A Methodology for Constraint-Driven Synthesis of On-Chip Communications

Pinto, Carloni, and Sangiovanni-Vincentelli

Discussion session – EE 249 Behrooz Shahsavari

Outline

- Overview
- Methodology and its representation
- Formulation of the optimization problem
- Application to Network-on-chip synthesis

Overview

- Methodology and an optimization framework for the synthesis of on-chip communication through the assembly of components from a target library.
- Library:
 - Models for functionality, cost, and performance of each element
 - composition rules
- Mathematical framework to model communication at different levels of abstraction
 - point-to-point input specification
 - library elements
 - final implementation

THE METHODOLOGY AND ITS MATHEMATICAL REPRESENTATION

The Methodology

- The general approach is based on Platform-Based Design
- The methodology is recursive
- Platform : a family of admissible solutions
 - set of components together with their compositional rules
- synthesis process
 - select one out of this family (a platform instance)

The Methodology

- Characterization:
 - Cost, performance, power, type
- Example: system-level specification of a simplified
 Set-Top Box

Methodology

Example: library of predefined on-chip communication components

Methodology

- communication structure
 - instantiating communication templates (i.e. components from the library) and composing them.

Basic Definitions

- Communication structure
 - components with associated quantities
- Quantity q takes on values from a domain D_q
 - $\leq q$
 - <u> </u>

Definition 1. A communication structure is a tuple $N(C, \mathbf{q}, L)$ where $C = \{c_1, \ldots, c_n\}$ is a set of components, $\mathbf{q} = (q_1, \ldots, q_k)$ is a vector of quantities, and $L \subseteq [C \to D_{\mathbf{q}}]$ is a set of communication configurations. Set C is partitioned into the set of nodes $V \subseteq U_V$ and the set of links $E \subseteq V \times V$.

Basic Definitions

Definition 2. Given two communication structures $N_1, N_2 \in \mathcal{G}_{\mathbf{q}}$, $N_1 \leq_{\mathbf{q}} N_2$ if and only if $\mathcal{C}_1 \subseteq \mathcal{C}_2$, and for all $l_1 \in L_1$ there exists $l_2 \in L_2$ such that for all $c \in \mathcal{C}_1$, $l_1(c) \leq_{\mathbf{q}} l_2(c)$.

Communication Specification

- Specification of an on-chip communication synthesis problem
 - communication structure $N_c \in G_{qc}$
 - $q_c = (x, y, a, \tau, b, h)$
- The performance and cost of the network depend on the core positions
 - restrict the possible configurations of a specification by fixing the position of the ports of each core

Communication Structures Instantiation and Composition

- Two operations to allow the incremental design of complex on-chip communications
 - Renaming
 - Parallel composition

Libraries and Platforms

- A platform is the set of all valid compositions that can be obtained by assembling the components from a given communication library
- A communication library L is a collection of communication structures
- The vector of quantities that characterize our platform is $q_p = (x, y, \tau, in, out, \gamma)$

Mapping

- Mapping: for a given platform instance, deriving an implementation of a given specification
- Here, the implementation of a communication specification is a communication structure derived from a platform instance
 - routing of packets and the latency
 - Routing is captured by a quantity ρ called transfer table
 - λ with domain D_{λ} representing a name attached to each component

Mapping

An implementation is a communication structure $N_{\rm I}(C_{\rm I}, q_{\rm I}, L_{\rm I})$ where $q_{\rm I} = (x, y, \tau, in, out, \rho, b, \gamma, h)$

FORMULATION OF THE OPTIMIZATION PROBLEM

Objective

- Find an implementation N_I that minimizes a given cost function $F: G_{qI} \rightarrow R_+$
 - Cost function is montonic: $N_1 \leq_{qI} N2 \Rightarrow F(N1) \leq_{qI} F(N2)$

$$\begin{array}{lll} \operatorname{PR1}(N_P): & \min_{C_I,L_I} & F(N_I) \\ & subject \ to & N_C \leq_{\mathbf{q}_C} \Pi(N_I), & (1) \\ & & \Psi(N_I) \in \langle \mathcal{L} \rangle & (2) \\ & & \Psi(N_I) \leq_{\mathbf{q}_P} N_P & (3) \\ & & & (C_I,l_I) \in \mathcal{R}_I, \ \forall l_I \in L_I & (4) \end{array}$$

Optimization

Let *Alg* be a hypothetical algorithm that solves problem *PR*1 exactly. Given a library *L*, platform ⟨*L*⟩ can be explored by using *Alg* to solve problem *PR*1 for each N_p ∈ ⟨*L*⟩

Lemma 1. Let N_C be a specification, $N_{P,1}$ and $N_{P,2}$ two platform instances such that $N_{P,1} \leq_{\mathbf{q}_P} N_{P,2}$. Let $N_{I,1}^*$ and $N_{I,2}^*$ be the implementations found by Alg for platform instances $N_{P,1}$ and $N_{P,2}$, respectively. Then $F(N_{I,2}^*) \leq F(N_{I,1}^*)$.

APPLICATION TO NETWORK-ON-CHIP SYNTHESIS

The Communication Library and the Composition Rules

- The nodes of our library are routers and network interfaces
- Two important composition rules are considered:
 - At the platform level, rule R_P allows only communication structures
 - At the implementation level, rule R_I allows only deadlock-free communication structures

Solution to the Optimization Problem

- Linearize the problem and solve it using Integer Linear Programming
 - # of variables becomes very large
 - some composition rules cannot be included in the ILP
- A heuristic approach
 - Structure of the Algorithm
 - The FindPath procedure