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Outline 

• Part 3: Models of Computation 

– FSMs 

– Discrete Event Systems  

– CFSMs 

– Data Flow Models 

– Petri Nets  

– The Tagged Signal Model 
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Data-flow networks 

• A bit of history 

• Syntax and semantics 

– actors, tokens and firings 

• Scheduling of Static Data-flow 

– static scheduling 

– code generation 

– buffer sizing 

• Other Data-flow models 

– Boolean Data-flow 

– Dynamic Data-flow 
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Data-flow networks 

• Powerful formalism for data-dominated system specification 

• Partially-ordered model (no over-specification) 

• Deterministic execution independent of scheduling 

• Used for 

– simulation 

– scheduling 

– memory allocation 

– code generation 

 for Digital Signal Processors (HW and SW) 
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A bit of history 

• Karp computation graphs (‘66): seminal work  

• Kahn process networks (‘58): formal model 

• Dennis Data-flow networks (‘75): programming language for 

MIT DF machine 

• Several recent implementations 

– graphical: 

– Ptolemy (UCB), Khoros (U. New Mexico), Grape (U. Leuven) 

–  SPW (Cadence), COSSAP (Synopsys) 

– textual: 

– Silage (UCB, Mentor) 

– Lucid, Haskell 
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Data-flow network  

• A Data-flow network is a collection of functional nodes which 

are connected and communicate over unbounded FIFO queues 

• Nodes are commonly called actors 

• The bits of information that are communicated over the queues 

are commonly called tokens 
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Intuitive semantics 

• (Often stateless) actors perform computation 

• Unbounded FIFOs perform communication via sequences of 

tokens carrying values 

– integer, float, fixed point 

– matrix of integer, float, fixed point 

– image of pixels 

• State implemented as self-loop  

• Determinacy:  

– unique output sequences given unique input sequences  

– Sufficient condition: blocking read 

   (process cannot test input queues for emptiness) 
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Intuitive semantics 

• At each time, one actor is fired 

• When firing, actors consume input tokens and produce output 

tokens 

• Actors can be fired only if there are enough tokens in the input 

queues 
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Intuitive semantics 

• Example: FIR filter 

– single input sequence i(n) 

– single output sequence o(n) 

– o(n) = c1 i(n) + c2 i(n-1)  

* c1 

+ o 

i * c2 

i(-1) 
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Questions 

• Does the order in which actors are fired affect the final result? 

• Does it affect the “operation” of the network in any way? 

• Go to Radio Shack and ask for an unbounded queue!! 
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Formal semantics: sequences 

• Actors operate from a sequence of input tokens to a sequence of 

output tokens 

• Let tokens be noted by x1, x2, x3, etc… 

• A sequence of tokens is defined as                                   

X = [ x1, x2, x3, …] 

• Over the execution of the network, each queue will grow a particular 

sequence of tokens 

• In general, we consider the actors mathematically as functions from 

sequences to sequences (not from tokens to tokens) 
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Ordering of sequences 

• Let X1 and X2 be two sequences of tokens. 

• We say that X1 is less than X2 if and only if (by definition) X1 is 

an initial segment of X2  

• Homework: prove that the relation so defined is a partial order 

(reflexive, antisymmetric and transitive) 

• This is also called the prefix order 

• Example:   [ x1, x2 ] <= [ x1, x2, x3 ] 

• Example:   [ x1, x2 ] and [ x1, x3, x4 ] are incomparable 

20 
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Chains of sequences 

• Consider the set S of all finite and infinite sequences of 

tokens 

• This set is partially ordered by the prefix order 

• A subset C of S is called a chain iff all pairs of elements of C 

are comparable 

• If C is a chain, then it must be a linear order inside S 

(otherwise, why call it chain?) 

• Example: { [ x1 ], [ x1, x2 ], [ x1, x2, x3 ], … } is a chain 

• Example: { [ x1 ], [ x1, x2 ], [ x1, x3 ], … } is not a chain  

21 
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(Least) Upper Bound 

• Given a subset Y of S, an upper bound of Y is an element z of 

S such that z is larger than all elements of Y 

• Consider now the set Z (subset of S) of all the upper bounds 

of Y 

• If Z has a least element u, then u is called the least upper 

bound (lub) of Y 

• The least upper bound, if it exists, is unique  

• Note: u might not be in Y (if it is, then it is the largest value of 

Y) 

 22 
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Complete Partial Order 

• Every chain in S has a least upper bound 

• Because of this property, S is called a Complete Partial Order 

• Notation: if C is a chain, we indicate the least upper bound of 

C by lub( C ) 

• Note: the least upper bound may be thought of as the limit of 

the chain 

23 
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Processes 

• Process: function from a p-tuple of sequences to a q-tuple of 

sequences 

  F  :  Sp  ->  Sq 

• Tuples have the induced point-wise order:    

Y = ( y1, … , yp ),  Y’ = ( y’1, … , y’p ) in Sp :Y <= Y’  iff  yi <= 

y’i  for all 1 <= i <= p 

• Given a chain C in Sp, F( C ) may or may not be a chain in 

Sq 

• We are interested in conditions that make that true 
24 
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Continuity and Monotonicity 

• Continuity: F is continuous iff (by definition) for all chains C, lub( F( 

C ) ) exists and 

   F( lub( C )) = lub( F( C ) ) 

• Similar to continuity in analysis using limits 

• Monotonicity: F is monotonic iff (by definition) for all pairs X, X’ 

  X <= X’ => F( X ) <= F( X’ ) 

• Continuity implies monotonicity 

– intuitively, outputs cannot be “withdrawn” once they have been 

produced 

– timeless causality. F transforms chains into chains 

25 
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Least Fixed Point semantics 

• Let X be the set of all sequences 

• A network is a mapping F from the sequences to the 

sequences       

  

X = F( X, I ) 

• The behavior of the network is defined as the unique least 

fixed point of the equation 

• If F is continuous then the least fixed point exists LFP = LUB( 

{ Fn( ^, I ) : n >= 0 } ) 

26 
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From Kahn networks to Data Flow networks 

• Each process becomes an actor: set of pairs of 

– firing rule  

 (number of required tokens on inputs) 

– function  

 (including number of consumed and produced tokens)  

• Formally shown to be equivalent, but actors with firing are 

more intuitive 

• Mutually exclusive firing rules imply monotonicity 

• Generally simplified to blocking read 

27 
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Examples of Data Flow actors 

• SDF: Synchronous (or, better, Static) Data Flow 

– fixed input and output tokens 

 

 

 

• BDF: Boolean Data Flow 

– control token determines consumed and produced tokens 

+ 

1 

1 
1 

FFT 
1024 1024 10 1 

merge select 
T F 

F T 
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Static scheduling of DF 

• Key property of DF networks: output sequences do not depend on 

time of firing of actors 

• SDF networks can be statically scheduled at compile-time  

– execute an actor when it is known to be fireable 

– no overhead due to sequencing of concurrency 

– static buffer sizing 

• Different schedules yield different  

– code size 

– buffer size 

– pipeline utilization 

29 
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Static scheduling of SDF 

• Based only on process graph (ignores functionality) 

• Network state: number of tokens in FIFOs 

• Objective: find schedule that is valid, i.e.: 

– admissible  

 (only fires actors when fireable) 

– periodic  

 (brings network back to initial state firing each actor at least once) 

• Optimize cost function over admissible schedules 

30 
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Balance equations 

• Number of produced tokens must equal number of consumed tokens 

on every edge 

 

 

 

• Repetitions (or firing) vector vS of schedule S: number of firings of 

each actor in S 

•  vS(A) np = vS(B) nc 

 must be satisfied for each edge 

np nc 

A B 
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Balance equations 

B C 

A 
3 

1 

1 

1 

2 
2 

1 
1 

• Balance for each edge: 

– 3 vS(A) - vS(B) = 0 

– vS(B) - vS(C) = 0 

– 2 vS(A) - vS(C) = 0 

– 2 vS(A) - vS(C) = 0 
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Balance equations 

• M vS = 0 

 iff S is periodic 

• Full rank (as in this case)  

– no non-zero solution  

– no periodic schedule 

(too many tokens accumulate on A->B or B->C) 

3 -1 0 
0 1 -1 
2 0 -1 
2 0 -1 

M = 

B C 

A 
3 

1 

1 

1 

2 
2 

1 
1 
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Balance equations 

• Non-full rank 

– infinite solutions exist (linear space of dimension 1) 

• Any multiple of q = |1   2   2|T satisfies the balance equations 

• ABCBC and ABBCC are minimal valid schedules 

• ABABBCBCCC is non-minimal valid schedule 

2 -1 0 
0 1 -1 
2 0 -1 
2 0 -1 

M = 

B C 

A 
2 

1 

1 

1 

2 
2 

1 
1 
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Static SDF scheduling 

• Main SDF scheduling theorem (Lee ‘86): 

– A connected SDF graph with n actors has a periodic schedule iff its 

topology matrix M has rank n-1 

– If M has rank n-1 then there exists a unique smallest integer solution q 

to  

 M q = 0 

• Rank must be at least n-1 because we need at least n-1 edges 

(connected-ness), providing each a linearly independent row 

• Admissibility is not guaranteed, and depends on initial tokens on 

cycles 
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Admissibility of schedules 

• No admissible schedule: 

 BACBA, then deadlock… 

• Adding one token (delay) on A->C makes 

 BACBACBA  valid 

• Making a periodic schedule admissible is always possible, but 

changes specification... 

B C 

A 
1 

2 

1 

3 

2 

3 
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Admissibility of schedules 

• Adding initial token changes FIR order 

* c1 

+ o 

i 

* c2 

i(-1) 
i(-2) 
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From repetition vector to schedule 

• Repeatedly schedule fireable actors up to number of times in 

repetition vector 

  q = |1   2   2|T 

 

 

 

 

• Can find either ABCBC or ABBCC  

• If deadlock before original state, no valid schedule exists (Lee ‘86) 

B C 

A 
2 

1 

1 

1 

2 
2 

1 
1 
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From schedule to implementation 

• Static scheduling used for: 

– behavioral simulation of DF (extremely efficient) 

– code generation for DSP  

– HW synthesis (Cathedral by IMEC, Lager by UCB, …) 

• Issues in code generation 

– execution speed (pipelining, vectorization) 

– code size minimization 

– data memory size minimization (allocation to FIFOs) 

– processor or functional unit allocation 
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Compilation optimization 

• Assumption: code stitching 

(chaining custom code for each actor) 

• More efficient than C compiler for DSP 

• Comparable to hand-coding in some cases 

• Explicit parallelism, no artificial control dependencies 

• Main problem: memory and processor/FU allocation 

depends on scheduling, and vice-versa 
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Code size minimization 

• Assumptions (based on DSP architecture): 

– subroutine calls expensive 

– fixed iteration loops are cheap  

 (“zero-overhead loops”) 

• Absolute optimum: single appearance schedule 

e.g. ABCBC -> A (2BC),  ABBCC -> A (2B) (2C) 

– may or may not exist for an SDF graph… 

– buffer minimization relative to single appearance schedules  

 (Bhattacharyya ‘94, Lauwereins ‘96, Murthy ‘97) 
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Buffer size minimization 

• Assumption: no buffer sharing 

• Example: 

 

 

 

 q = | 100  100  10  1|T 

• Valid SAS: (100 A) (100 B) (10 C) D 

– requires  210 units of buffer area 

• Better (factored) SAS: (10 (10 A) (10 B) C) D 

– requires 30 units of buffer areas, but… 

– requires 21 loop initiations per period (instead of 3) 

A 

C D 
1 10 

A 

B 10 

10 

1 

1 
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Dynamic scheduling of DF 

• SDF is limited in modeling power  

– no run-time choice 

– cannot implement Gaussian elimination with pivoting 

• More general DF is too powerful 

– non-Static DF is Turing-complete (Buck ‘93)  

– bounded-memory scheduling is not always possible 

• BDF: semi-static scheduling of special “patterns” 

– if-then-else 

– repeat-until, do-while 

• General case: thread-based dynamic scheduling  

– (Parks ‘96: may not terminate, but never fails if feasible) 
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Example of Boolean DF 

• Compute absolute value of average of n samples 

+1 + 

- 

>n 

T F T F 

T F 

T F 

T 
T 

T F 

<0 

T F 

0 0 

In 

Out 
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Example of general DF 

• Merge streams of multiples of 2 and 3 in order (removing duplicates) 

 

 

 

 

 

 

 

 

• Deterministic merge 

(no “peeking”) 

ordered 
merge 

* 2 *2 dup 
1 

* 3 dup 
1 

A B 

O 

out 

a = get (A) 
b = get (B) 
forever { 
        if (a > b) { 
                put (O,  a) 
                a = get (A) 
        } else if (a < b) { 
                put (O,  b) 
                b = get (B) 
        } else { 
                put (O, a) 
                a = get (A) 
                b = get (B) 
        } 
} 
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Summary of DF networks 

• Advantages: 

– Easy to use (graphical languages) 

– Powerful algorithms for 

– verification (fast behavioral simulation) 

– synthesis (scheduling and allocation) 

– Explicit concurrency 

• Disadvantages: 

– Efficient synthesis only for restricted models 

– (no input or output choice) 

– Cannot describe reactive control (blocking read) 

46 
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Base-band Processing in Cell Phones 

Preprocessing Add headers etc. 

Frame to transmit  
(stream of bits) 

Synch 
Network 

information 

Payload End 

of Pkt 

Mapping on a  

Constellation (QPSK) 

Filtering Modulation 
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Base-band Processing: Denotation 

Mapping on a  

Constellation (QPSK) 

Modulation 

Composition of functions = overall base-band specification 

 

Filtering 
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Base-band Processing: Data Flow Model 

Mapping on a  

Constellation (QPSK) 

Modulation 

MAP 

RRC 

RRC 

Mult 

Mult 

Sum 

Filtering 
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Remarks 

• Composition is achieved by input-output connection through 

communication channels (FIFOs) 

• The operational semantics dictates the conditions that must be 

satisfied to execute a function (actor) 

• Functions operating on streams of data rather than states 

evolving in response to traces of events (data vs. control) 

• Convenient to mix denotational and operational specifications 
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Telecom/MM applications 

• Heterogeneous specifications including  

– data processing 

– control functions 

• Data processing, e.g. encryption, error correction… 

– computations done at regular (often short) intervals  

– efficiently specified and synthesized using DataFlow models 

• Control functions (data-dependent and real-time) 

– say when and how data computation is done 

– efficiently specified and synthesized using FSM models 

• Need a common model to perform global system analysis and 

optimization 
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Mixing the two models: 802.11b 

• State machine for control 

– Denotational: processes as sequence of events, sequential 

composition, choice etc. 

– Operational: state transition graphs 

• Data Flow for signal processing 

– Functions  

– Data flow graphs 

• And what happens when we put them together? 
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Data rate    Modulation  Coding        Ndbps         1472 byte 

(Mbit/s)                    rate                                 transfer duration(µs) 

   

6 BPSK 1/2 24 2012 

9 BPSK 3/4 36 1344 

12 QPSK 1/2 48 1008 

18 QPSK 3/4 72 672 

24 16-QAM 1/2 96 504 

36 16-QAM 3/4 144 336 

48 64-QAM 2/3 192 252 

54 64-QAM 3/4 216 224 

802.11b: Modes of operation 

• Depending on the channel conditions, the modulation scheme changes 

• It is natural to mix FSM and DF (like in figure) 

• Note that now we have real-time constraints on this system (i.e. time to 
send 1472 bytes) 

FSM 

Multimode 

Modulator 

Channel  

estimation 

RX 
TX 

Mode 

Link  

quality 



EE249Fall12 
54 

Outline 

• Part 3: Models of Computation 

– FSMs 

– Discrete Event Systems  

– CFSMs 

– Data Flow Models 

– Petri Nets  

– The Tagged Signal Model 

 


