
Modal Interfaces: Unifying Interface

Automata and Modal Specifications

Authors: Jean-Baptiste Raclet et al.

Presenters: Ilge Akkaya

 Forrest Iandola

11/28/2012 EE 249 – Discussion 8 1

Introduction

• Modal Specifications: describe composition of functions in a

system

• Interface Automata: describe interfaces among functions in a

system

• Modal Interfaces: Modal Specifications + Interface

Automata + some glue

11/28/2012 2 EE 249 – Discussion 8

Modal Specifications

Key Concepts

• Modal Specifications: describe composition of functions in a

system

• must(u) = set of functions that must execute after function u

• may(u) = set of functions that may execute after function u

11/28/2012 3 EE 249 – Discussion 8

Modal Specifications

Key Concepts

• Modal Automata: similar to Nondeterministic Finite

Automata, but with must and may properties to the

transitions

• Pseudo-Modal Automata: must is not necessarily a subset of

may

• A transition can be both required and disallowed

• This property is useful in derivations

11/28/2012 4 EE 249 – Discussion 8

Modal Specifications

Notation

• S = modal specification

• pS = pseudo-modal specification

• I = implementation

• L = language

• A = alphabet

11/28/2012 5 EE 249 – Discussion 8

“I implements S” in Modal

Specifications

• If I implements system pS, then may() and must() need to be

the same for I and pS

• Assuming that I and pS have the same notation (“language”)

• If I strongly implements pS, then I and pS have the same may()

and must(), except where the languages of I and pS differ

• If I weakly implements pS, then I and pS have the same may(),

except where the languages of I and pS differ

• But I and pS might not share the same must().

 11/28/2012 6 EE 249 – Discussion 8

“S2 refines S1” in Modal

Specifications

• When we refine a system or implementation, all pre-existing

may() and must() requirements need to be met

• “S2 refines S1,” “S2 strongly refines S1,” “S2 weakly refines S1”

follow roughly the same logic that we’ve already seen

• Weak and strong are related to whether must() needs to hold

11/28/2012 7 EE 249 – Discussion 8

“Language Extensions” in

Modal Specifications

• Motivation: Each module of a system may have its own

language and alphabet

Example

• Given alphabets A and C. A is a subset of C

• L1 is a language. L1 is a subset of C*

• Extension of L1 to A is the subset of L1 that can be expressed

using the alphabet (A - C).

• Shorthand for extension of L1 to A:

 11/28/2012 8 EE 249 – Discussion 8

Operators in Modal

Specifications
• Consider languages L1 in A1* and L2 in A2*

• Shuffle product (L1 x L2)

11/28/2012 9 EE 249 – Discussion 8

Operators in Modal

Specifications
• Conjunction (S1 ^ S2)

• Intersection of the may() sets, and union of the must () sets

• Keep all musts, remove mays that aren’t shared in S1 and S2

• Parallel Product (S1 S2)

• Intersection of may() and must() sets for S1 and S2

• Quotient (S1 / S2)

• Keep the both may() sets but remove both must() sets

• This is a rough description, there are other details

11/28/2012 10 EE 249 – Discussion 8

Interface Automata:

Overview

• Game semantics based variation of I/O automata

• Two player game:

• Input: environment

• Output: component itself

• Optimistic composition: two interfaces can be

composed if there exists at least one environment

that supports both (for all possible behavior of the

Output player)

11/28/2012 EE 249 - Discussion 8 11

Definition: Interface Automaton

• An interface automaton is a tuple P = (X, x0,A,g)

• X: set of states

• Initial state:

• A: alphabet of actions,

• A?: set of inputs

• A!: set of outputs

• Transition relation:

11/28/2012 EE 249 - Discussion 8 12

x0 Î X

®Í X ´A´X

Game-Based Model

• Input player: Environment

• Moves represent input actions

• Output player: Component

• Moves represent output actions

• Interface automata are operational modes

• No notion of model

• Satisfiability or consistency not defined

• Refinement between interface automata

• An interface I refines an interface J, if I’s environment is
more permissive whereas its component is more restrictive.

11/28/2012 EE 249 - Discussion 8 13

• Two interface automata

• P1 x P2 is also an interface automaton

• X = X1 × X2

• x0 = x01 × x02

•

Product of Interface Automata

11/28/2012 EE 249 - Discussion 8 14

P1 = (X1, x01,A1,®1) P2 = (X2, x02,A2,®2)

P = (X, x0,A,®)

Product of Interface Automata

Transition relation is defined as

• For each action such that

1- There exists a transition iff there

exists a transition from x1 to x2 in P1 and y1=y2 , or

there exists a transition from y1 to y2 in P2, and x1=x2

(in P1, there exists a transition from x1 to x2 under a, and y remains

unchanged, or in P2, there exists a transition from y1 to y2 under a, and x

remains unchanged)

11/28/2012 EE 249 - Discussion 8 15

Product of Interface Automata

2 – For each action

And for each action

A transition exists in P iff there exist the respective

transitions from x1 to x2 and y1 to y2 in P1 and P2,

respectively.

11/28/2012 EE 249 - Discussion 8 16

Optimistic Semantics

• There may be illegal states if

• One of the automata produces an output action that is

in the input alphabet of the other automaton, but is not

accepted at that state.

• This situation is not handled as an incompatibility

in this framework

• If they can avoid the illegal states, they are still

compatible. (existence of one illegal state does not

violate compatibility) => Optimistic

11/28/2012 EE 249 - Discussion 8 17

Optimistic Semantics

• Deciding if there exists such environment is

equivalent to

• Checking whether the environment always has a

strategy to avoid illegal states.

11/28/2012 EE 249 - Discussion 8 18

Computing Safe States

• Illegal(P1,P2) is the subset of pairs

s.t. there exists either an action that is an output of P1

and an input of P2 that has a valid transition in P1 but

not accepted in x2 by P2

Or an action that is an output of P2 and input of P1

with a valid transition in P2 but not accepted in x1 by

P1.

11/28/2012 EE 249 - Discussion 8 19

Composition

• There can still exist refinements of P1 x P2 that
ensures such illegal states cannot be reached. Such a
refinement can be found as follows:

• Pre!(Y) is the subset Z such that a transition z y exists
from all z in Z, to a state in Y (called exception states)

• Iteratively remove pre!(Illegal(P1,P2)) from X

• Remove transitions to states in pre!(Illegal(P1,P2))

• Remove unreachable states

• Result of the pruning denoted by P1 || P2 => called
the composition

11/28/2012 EE 249 - Discussion 8 20

• S1 || S2 obtained by

• Computing illegal states : Illegal(S1,S2)

• Computing exception states: pre!(Illegal(S1,S2)): states

from which the illegal states can be reached

• Replacing transitions leading to exception states by

transitions to a new universal state.

• || is associative and monotonic for the refinement

preorder.

11/28/2012 EE 249 - Discussion 8 21

Modal Interfaces

• Extension of modal specifications where

• Actions are also typed as input or output.

• This allows to propose notions of composition and

compatibility

• Use profiles to type actions of model specifications

with Input/Output

11/28/2012 EE 249 - Discussion 8 22

Profiles

• For an alphabet of actions A, a profile is a function

• where

• π(a) = ? denotes a is an input action and

• π(a) = ! denotes a is an output action.

Maps each action in the alphabet to either the input or

the output set

11/28/2012 EE 249 - Discussion 8 23

Profiles: Properties

• Product between profiles: composition

• Refinement between profiles:

• And if both profiles coincide on A1

11/28/2012 EE 249 - Discussion 8 24

Profiles: Properties

• Conjunction:

• GLB of the profiles, if exists (iff both profiles coincide

on the common alphabet)

• Whenever defined, the conjunction coincides with π1

for every letter in A1 and with π2 on A2.

• Quotient: π1/π2 is defined as the adjoint:

11/28/2012 EE 249 - Discussion 8 25

Modal Interfaces

• DEFINITION: A modal interface is a pair C=(S, π),

• S: modal specification on alphabet AS

• π: As{?,!} is a profile.

• Model for a modal interface is a tuple (I, π’), I: prefix

closed language, π’: profile for I.

(I, π’) strongly implements (S, π) if

Weak implementation

11/28/2012 EE 249 - Discussion 8 26

Operations on Modal

Interfaces

• Conjunction, product and quotient on C1, C2 defined as:

All the properties of modal specifications directly extend to modal

interfaces, since operation distributes over the modal specification

and the profile separately.

11/28/2012 EE 249 - Discussion 8 27

Interface Automata  Modal

Interfaces

11/28/2012 EE 249 - Discussion 8 28

• The supporting language allows the environment to

violate the constraints set on it by P.

• This can be interpreted as an exception

• Once this happens, P has no promises and can

perform anything.

• Exception handling needs to consider refining this

modal interface.

Interface Automata  Modal

Interfaces

Refinement :

Consider an interface automaton P = (X, x0,A,g)

Assume determinacy. LP: language defined by P.

Alphabet of Sp: Asp and modalities defined for all u in Ap
*
 :

11/28/2012 EE 249 - Discussion 8 29

• Case1: Components must accept an input within assumptions

• Case 2: component behaves according to best effort regarding its

output actions

• Cases 3,4: violation of the obligations by the environment are

seen as an exception and exception handling is not specified.

11/28/2012 EE 249 - Discussion 8 30

The composition by Larsen et al.

• Compatibility for two modal interfaces, C1 and C2.

• Compute the product between C1, C2 by the

previous formula

• Define Illegal(C1, C2) to be the subset of words u

s.t. there exists either

• An action that is an output of P1 and an input of P2

with

• Or an action that is an output of P2 and an input of P1

with

11/28/2012 EE 249 - Discussion 8 31

The composition by Larsen et al.

• Follow backward pruning defined for interface

automata to remove illegal states.

• Two interfaces C1 and C2 are compatible, denoted

C1||C2,

• if the pruning does not remove the empty word.

11/28/2012 EE 249 - Discussion 8 32

Counterexample to Thm. 10 by

Larsen et al.

Word c?.a! is illegal in the

composition, because for a!, C1

may offer b!, but C2 does not accept

it. c?.a! is, however in the product

of the two implementations.

I1xI2 does not refine C1||C2. Thm

10 is wrong.

11/28/2012 EE 249 - Discussion 8 33

Correction

If the environment has no strategy

to prevent the occurrence of an

illegal word, call this an exception.

• Exception language of modal

interfaces C1 and C2 is:

• pre!
*(Illegal(C1, C2))

• C1||C2 iff the empty word is not

an exception.

• || is commutative and associative

11/28/2012 EE 249 - Discussion 8 34

Parallel Composition

11/28/2012 EE 249 - Discussion 8 35

If illegal words exists for certain pairs of

implementations, the system is taken to a

universal state: nothing is forbidden,

nothing is mandatory (for all actions)

Independent Implementability

11/28/2012 EE 249 - Discussion 8 36

Conclusions

• Modal interface: unification of interface automata and modal

specifications

• Core contribution: || operator that is an optimistic composition

rule for interfaces

• Vague use cases and applications

• Missing empirical comparison

• Future work

• Implementation

• Timed extension of modal interfaces

11/28/2012 EE 249 - Discussion 8 37

