputs;
compute outputs;
update state;
write outputs;
end while;

Where is the synchronous round here?

S. Tripakis — EE 249 — The Synchronous MoC

Example: control loop (v2)

lnlitialize state;
while (true) do
awalt clock tick;
read 1nputs;
compute outputs;
update state;
write outputs;
end while;

Is this an important model of
computation?

 Yes!

— Extremely widespread, both in terms of
models/languages, and in terms of applications
 Examples of applications:
— Synchronous digital circuits
— 99% (?) of control software

e Read-compute-write control loops

* Nuclear, avionics, automotive, ...

— Multimedia, ...

Is this an important model of

computation?

c.f. Simulink to FPGA,
or to HDL

SW ++

Modeling Endine Timina UsinaTrigaered Subsystems
s valve timing crank speed
£
m— massik)
Throttle Angle Profiles Teng .
(degrees) mass(k+1) b . N _ Engine
riager e W30/
. - —] Tload -
Throttle & Manifold c - Combustion radis Engine
ompression - to rpm Speed
Vehicle (rpm)
Dynamics
Drag Torcue
»l lhﬂh
i |

Convriaht 1990-2005 The Math'Works Inc.

throttle deg (purple)
load torque Nm {yellow)

Engine control model in Simulink

Copyright The Mathworks

S. Tripakis — EE 249 — The Synchronous MoC

12

Is this an important model of
computation?

* Yes!

— Extremely widespread, both in terms of
models/languages, and in terms of applications

 Examples of models and languages:
— Mealy/Moore machines
— Verilog, VHDL, ...
— (discrete-time) Simulink
— Synchronous languages
— (Synchronous) Statecharts
— The synchronous-reactive (SR) domain in Ptolemy Il

Myths about synchronous models

* Synchronous models have zero-time semantics

— Synchronous semantics are essentially untimed: they do
not have a quantitative notion of time.

— Famous Esterel statements [Berry-Gonthier ‘92]:
* every 1000 MILLISEC do emit SEC end
* every 1000 MILLIMETER do emit METER end
— Synchronous models can capture both time-triggered
and event-triggered systems. E.g.:
* Do something every 20ms

* Do something whenever you receive an interrupt from the
engine

S. Tripakis — EE 249 — The Synchronous MoC

14

Example: control loop (v3)

lnlitialize state;
while (true) do
awalt clock tick
or any other i1nterrupt;
read 1nputs;
compute outputs;
update state;
write outputs;
end while;

S. Tripakis — EE 249 — The Synchronous MoC

15

Myths about synchronous models

t—_” t—_l ’[.—_'2 ’[.—_3 T.—_-"l ’[.—_5
But: = T O O e O O
— The synchronous cycles reqaddr [| [],
could be interpreted as inst_addr)addry_ XXX

discrete time: 0, 1,2, 3, ..., jik adrs (KKK (map)

XXX

in which case we have a

. ’ - link_lua,d(
discrete-time semantics... '

)

| .)

XXX Y vam X XXX)
|)

. liuk_luml_r{ XXX X val)(Xj{}(
— ..andthiscanalsobeseen -~ —
’?isr'n aeq abstraction of real- oot I
_ Cf t|m|ng analysis Of [Jl‘i:‘.’_ﬂlltp'llt-i(X}{Xi X Uldix NXX)
. . . liffers : i) | Le—ie—
digital circuits S i
: liffers.r : ' e
— C.f. WCET analysis of 1“ “:l's(o N
-k r cp
synchronous control loops """ ; L,
req { XXX X req X X))

S. Tripakis — EE 249 — The Synchronous MoC

16

Myths about synchronous models

* Synchronous models are non-implementable

(because zero-time is impossible
—?7??

to achieve)

Real-Time Workshop

it fusleys
Bt ew Seisie Fomd Took o

B ER v b &M L
Dl sl % BH <% FO OB 68 (saHz0
|HI: 11111 ™ x| T [Tiacain j!'! Geoh

GHE ERR (2 o F el RS ROE T

Fault-Telerant Fuel Control System - Fixed Point

S. Tripakis — EE 249 — The Synchronous MoC

17

Benefits of synchronous models

* Deterministic:
— Easier to understand, easier to verify

— More light-weight than asynchronous:
* No interleaving => less state explosion

* Simpler SW implementations:
— No operating system required

— Static scheduling, no memory allocations, no dynamic
creation of processes, ...

* Simpler timing/schedulability analysis
— Often simpler WCET analysis also: no loops

Asynchronous vs. Synchronous
Product

component automata asynchronous synchronous

product product

S. Tripakis — EE 249 — The Synchronous MoC 19

Lecture plan

e Part 1: Single-rate synchronous models
e Part 2: Multi-rate synchronous models

e Part 3: Feedback and Causality

S. Tripakis — EE 249 — The Synchronous MoC

20

Part 1: Single-rate synchronous models

Moore/Mealy machines

Synchronous block diagrams

— Inspired by discrete-time Simulink, and SCADE

Lustre
Esterel

S. Tripakis — EE 249 — The Synchronous MoC

21

Moore Machines

States: {q0, q1, g2, q3} deterministic
Initial state: qO
Input symbols: {x,y,z} S N

Output symbols: {a,b,c}
Output function:
— Out : States -> Outputs

Transition function:
— Next: States x Inputs -> States

Where is the synchronous round here?

S. Tripakis — EE 249 — The Synchronous MoC

22

Moore machine: a circuit view

X(n) —

-

s(n)

oy

clock

S. Tripakis — EE 249 — The Synchronous MoC

Mealy Machines

States: {SO, S1, S2} 1

0/0

P Nye

Initial state: SO <N

Input symbols: {0,1} @ @
e~

Output symbols: {0,1} o

Output function: » /

— Out : States x Inputs -> Outputs

Transition function:
— Next: States x Inputs -> States

Where is the synchronous round here?

S. Tripakis — EE 249 — The Synchronous MoC

24

Mealy machine: a circuit view

x(n)

clock

s(n)

Is this a “purely synchronous” model?

S. Tripakis — EE 249 — The Synchronous MoC

25

Moore vs. Mealy machines

count &) Oy Os Oy
bl
S
oAZm | P> L ‘
HJ @ HJ @ HJ @ J Q
Clock 1 > — =
11’& @—I 11&(@—‘ 11&(@—‘ K QF
x[n] o 7! ~Fa

S. Tripakis — EE 249 — The Synchronous MoC

Moore or Mealy?

Moore or Mealy?

26

Moore vs. Mealy machines

* Every Moore machine is also a Mealy machine
— Why?

* |sit possible to transform a Mealy machine to
a Moore machine?

Synchronous block diagrams

Throttle ‘ Engine

Gearset and
Shift Mechanism

brake

* Physical models often described in
continuous-time

e Controller part (e.g., Transmission Control
Unit) is discrete-time

Synchronous block diagrams

File Edit View Simulation Format Tools Help

Modeling an Automatic Transmission Controller
impeller torgue
— i
Me - e >
" Engine RPM n
—— W throthe »
_’. [
Double-click to Engine e
open the GUI rons
and select a Nout autput torgue
maneuver —in1 -
™ In2 Transmission
—_— Brake _p. outz —
T othe In3 transmission speed
ShiftLogic
Driving Maneuvers
L down_th A qear[l—— vehicle
speed .
up_th throtile f— Vehicle mph
vehicle (ellow)
Threshold Calculation Leiy & throttle %

Copyright 1990-2005 The MathWorks Inc.

S. Tripakis — EE 249 — The Synchronous MoC

Example: FIR filter

1 1 1
y(n) = 3 x(n) +§ X(n—1) +§ X(n—2)

Y(0) =2 X(O) + 8, () +,(0)

S,(n+1) =x(n)
S,(n+1)=S5,(n)
S,(0) =initial state
S, (0) =Iinitial state

What is the Mealy machine for this diagram?

S. Tripakis — EE 249 — The Synchronous MoC 30

Hierarchy in synchronous block
diagrams

Hierarchy in synchronous block
diagrams

Fundamental modularity concept

S. Tripakis — EE 249 — The Synchronous MoC

32

Semantics of hierarchical SBDs

* Can we define the semantics of a composite
SBD as a Mealy machine?

— In particular, with a pair of (Out, Next) functions?

Problem with “monolithic” semantics

False 1/0 dependencies

=>

Model not usable in some contexts

x1 »\’, A —> vl P.out (x1, x
{
\ y]_ =
I V2 i
y2
X2 —) B return
}

2) returns

A.out (x1
B.out (x2

(yvl, v2);

).
).

(v1l,

14
14

y2)

S. Tripakis — EE 249 — The Synchronous MoC

34

[DATE’08, RTAS’08, POPL'09]

Solution

Generalize from a single, to MANY output functions

P.outl(inl) returns outl {
—» A)—> return A.out(inl);
=)
P.out2(in2) returns out?2 {
) ' B ' : return B.out (in2);
}

Interesting questions:
How many output functions do we need?
How to compute them?

S. Tripakis — EE 249 — The Synchronous MoC 35

Lustre

* The FIR filter in Lustre:

node fir (x : real) returns (y : real);

var
sl, s2 : real;
let
sl = 0 -> pre x;
s2 = 0 -> pre sl;

y = x/3 + s1/3 + s2/3;
tel

<l
N~
[

b

Lustre

* The FIR filter in Lustre:

node fir (x : real) returns (y : real);

var
sl, s2 : real;
let
sl = 0 -> pre x;

s2 = 0 -> pre sl;

y = x/3 + s1/3 + s2/3;
tel

<l
N~
[

b

S. Tripakis — EE 249 — The Synchronous MoC

Lustre

* The FIR filter in Lustre:

node fir (x : real) returns
var

sl, s2 : real;
let

y = x/3 + s1/3 + s2/3;
s2 0 -> pre sl;
sl = 0 -> pre x;

tel

What has changed? Is this correct?

S. Tripakis — EE 249 — The Synchronous MoC

(y

real) ;

38

Lustre

* The FIR filter in Lustre (no explicit state vars):

node fir (x : real) returns (y : real);
let

y = x/3
+ (0 -> pre x)/3
+ (0 -> (0 -> pre pre x))/3;
tel

3
By
By
A,
[-—I

[Nl

V4

yln]

@
@

Exercise

* Write a counter in Lustre

Esterel

ne FIR filter in Esterel:

module FIR:

input x double;
output y double;
var sl := 0 double, s2 := 0
loop
await x ;
emit y(x/3 + s1/3 + s2/3)
s2 := sl ;
sl := x ;
end loop

end var.

.
4

double in

S. Tripakis — EE 249 — The Synchronous MoC

Esterel

* The FIR filter in Esterel:

module FIR:
input x :
output y :

double;
double;
var sl := 0 : double, s2 := 0
loop
await x ;
emit y(x/3 + s1/3 + s2/3) ;
sl := x ;
s2 := sl ;
end loop
end var.

: double in

What has changed? Is this correct?

S. Tripakis — EE 249 — The Synchronous MoC

42

Esterel

* A speedometer in Esterel:

module SPEEDOMETER:
input sec, cm;
output speed : double;
loop
var cpt := 0 : double in
abort
loop
await cm ;
cpt (= cpt + 1.0
end loop
when sec do
emit speed(cpt)
end abort
end var
end loop.

S. Tripakis — EE 249 — The Synchronous MoC

o°

pure signals
% valued signal

43

Lustre

* The speedometer in Lustre:

node speedometer (sec, cm: bool) returns (speed: real);
var

cptl, cpt2 : int;

spl, sp2 : real;

let
cptl = counter(cm, sec);
spl = if sec then real (cptl) else 0.0;
cpt2 = counter(sec, cm);
sp2 = if (cm and (cpt2 > 0))
then 1.0/ (real (cpt2))
else 0.0;
speed = max(spl, sp2);

tel

S. Tripakis — EE 249 — The Synchronous MoC

Part 2: Multi-rate synchronous models

* Synchronous block diagrams with triggers
— Inspired by discrete-time Simulink, and SCADE

e Lustre with when/current
 What about Esterel?

S. Tripakis — EE 249 — The Synchronous MoC

45

Triggered and timed synchronous block

diagrams

* Motivated by Simulink, SCADE

Triggered block

Constant

Simulink/Stateflow diagram

Inline Parametars = on

f:Ia. 1in Dizcrete-Time

KTs

P

z—1

Integrator
Te=1

/

Sample time

S. Tripakis — EE 249 — The Synchronous MoC

Cutl
Ts=-1

46

Triggered synchronous block diagrams

TRIGGER

/

P

multi-rate /

models: A),
B executed only when

trigger = true D » B I C Ir—

« All signals “present” always /
But not all updated at the /

same time /
« E.g., output of B updated only N

when trigger is true TRIGGERED need initial

value in case

trigger = false
. _ _ . at n = 0 (initial
Question: do triggers increase expressiveness? round)

S. Tripakis — EE 249 — The Synchronous MoC 47

BLOCK

Trigger elimination

» B
init:v
- > ‘
oy 4 b >E—.
L’l |i11it:v
— C P P d rr—

S. Tripakis — EE 249 — The Synchronous MoC

48

Trigger elimination: atomic blocks

(b) eliminating the trigger from a uni

S. Tripakis — EE 249 — The Synchronous MoC

49

“static”
multi-rate
models

“TIMED”
BLOCKS

/

Timed diagrams

—

A

(3,1)

—

/A

(2,0)

\\ //
(period, phase)
specifications

S. Tripakis — EE 249 — The Synchronous MoC

Timed diagrams =
statically triggered diagrams

(3,1)

(2,0)

where

produces:

(3,1) (2,0)
A 4 A 4
—» A p—» B P C
(2,0)
v
true, false, true, false, ..

Multi-clock synchronous programs in
Lustre

* Then when and current operators:

node A(x: int, b: bool) returns (y: int);
let
y = current (x when b);

tel
x: 01 2 3 4 5
b: T F TFFT
X when b: 0 2 5
v: 00 2 2 2 5

S. Tripakis — EE 249 — The Synchronous MoC

Multi-clock synchronous programs in
Lustre

node A(x1l,x2: int, b: bool) returns (y: int);
let

y = x1 + (x2 when b);
tel

What is the meaning of this program?

Forbidden in Lustre

S. Tripakis — EE 249 — The Synchronous MoC 53

Multi-clock synchronous programs in
Lustre

* |[n Lustre, every signal has a clock = “temporal”
type
* The clock-calculus: a sort of type checking

— Only signals with same clock can be added,
multiplied, ...

— How to check whether two clocks (i.e., boolean
signals) are the same?

* Problem undecidable in general
* |In Lustre, check is syntactic

Multi-rate in Esterel

MILLISEC™ every 1000 MILLISEC do
emit SEC —> SEC

end

||

every 1000 MILLIMETER do
emit METER

MILLIMETER ™ end —> METER

Part 3: Feedback and Causality

* Vanilla feedback:
— Cyclic dependencies “broken” by registers, delays, ...

* Unbroken cyclic dependencies:
— Lustre/SBD solution: forbidden

— Esterel/HW solution: forbidden unless if it makes
sense

* Malik’s example
e Constructive semantics

S. Tripakis — EE 249 — The Synchronous MoC

56

Feedback in Lustre

node counter () returns (c : int);

let OK
c=0-> (pre c) + 1;

tel

node counter () returns (c : int);

let

Rejected
c=0->c + 1;

tel

Feedback in Synchronous Block
Diagrams

Rejected, unless A or B is Moore machine

e Same as Lustre:

S. Tripakis — EE 249 — The Synchronous MoC

58

Z

What about this?

o | [
< | | <=z
= 1f ¢ then
F(G(x))
else ¢ "
G(F(x)) f 1

Cyclic combinational circuit.
Useful: equivalent acyclic circuit is almost 2x larger
[Malik’94]

S. Tripakis — EE 249 — The Synchronous MoC

59

Can we give meaning to cyclic
synchronous models?

* Think of them as fix-point equations:
—x = F(x)

* What is the meaning of these:
—X = not x
—X = X

* |s unique solution enough?

—X = X Or not x

S. Tripakis — EE 249 — The Synchronous MoC

60

Can we give meaning to cyclic
synchronous models?

* Think of them as fix-point equations:
—x = F(x)

* What is the meaning of these:
—X = not x
—X = X

* |s unique solution enough?

—X = X or not x 0 0

S. Tripakis — EE 249 — The Synchronous MoC 61

Can we give meaning to cyclic
synchronous models?

* Think of them as fix-point equations:
—x = F(x)

* What is the meaning of these:
—X = not x
—X = X

* |s unique solution enough?

—X = X or not x 0 1

S. Tripakis — EE 249 — The Synchronous MoC 62

Can we give meaning to cyclic
synchronous models?

* Think of them as fix-point equations:
—x = F(x)

* What is the meaning of these:
—X = not x
—X = X

* |s unique solution enough?

—X = X or not x 0 1

S. Tripakis — EE 249 — The Synchronous MoC 63

Can we give meaning to cyclic
synchronous models?

* Think of them as fix-point equations:
—x = F(x)

* What is the meaning of these:
—X = not x
—X = X

* |s unique solution enough?

—X = X or not x 0 0

S. Tripakis — EE 249 — The Synchronous MoC 64

Constructive semantics

e Reason in constructive logic instead of
classical logic

* “Xornotx” not an axiom
* Then we cannot prove x=1 from:

—X = X Oor not x

Constructive semantics

 Fix-point analysis in a flat CPO: True False

— Start with “bottom” (undefined), N/
iterate until fix-point is reached: 1

e Guaranteed in finite number of
iterations, because no. signals and no.
values are both finite

— |If solution contains no undefined
values, then circuit is constructive

* |In our example:
—X = X or not x
— Bottom is the fix-point | 1
— Circuit not constructive

Constructive semantics: theoretical
basis

* Kleene fixed point theorem:

—let L bea CPOand f: L - L be a continuous (and
therefore monotone) function. Then f has a least
fixed point equal to sup { bot, f(bot), f(f(bot)), ... }

* In our flat CPO, continuous = monotone:
— Non-monotone: f(bot) > f(a), where a is not bot
— Not a realistic function

* |n out flat CPO, termination is guaranteed.

http://en.wikipedia.org/wiki/Scott_continuity
http://en.wikipedia.org/wiki/Monotone_function

Constructive semantics

e Another example: g
P =D
—X = a and not y

—y = b and not x ?J__C ;

* Here we have external inputs,

must try for all possible input
combinations

Ia

T

e Exercise!

S. Tripakis — EE 249 — The Synchronous MoC

68

Summary

* Synchronous model of computation:
— Widespread, many languages, many applications

— Easier to understand, easier to verify (than asynchronous
interleaving)

— Interesting semantically

e To go further:

— Interesting implementation problems: how to preserve the
properties that the synchronous abstraction provides
(determinism, values, ...) during implementation?

* Especially on asynchronous, distributed execution platforms
— How to add dynamicity, adaptivity, reconfigurability, ... ?

Questions?

References

State machines (Moore, Mealy, ...):
— Switching and Finite Automata Theory. Zvi Kohavi, McGraw-Hill, 1978.
Synchronous block diagrams:

— Lublinerman and Tripakis papers on modular code generation: available from
http://www-verimag.imag.fr/~tripakis/publis.html

Synchronous languages:

— “The synchronous languages 12 years later”, Proc. IEEE, Jan 2003, and
references therein.

Constructive semantics:

— Sharad Malik. Analysis of cyclic combinational circuits. ICCAD 1993.

— Gerard Berry. The Constructive Semantics of Pure Esterel. Draft book, 1996,
downloadable, google it.

General, overview:

— P. Caspi, P. Raymond and S. Tripakis. Synchronous Programming. In |. Lee, J.
Leung, and S. Son, editors, Handbook of Real-Time and Embedded Systems.
Chapman & Hall, 2007. Available from site above.

http://www-verimag.imag.fr/~tripakis/publis.html
http://www-verimag.imag.fr/~tripakis/publis.html
http://www-verimag.imag.fr/~tripakis/publis.html

Back-up slides

From Mealy to Moore
00/0, 01/1

Mealy Machine

.

10/0, 01/0

00
Moore Machine ;AO@
1

01 00

01

10
01

Moore vs. Mealy machines

* Every Moore machine is also a Mealy machine
— Why?

* Every Mealy machine can be transformed to
an equivalent Moore machine

— How?
— What's the cost?
— What does “equivalent” mean?

