A Methodology for Constraint-Driven Synthesis of On-Chip Communications

Pinto, Carloni, and Sangiovanni-Vincentelli

Discussion session – EE 249
Behrooz Shahsavari
Outline

- Overview
- Methodology and its representation
- Formulation of the optimization problem
- Application to Network-on-chip synthesis
Overview

- Methodology and an optimization framework for the synthesis of on-chip communication through the assembly of components from a target library.

- Library:
 - Models for functionality, cost, and performance of each element
 - composition rules

- Mathematical framework to model communication at different levels of abstraction
 - point-to-point input specification
 - library elements
 - final implementation
THE METHODOLOGY AND ITS MATHEMATICAL REPRESENTATION
The Methodology

The general approach is based on Platform-Based Design

The methodology is recursive

Platform: a family of admissible solutions
- set of components together with their compositional rules

synthesis process
- select one out of this family (a platform instance)
The Methodology

- Characterization:
 - Cost, performance, power, type
 - Example: system-level specification of a simplified Set-Top Box
Methodology

- Example: library of predefined on-chip communication components
Methodology

- communication structure
 - instantiating communication templates (i.e. components from the library) and composing them.
Basic Definitions

- Communication structure
 - components with associated quantities
- Quantity q takes on values from a domain D_q
 - \leq_q
 - \perp

Definition 1. A communication structure is a tuple $N(C, q, L)$ where $C = \{c_1, \ldots, c_n\}$ is a set of components, $q = (q_1, \ldots, q_k)$ is a vector of quantities, and $L \subseteq [C \rightarrow D_q]$ is a set of communication configurations. Set C is partitioned into the set of nodes $V \subseteq U_V$ and the set of links $E \subseteq V \times V$.
Definition 2. Given two communication structures $N_1, N_2 \in \mathcal{G}_q$, $N_1 \preceq_q N_2$ if and only if $\mathcal{C}_1 \subseteq \mathcal{C}_2$, and for all $l_1 \in L_1$ there exists $l_2 \in L_2$ such that for all $c \in \mathcal{C}_1$, $l_1(c) \preceq_q l_2(c)$.
Communication Specification

- Specification of an on-chip communication synthesis problem
 - communication structure $N_c \in G_{qc}$
 - $q_c = (x, y, a, \tau, b, h)$

- The performance and cost of the network depend on the core positions
 - restrict the possible configurations of a specification by fixing the position of the ports of each core
Two operations to allow the incremental design of complex on-chip communications:

- Renaming
- Parallel composition
Libraries and Platforms

- A platform is the set of all valid compositions that can be obtained by assembling the components from a given communication library.
- A communication library L is a collection of communication structures.
- The vector of quantities that characterize our platform is $q_p = (x, y, \tau, in, out, \gamma)$.
Mapping

- Mapping: for a given platform instance, deriving an implementation of a given specification

- Here, the implementation of a communication specification is a communication structure derived from a platform instance
 - routing of packets and the latency
 - Routing is captured by a quantity ρ called transfer table
 - λ with domain D_λ representing a name attached to each component
Mapping

- An implementation is a communication structure $N_I(C_I, q_I, L_I)$ where $q_I = (x, y, \tau, \text{in}, \text{out}, \rho, b, \gamma, h)$
FORMULATION OF THE OPTIMIZATION PROBLEM
Objective

- Find an implementation N_I that minimizes a given cost function $F : G_{qI} \rightarrow R_+$
 - Cost function is montonic: $N_1 \leq_{qI} N_2 \Rightarrow F(N_1) \leq_{qI} F(N_2)$

\[
\text{PR1}(N_P) : \min_{c_I, l_I} F(N_I) \\
\text{subject to} \\
N_C \leq_{qC} \Pi(N_I), \quad (1) \\
\Psi(N_I) \in \langle L \rangle \quad (2) \\
\Psi(N_I) \leq_{qP} N_P \quad (3) \\
(C_I, l_I) \in \mathcal{R}_I, \quad \forall l_I \in L_I \quad (4)
\]
Optimization

- Let Alg be a hypothetical algorithm that solves problem $PR1$ exactly. Given a library L, platform $\langle L \rangle$ can be explored by using Alg to solve problem $PR1$ for each $N_p \in \langle L \rangle$.

Lemma 1. Let N_C be a specification, $N_{P,1}$ and $N_{P,2}$ two platform instances such that $N_{P,1} \preceq_{q_P} N_{P,2}$. Let $N_{I,1}^*$ and $N_{I,2}^*$ be the implementations found by Alg for platform instances $N_{P,1}$ and $N_{P,2}$, respectively. Then $F(N_{I,2}^*) \leq F(N_{I,1}^*)$.
APPLICATION TO NETWORK-ON-CHIP SYNTHESIS
The Communication Library and the Composition Rules

- The nodes of our library are routers and network interfaces
- Two important composition rules are considered:
 - At the platform level, rule R_P allows only communication structures
 - At the implementation level, rule R_I allows only deadlock-free communication structures
Solution to the Optimization Problem

- Linearize the problem and solve it using Integer Linear Programming
 - # of variables becomes very large
 - some composition rules cannot be included in the ILP
- A heuristic approach
 - Structure of the Algorithm
 - The FindPath procedure