
EE249Fall12
1

Outline

• Part 3: Models of Computation

– FSMs

– Discrete Event Systems

– CFSMs

– Data Flow Models

– Petri Nets

– The Tagged Signal Model

EE249Fall12
2

Data-flow networks

• A bit of history

• Syntax and semantics

– actors, tokens and firings

• Scheduling of Static Data-flow

– static scheduling

– code generation

– buffer sizing

• Other Data-flow models

– Boolean Data-flow

– Dynamic Data-flow

EE249Fall12
3

Data-flow networks

• Powerful formalism for data-dominated system specification

• Partially-ordered model (no over-specification)

• Deterministic execution independent of scheduling

• Used for

– simulation

– scheduling

– memory allocation

– code generation

 for Digital Signal Processors (HW and SW)

EE249Fall12
4

A bit of history

• Karp computation graphs (‘66): seminal work

• Kahn process networks (‘58): formal model

• Dennis Data-flow networks (‘75): programming language for

MIT DF machine

• Several recent implementations

– graphical:

– Ptolemy (UCB), Khoros (U. New Mexico), Grape (U. Leuven)

– SPW (Cadence), COSSAP (Synopsys)

– textual:

– Silage (UCB, Mentor)

– Lucid, Haskell

EE249Fall12
5

Data-flow network

• A Data-flow network is a collection of functional nodes which

are connected and communicate over unbounded FIFO queues

• Nodes are commonly called actors

• The bits of information that are communicated over the queues

are commonly called tokens

EE249Fall12
6

Intuitive semantics

• (Often stateless) actors perform computation

• Unbounded FIFOs perform communication via sequences of

tokens carrying values

– integer, float, fixed point

– matrix of integer, float, fixed point

– image of pixels

• State implemented as self-loop

• Determinacy:

– unique output sequences given unique input sequences

– Sufficient condition: blocking read

 (process cannot test input queues for emptiness)

EE249Fall12
7

Intuitive semantics

• At each time, one actor is fired

• When firing, actors consume input tokens and produce output

tokens

• Actors can be fired only if there are enough tokens in the input

queues

EE249Fall12
8

Intuitive semantics

• Example: FIR filter

– single input sequence i(n)

– single output sequence o(n)

– o(n) = c1 i(n) + c2 i(n-1)

* c1

+ o

i * c2

i(-1)

EE249Fall12
9

Intuitive semantics

• Example: FIR filter

– single input sequence i(n)

– single output sequence o(n)

– o(n) = c1 i(n) + c2 i(n-1)

* c1

+ o

i * c2

i(-1)

EE249Fall12
10

Intuitive semantics

• Example: FIR filter

– single input sequence i(n)

– single output sequence o(n)

– o(n) = c1 i(n) + c2 i(n-1)

* c1

+ o

i * c2

i(-1)

EE249Fall12
11

Intuitive semantics

• Example: FIR filter

– single input sequence i(n)

– single output sequence o(n)

– o(n) = c1 i(n) + c2 i(n-1)

* c1

+ o

i * c2

i(-1)

EE249Fall12
12

Intuitive semantics

• Example: FIR filter

– single input sequence i(n)

– single output sequence o(n)

– o(n) = c1 i(n) + c2 i(n-1)

* c1

+ o

i * c2

i(-1)

EE249Fall12
13

Intuitive semantics

• Example: FIR filter

– single input sequence i(n)

– single output sequence o(n)

– o(n) = c1 i(n) + c2 i(n-1)

* c1

+ o

i * c2

i(-1)

EE249Fall12
14

Intuitive semantics

• Example: FIR filter

– single input sequence i(n)

– single output sequence o(n)

– o(n) = c1 i(n) + c2 i(n-1)

* c1

+ o

i * c2

EE249Fall12
15

Intuitive semantics

• Example: FIR filter

– single input sequence i(n)

– single output sequence o(n)

– o(n) = c1 i(n) + c2 i(n-1)

* c1

+ o

i * c2

EE249Fall12
16

Intuitive semantics

• Example: FIR filter

– single input sequence i(n)

– single output sequence o(n)

– o(n) = c1 i(n) + c2 i(n-1)

* c1

+ o

i * c2

EE249Fall12
17

Intuitive semantics

• Example: FIR filter

– single input sequence i(n)

– single output sequence o(n)

– o(n) = c1 i(n) + c2 i(n-1)

* c1

+ o

i * c2

EE249Fall12
18

Questions

• Does the order in which actors are fired affect the final result?

• Does it affect the “operation” of the network in any way?

• Go to Radio Shack and ask for an unbounded queue!!

EE249Fall12
19

Formal semantics: sequences

• Actors operate from a sequence of input tokens to a sequence of

output tokens

• Let tokens be noted by x1, x2, x3, etc…

• A sequence of tokens is defined as

X = [x1, x2, x3, …]

• Over the execution of the network, each queue will grow a particular

sequence of tokens

• In general, we consider the actors mathematically as functions from

sequences to sequences (not from tokens to tokens)

EE249Fall12

Ordering of sequences

• Let X1 and X2 be two sequences of tokens.

• We say that X1 is less than X2 if and only if (by definition) X1 is

an initial segment of X2

• Homework: prove that the relation so defined is a partial order

(reflexive, antisymmetric and transitive)

• This is also called the prefix order

• Example: [x1, x2] <= [x1, x2, x3]

• Example: [x1, x2] and [x1, x3, x4] are incomparable

20

EE249Fall12

Chains of sequences

• Consider the set S of all finite and infinite sequences of

tokens

• This set is partially ordered by the prefix order

• A subset C of S is called a chain iff all pairs of elements of C

are comparable

• If C is a chain, then it must be a linear order inside S

(otherwise, why call it chain?)

• Example: { [x1], [x1, x2], [x1, x2, x3], … } is a chain

• Example: { [x1], [x1, x2], [x1, x3], … } is not a chain

21

EE249Fall12

(Least) Upper Bound

• Given a subset Y of S, an upper bound of Y is an element z of

S such that z is larger than all elements of Y

• Consider now the set Z (subset of S) of all the upper bounds

of Y

• If Z has a least element u, then u is called the least upper

bound (lub) of Y

• The least upper bound, if it exists, is unique

• Note: u might not be in Y (if it is, then it is the largest value of

Y)

 22

EE249Fall12

Complete Partial Order

• Every chain in S has a least upper bound

• Because of this property, S is called a Complete Partial Order

• Notation: if C is a chain, we indicate the least upper bound of

C by lub(C)

• Note: the least upper bound may be thought of as the limit of

the chain

23

EE249Fall12

Processes

• Process: function from a p-tuple of sequences to a q-tuple of

sequences

 F : Sp -> Sq

• Tuples have the induced point-wise order:

Y = (y1, … , yp), Y’ = (y’1, … , y’p) in Sp :Y <= Y’ iff yi <=

y’i for all 1 <= i <= p

• Given a chain C in Sp, F(C) may or may not be a chain in

Sq

• We are interested in conditions that make that true
24

EE249Fall12

Continuity and Monotonicity

• Continuity: F is continuous iff (by definition) for all chains C, lub(F(

C)) exists and

 F(lub(C)) = lub(F(C))

• Similar to continuity in analysis using limits

• Monotonicity: F is monotonic iff (by definition) for all pairs X, X’

 X <= X’ => F(X) <= F(X’)

• Continuity implies monotonicity

– intuitively, outputs cannot be “withdrawn” once they have been

produced

– timeless causality. F transforms chains into chains

25

EE249Fall12

Least Fixed Point semantics

• Let X be the set of all sequences

• A network is a mapping F from the sequences to the

sequences

X = F(X, I)

• The behavior of the network is defined as the unique least

fixed point of the equation

• If F is continuous then the least fixed point exists LFP = LUB(

{ Fn(^, I) : n >= 0 })

26

EE249Fall12

From Kahn networks to Data Flow networks

• Each process becomes an actor: set of pairs of

– firing rule

 (number of required tokens on inputs)

– function

 (including number of consumed and produced tokens)

• Formally shown to be equivalent, but actors with firing are

more intuitive

• Mutually exclusive firing rules imply monotonicity

• Generally simplified to blocking read

27

EE249Fall12
28

Examples of Data Flow actors

• SDF: Synchronous (or, better, Static) Data Flow

– fixed input and output tokens

• BDF: Boolean Data Flow

– control token determines consumed and produced tokens

+

1

1
1

FFT
1024 1024 10 1

merge select
T F

F T

EE249Fall12

Static scheduling of DF

• Key property of DF networks: output sequences do not depend on

time of firing of actors

• SDF networks can be statically scheduled at compile-time

– execute an actor when it is known to be fireable

– no overhead due to sequencing of concurrency

– static buffer sizing

• Different schedules yield different

– code size

– buffer size

– pipeline utilization

29

EE249Fall12

Static scheduling of SDF

• Based only on process graph (ignores functionality)

• Network state: number of tokens in FIFOs

• Objective: find schedule that is valid, i.e.:

– admissible

 (only fires actors when fireable)

– periodic

 (brings network back to initial state firing each actor at least once)

• Optimize cost function over admissible schedules

30

EE249Fall12
31

Balance equations

• Number of produced tokens must equal number of consumed tokens

on every edge

• Repetitions (or firing) vector vS of schedule S: number of firings of

each actor in S

• vS(A) np = vS(B) nc

 must be satisfied for each edge

np nc

A B

EE249Fall12
32

Balance equations

B C

A
3

1

1

1

2
2

1
1

• Balance for each edge:

– 3 vS(A) - vS(B) = 0

– vS(B) - vS(C) = 0

– 2 vS(A) - vS(C) = 0

– 2 vS(A) - vS(C) = 0

EE249Fall12
33

Balance equations

• M vS = 0

 iff S is periodic

• Full rank (as in this case)

– no non-zero solution

– no periodic schedule

(too many tokens accumulate on A->B or B->C)

3 -1 0
0 1 -1
2 0 -1
2 0 -1

M =

B C

A
3

1

1

1

2
2

1
1

EE249Fall12
34

Balance equations

• Non-full rank

– infinite solutions exist (linear space of dimension 1)

• Any multiple of q = |1 2 2|T satisfies the balance equations

• ABCBC and ABBCC are minimal valid schedules

• ABABBCBCCC is non-minimal valid schedule

2 -1 0
0 1 -1
2 0 -1
2 0 -1

M =

B C

A
2

1

1

1

2
2

1
1

EE249Fall12
35

Static SDF scheduling

• Main SDF scheduling theorem (Lee ‘86):

– A connected SDF graph with n actors has a periodic schedule iff its

topology matrix M has rank n-1

– If M has rank n-1 then there exists a unique smallest integer solution q

to

 M q = 0

• Rank must be at least n-1 because we need at least n-1 edges

(connected-ness), providing each a linearly independent row

• Admissibility is not guaranteed, and depends on initial tokens on

cycles

EE249Fall12
36

Admissibility of schedules

• No admissible schedule:

 BACBA, then deadlock…

• Adding one token (delay) on A->C makes

 BACBACBA valid

• Making a periodic schedule admissible is always possible, but

changes specification...

B C

A
1

2

1

3

2

3

EE249Fall12
37

Admissibility of schedules

• Adding initial token changes FIR order

* c1

+ o

i

* c2

i(-1)
i(-2)

EE249Fall12
38

From repetition vector to schedule

• Repeatedly schedule fireable actors up to number of times in

repetition vector

 q = |1 2 2|T

• Can find either ABCBC or ABBCC

• If deadlock before original state, no valid schedule exists (Lee ‘86)

B C

A
2

1

1

1

2
2

1
1

EE249Fall12
39

From schedule to implementation

• Static scheduling used for:

– behavioral simulation of DF (extremely efficient)

– code generation for DSP

– HW synthesis (Cathedral by IMEC, Lager by UCB, …)

• Issues in code generation

– execution speed (pipelining, vectorization)

– code size minimization

– data memory size minimization (allocation to FIFOs)

– processor or functional unit allocation

EE249Fall12
40

Compilation optimization

• Assumption: code stitching

(chaining custom code for each actor)

• More efficient than C compiler for DSP

• Comparable to hand-coding in some cases

• Explicit parallelism, no artificial control dependencies

• Main problem: memory and processor/FU allocation

depends on scheduling, and vice-versa

EE249Fall12
41

Code size minimization

• Assumptions (based on DSP architecture):

– subroutine calls expensive

– fixed iteration loops are cheap

 (“zero-overhead loops”)

• Absolute optimum: single appearance schedule

e.g. ABCBC -> A (2BC), ABBCC -> A (2B) (2C)

– may or may not exist for an SDF graph…

– buffer minimization relative to single appearance schedules

 (Bhattacharyya ‘94, Lauwereins ‘96, Murthy ‘97)

EE249Fall12
42

Buffer size minimization

• Assumption: no buffer sharing

• Example:

 q = | 100 100 10 1|T

• Valid SAS: (100 A) (100 B) (10 C) D

– requires 210 units of buffer area

• Better (factored) SAS: (10 (10 A) (10 B) C) D

– requires 30 units of buffer areas, but…

– requires 21 loop initiations per period (instead of 3)

A

C D
1 10

A

B 10

10

1

1

EE249Fall12
43

Dynamic scheduling of DF

• SDF is limited in modeling power

– no run-time choice

– cannot implement Gaussian elimination with pivoting

• More general DF is too powerful

– non-Static DF is Turing-complete (Buck ‘93)

– bounded-memory scheduling is not always possible

• BDF: semi-static scheduling of special “patterns”

– if-then-else

– repeat-until, do-while

• General case: thread-based dynamic scheduling

– (Parks ‘96: may not terminate, but never fails if feasible)

EE249Fall12
44

Example of Boolean DF

• Compute absolute value of average of n samples

+1 +

-

>n

T F T F

T F

T F

T
T

T F

<0

T F

0 0

In

Out

EE249Fall12
45

Example of general DF

• Merge streams of multiples of 2 and 3 in order (removing duplicates)

• Deterministic merge

(no “peeking”)

ordered
merge

* 2 *2 dup
1

* 3 dup
1

A B

O

out

a = get (A)
b = get (B)
forever {
 if (a > b) {
 put (O, a)
 a = get (A)
 } else if (a < b) {
 put (O, b)
 b = get (B)
 } else {
 put (O, a)
 a = get (A)
 b = get (B)
 }
}

EE249Fall12

Summary of DF networks

• Advantages:

– Easy to use (graphical languages)

– Powerful algorithms for

– verification (fast behavioral simulation)

– synthesis (scheduling and allocation)

– Explicit concurrency

• Disadvantages:

– Efficient synthesis only for restricted models

– (no input or output choice)

– Cannot describe reactive control (blocking read)

46

EE249Fall12
47

Base-band Processing in Cell Phones

Preprocessing Add headers etc.

Frame to transmit
(stream of bits)

Synch
Network

information

Payload End

of Pkt

Mapping on a

Constellation (QPSK)

Filtering Modulation

EE249Fall12
48

Base-band Processing: Denotation

Mapping on a

Constellation (QPSK)

Modulation

Composition of functions = overall base-band specification

Filtering

EE249Fall12
49

Base-band Processing: Data Flow Model

Mapping on a

Constellation (QPSK)

Modulation

MAP

RRC

RRC

Mult

Mult

Sum

Filtering

EE249Fall12
50

Remarks

• Composition is achieved by input-output connection through

communication channels (FIFOs)

• The operational semantics dictates the conditions that must be

satisfied to execute a function (actor)

• Functions operating on streams of data rather than states

evolving in response to traces of events (data vs. control)

• Convenient to mix denotational and operational specifications

EE249Fall12
51

Telecom/MM applications

• Heterogeneous specifications including

– data processing

– control functions

• Data processing, e.g. encryption, error correction…

– computations done at regular (often short) intervals

– efficiently specified and synthesized using DataFlow models

• Control functions (data-dependent and real-time)

– say when and how data computation is done

– efficiently specified and synthesized using FSM models

• Need a common model to perform global system analysis and

optimization

EE249Fall12
52

Mixing the two models: 802.11b

• State machine for control

– Denotational: processes as sequence of events, sequential

composition, choice etc.

– Operational: state transition graphs

• Data Flow for signal processing

– Functions

– Data flow graphs

• And what happens when we put them together?

EE249Fall12
53

Data rate Modulation Coding Ndbps 1472 byte

(Mbit/s) rate transfer duration(µs)

6 BPSK 1/2 24 2012

9 BPSK 3/4 36 1344

12 QPSK 1/2 48 1008

18 QPSK 3/4 72 672

24 16-QAM 1/2 96 504

36 16-QAM 3/4 144 336

48 64-QAM 2/3 192 252

54 64-QAM 3/4 216 224

802.11b: Modes of operation

• Depending on the channel conditions, the modulation scheme changes

• It is natural to mix FSM and DF (like in figure)

• Note that now we have real-time constraints on this system (i.e. time to
send 1472 bytes)

FSM

Multimode

Modulator

Channel

estimation

RX
TX

Mode

Link

quality

EE249Fall12
54

Outline

• Part 3: Models of Computation

– FSMs

– Discrete Event Systems

– CFSMs

– Data Flow Models

– Petri Nets

– The Tagged Signal Model

