EE249 Discussion Session

Safa Messaoud
Antonio Iannopollo

Quo Vadis SLD?
Reasoning About the Trends and Challenges of System Level Design

By Alberto Sangiovanni-Vincentelli
Outline

- Motivation for System-Level Design
- Platform Based Design
- STATE-OF-THE-ART in embedded system design review using the PBD paradigm
- Metropolis Framework
- Conclusions
Motivation for system Level design

1. Rapidly increasing complexity

- Function diversity
- Supercomputer compute performance
- Industrial Control
 - High reliability
 - Real-time capable
 - Embedded SW
 - Safety criteria
 - Efficiency
- Integration Complexity
 - "Plug & Play"
- Costly!
- Decreased productivity of SW Programmer (redesign + long verification time)

Can traditional design flows (i.e. RTL) continue to meet these demands?

Safa Messaoud
System Level Design

The process to implement a desired function with a given set of physical components

- **Holistic system considerations (HW&SW)** and decision making on important design criteria early in design process

- Possible validation of important aspects of system behavior during early phases of design process

- Design reuse → Reduction of validation effort & costs

- Better overall understanding of the interplay of subsystems originating from different suppliers

Safa Messaoud
Motivation for system Level design

2. Industrial supply chain landscape

Mobile Communications Design Chain

Application Developers

IC provider provide IP to multiple device makers

Service provider

SIM Card locks the device to one Service provider

Device Maker

Outsourcing Companies

IP Provider

Safa Messaoud
Motivation for system Level design

2. Industrial supply chain landscape

Automotive Design Chain

- Standards for interoperability among IP and tools reducing Costs & Time to Market
- Hard real-time software is difficult to share!

Tier 1 Supplier

Tier 2 Supplier

Manufacturing Supplier

Car Manufacturers
(OEM)

Safa Messaoud
Further Challenges

- Boundaries between companies are not clean
 (Misinterpretation of the design specs)

- Non functional Specs are difficult to trace
What is a Platform?

IC Domain
- “… a flexible integrated circuit where customization for a particular application is achieved by programming one or more of the components of the chip.”

PC Domain
- Instruction set
- Buses
- A common set of I/O devices

System Domain
- Loose definition: “something” that allows to develop quickly new applications

Antonio Iannopollo
PBD: Platform Based Design

- A platform can be viewed as a library of components
- Both Computational and Communicational blocks
- Each element can support a (set of) functionality with some performance constraints
- A platform instance is a set of components selected from the library
- It is the how the system does a particular functionality
Meet in the middle

Top-down: application view
Bottom-up: architectural view

The middle represents the mapping between functionalities and a platform abstraction

Antonio Iannopollo
Fractal nature of design

- Result of the mapping process
- Refinement process
- Several iterations until components are described in their final form
- Use of intermediates platforms
- Avoid large loop iterations
An application: Wireless Sensor Network
An application:
Wireless Sensor Networks
PBD \sim\ = Model Driven Development ?

- Concept of Platform
- **Separation** between functionalities and architectures
- **Model transformations** (some tools)
- **Detailed description** of platform and “semantics” for embedded SW design
PBD key points

- Platforms as a **contract**
- Useful for managing **inter-actor** communication
- **Prevents** long design cycles
- It helps to **raise** the abstraction level of the design process

BUT

- A specific **training** is required
- It needs the presence of **adequate tools**
STATE-OF-THE-ART in embedded system design review using the PBD paradigm

1. Functional aspects

Description of the functionality through programming languages using Models of Computation

- Languages for HW Design
- Languages for SW Design
- Models of Computation

Safa Messaoud
Languages for HW Design

- **SystemC**
 - A class library of C++
 - Concurrency Implementation
 - Mainly used for Simulation

- **SpecC**
 - Super set of ANSI C

- **System Verilog**
 - Build open HDL
 - Does all what SystemC can do

Safa Messaoud
Languages for SW Design

- **Main difficulty:** Programmer productivity & design correctness
- **Use of Synchronous Languages**
 - Strong formal semantics
 - Verification and the code generation problem easier by construction
 - Separation between computation and communication
 - Application in safety critical domains (Aviation, Automotive)
 - Esterel, Lustre, Signal

Safa Messaoud
Choice of the Model class depends on the system properties

- Discrete time model → Flexibility
- FSM, Data Flow Graph → less flexible, easier to analyse and synthesize

Heterogeneous Models of Computation
Numerous approaches for the interaction model

- LSV Model
- Interface Automata

Environments for Heterogenous Models of Computation

- Ptolemy II
- ForSyDe and SML-Sys
- Simulink
- LabVIEW

Safa Messaoud
STATE-OF-THE-ART in embedded system design review using the PBD paradigm

2. Architectural aspects

Architecture: Netlist that establishes how a set of components is connected

SW Architecture description

HW Architecture description
SW Architecture Description

- **Unified Modeling Language (UML)**
 - Successive refinement approach to SW design
 - Fuses the concept of visual languages with the one of oriented languages
 - Structure based on diagrams
 - Profiles refine UML for specific applications

- **Eclipse**
 - Open source platform
 - Contains a plug-in Java-based environment for building Software

Safa Messaoud
Useful when providing a model for the execution so that the performance and the properties can be analyzed.

Transaction Level Modeling TLM
- Levels above RTL
- TLM 2.0: the most recent version

Assembly tools
- To explore model creation, integration, simulation and analysis
- CoWare, Synopsys, Mentor, ARM

Communication based design
- Design of interconnect infrastructure and IP interfaces
- Trend: Global Interconnect
HW Architecture Description

- Microprocessor Modeling
- Embedded systems contain software programmable processors
 - Virtual Processor Model
 - C-Source Back Annotation
 - Interpreted Instruction-Set Simulator
 - Compiled Code Instruction-Set Simulator
 - Worst Case Execution Time Estimation

Safa Messaoud
STATE-OF-THE-ART in embedded system design review using the PBD paradigm

3. Mapping
Design Flow at System Level

- Estimation of cost and performance parameters
 - Exploration

- Specification Modeling
 - Modeling of state, activity and structure oriented systems
 - Methods for HW/SW Partitioning and Scheduling

- System synthesis
 - HW/SW Partitioning

- SW Synthesis
 - RISC processor architectures as flexible SW platforms

- I/F Synthesis
 - Bus standards and FIFO interfaces

- HW Synthesis
 - Reconfigurable FPGA and SoC platforms
Metropolis
Framework

- Can manage different **models of computation** and different **layers of abstraction**

- Can analyze pure **functional designs**, as well as **mapped designs**

- **Providing algorithms and tools** for all possible design is **not** the primary goal

- It offers a **consistent vision** of the design process

- Domain specific algorithms can be **“plugged-in”**
Metropolis Architecture

- Design methodology
- Base tools
 - Design imports
 - Simulation
- Meta-model of Computation

Metropolis Point tools:
- Synthesis/Refinement
- Analysis/Verification
Metropolis Architecture

Metropolis Meta-Model (MMM)

- Powerful enough to represent common used MoC and concrete formal languages
- It “works” for functionalities, architectures and mappings
- Functional requirements described by processes, communication media and netlist as I/O relations (or algorithms)
- Constraint over quantities described by temporal and propositional logic
- Processes and media can be replaced by subnetlists
Metropolis: functional model

- Execution
- Event
- Process
- Media
- Interface

Functional netlist

 Antonio Iannopollo
Metropolis: architectural model

M Process

Media

SM

Q.ty manager

SM

SM

Scheduled netlist

Mapping

Scheduling Netlist
Conclusions

- **System Level Design** is advantageous in terms of efficiency and productivity.

- Platform based design is a **powerful** concept.

- For some aspects, as the platform layering, a certain **expertise** is required.

- It could be **hard** to apply in reality without a specific training.

- System Design needs more support in terms of **automated** design tools.

- Metropolis Framework tries to **support** the application of PBD.

- Metropolis seems to need a more **powerful** human-machine interface.

Antonio Iannopollo - Safa Messaoud