
Dataflow Process Network

Goals

• Formalize dataflow process network
– Widely used in signal processing community
– SPW, COSSAP, Khoros, Ptolemy, etc

• Good basis for programming language
– Hierarchy, higher order function, recursion, etc

Kahn Process Networks

• MoC where concurrent processes
communicate through unidirectional FIFO

• Process
– Maps one or more input sequences to one or

more output sequences
– Usually constrained to be continuous

• F(sup X) = sup F(X)

Dataflow Process Networks

• A process is sequence of firings of dataflow actors
– F = map(f)

• Actor
– Fires according to firing rules
– Each firing consumes input tokens and produces

output tokens
• Continuity

– Functional
• No side effects

– Sequential
• Firing rules can be tested in a predefined ordering

Firing Rules

• An actor with p inputs
– N firing rules: R = {R1, R2, …, RN}
– Patterns for each input: Ri = {Ri,1, Ri,2, …, Ri,p }

• In order to fire
– The patterns must be a prefix of the tokens at the

inputs
– Adder: R1 = {[*], [*]}
– Select: R1 = {[*], [], [T]}, R2 = {[], [*], [F]}

Execution Model
• Concurrent processes

– Demand driven style
– Processes with unavailable inputs are put to sleep with its input

channels marked hungry
– Writing to hungry channel suspends the writer and wakes the

waiter
• Static/dynamic scheduling

– Possible in dataflow process network b/c of actors
– Avoids overhead of context switching

• Tagged-token model
– Each token has a tag
– Fire only when input tokens have matching tags
– No need for FIFO, tags impose order

Language Design

• Ptolemy as a driving example
– Visual and textual interface
– No built in MoC
– Supports 3 different dataflow process network

domains
– Extensible set of primitive actors

Hierarchy

• Subgraphs can be encapsulated into a single
node

• Difficulties
– Want hierarchical nodes to have the same

properties as primitives
• Firing rules, functional, etc.
• State introduced from self loops on primitive actors

– Reconciled: state is syntactic sugar for delay

Function Arguments

• Two types of arguments
– Parameters
– Input streams

• Why the distinction?
– Parameters are constants
– Do not need arcs for parameters
– Simplifies work done by compiler/interpreter

Recursion

• Two examples
– Sieve of Eratosthenes
– FFT

• Sieve of Erathosthenes
– Implemented with a hierarchical node “sift” that

invokes itself when called
– Graph is dynamically expanded

• Mutates during execution
• FFT

– Contrast to sieve of Erasthosthenes
– Can be completely scheduled at compile time

Higher Order Function

• Map actor
– Inputs:

• Blockname
• Input_map
• Output_map

– Replaces itself with one or more instances of the
specified actor

• IfThenElse
– Takes two replacement actors and a predicate

Datatypes, polymorphism

• Networks are typed
– Type consistency is statically checked

• Polymorphism
– Ptolemy supports parametric and ad-hoc

• Parametric: behaves same way regardless of data type
• Ad-hoc: behavior can be different

Parallelism

• Comes for free in dataflow process network
– Dataflow graph exposes parallelism for hardware

or compiler
– Recursion can be evaluated during setup phase

Conclusion

• Formalization was useful

	Dataflow Process Network
	Goals
	Kahn Process Networks
	Dataflow Process Networks
	Firing Rules
	Execution Model
	Language Design
	Hierarchy
	Function Arguments
	Recursion
	Higher Order Function
	Datatypes, polymorphism
	Parallelism
	Conclusion

