Synchronous Languages:
Lustre

C|AlU EE 249 Slide 1



Overview

A Short Tour

Examples

Clock Consistency

Arrays and Recursive Nodes

C|AlU EE 249 Slide 2



Lustre
Assertions
Data Streams

A Short Tour

Node Expansion
Clock Operators

Lustre

» A synchronous data flow language
» Developed since 1984 at IMAG, Grenoble [HCRP91]
» Also graphical design entry available (SAGA)

» Moreover, the basis for SCADE (now marketed by Esterel
Technologies), a tool used in software development for
avionics and automotive industries

~> Translatable to FSMs with finitely many control states

» Same advantages as Esterel for hardware and software design

Thanks to Klaus Schneider
(http: //rsg. informatik. uni-kl. de/people/ schneider/ ) for providing part of

the following material

C|AlU EE 249 Slide 3


http://rsg.informatik.uni-kl.de/people/schneider/

Lustre
Assertions
Data Streams

A Short Tour

Node Expansion

Lustre Modules

General form:

node f(xj:1, ..., Xp:ap) returns (y1:081,...,¥m : OBm)
var Z1:iYis---sZk Yk
let
Z] = T1; ---3 Zk = Tk
Y1 = 715 ..5 Ym = Tk;
assert ¢1; ...; assert yy;
tel

where
» f is the name of the module
> Inputs x;, outputs y;, and local variables z;

> Assertions ¢; (boolean expressions)

C|AlU EE 249 Slide 4



Lustre
Assertions
Data Streams

A Short Tour

Node Expansion
Clock Operators

Lustre Programs

Lustre programs are a list of modules that are called nodes

All nodes work synchronously, i. e. at the same speed

No broadcasting of signals, no side effects

>

>

» Nodes communicate only via inputs and outputs

>

» Equations z; = 7; and y; = 7; are not assighments
>

Equations must have solutions in the mathematical sense

C|AlU EE 249 Slide 5



Lustre
Assertions
Data Streams

A Short Tour

Node Expansion
Clock Operators

Lustre Programs

» As z; = 7; and y; = m; are equations, we have the Substitution
Principle:
The definitions z; = 77 and y; = 7; of a Lustre node allow one
to replace z; by 7; and y; by 7.

» Behavior of z; and y; completely given by equations z; = 7;
and yi =m;

C|AlU EE 249 Slide 6



Lustre
Assertions
Data Streams

A Short Tour

Node Expansion
Clock Operators

Assertions

» Assertions assert ¢ do not influence the behavior of the
system

> assert ¢ means that during execution, ¢ must invariantly
hold

» Equation X = E equivalent to assertion assert(X = E)
» Assertions can be used to optimize the code generation

» Assertions can be used for simulation and verification

C|AlU EE 249 Slide 7



Lustre
Assertions
Data Streams

A Short Tour

Node Expansion
Clock Operators

Data Streams

» All variables, constants, and all expressions are streams
» Streams can be composed to new streams

» Example: given x =(0,1,2,3,4,...) and
y =1(0,2,4,6,8,...), then x + y is the stream
(0,3,6,9,12,...)

» However, streams may refer to different clocks

~> Each stream has a corresponding clock

C|AlU EE 249 Slide 8



Lustre
Assertions
Data Streams

A Short Tour

Node Expansion
Clock Operators

Data Types

» Primitive data types: bool, int, real
» Imported data types: type «

» Similar to Esterel
» Data type is implemented in host language

» Tuples of types: a3 X ... X ay is a type
» Semantics is Cartesian product

C|AlU EE 249 Slide 9



Lustre
Assertions
Data Streams

A Short Tour

Node Expansion
Clock Operators

Expressions (Streams)

v

Every declared variable x is an expression

v

Boolean expressions:
» 71 and 7T», T3 Or Ty, not 71

v

Numeric expressions:
» 71+ 7 and 74 — T2, 71 * T2 and 71 /72, 71 div T2 and 73 mod T,

v

Relational expressions:
P T =T, 1 <T, 1 <Tp, T1>T2, T1 2T

v

Conditional expressions:
» if b then 73 else 7 for all types

C|AlU EE 249 Slide 10



Lustre
Assertions
Data Streams

A Short Tour

Node Expansion
Clock Operators

Node Expansion

» Assume implementation of a node f with inputs x1 : ag, ...

Xp : ap and outputs vy 2 B1, oo, Ym : Om
» Then, f can be used to create new stream expressions, €. g.,
f(71,...,7n) is an expression
» Of type 81 X ... X B
> If (71,...,74) has type a1 X ... X

C|AlU EE 249 Slide 11



A Short Tour Lustre_
Assertions

Data Streams

Node Expansion
Clock Operators

Vector Notation of Nodes

By using tuple types for inputs, outputs, and local streams, we
may consider just nodes like

node f(x:a) returns (y:3)
var z:v;
let
z =T
y=m;
assert ;
tel

EE 249 Slide 12



Lustre
Assertions
Data Streams

A Short Tour

Node Expansion
Clock Operators

Clock-Operators

» All expressions are streams
» Clock-operators modify the temporal arrangement of streams

» Again, their results are streams
» The following clock operators are available:
» pre 7 for every stream T
» 71 => 75, (pronounced “followed by”) where 71 and 7, have the
same type
71 when 7, where 7, has boolean type (downsampling)
» current 7 (upsampling)

C|AlU EE 249 Slide 13



Lustre
Assertions
Data Streams

A Short Tour

Node Expansion
Clock Operators

Clock-Hierarchy

> As already mentioned, streams may refer to different clocks
» We associate with every expression a list of clocks
» A clock is thereby a stream ¢ of boolean type

» Whenever this stream ¢ is true (considered at its clock), a
point in time is selected that belongs to the new clock
hierarchy

C|AlU EE 249 Slide 14



Lustre
Assertions
Data Streams

A Short Tour

Node Expansion
Clock Operators

Clock-Hierarchy

» clocks(7) := [] if expression 7 does not contain any clock
operator

» clocks(pre(7)) := clocks(7)

» clocks(y => 72) := clocks(m1),
where clocks(71) = clocks(72) is required

> clocks(T when ¢):=[p,c1,...,Cn],
where clocks(yp) = clocks(7) = [c1, ..., cn]

» clocks(current(7)) :=[c2, ..., Cnl,
where clocks(7) = [c1, .. ., Cn]

C|AlU EE 249 Slide 15



Lustre
Assertions
Data Streams

A Short Tour

Node Expansion
Clock Operators

Semantics of Clock-Operators

» [pre(7)] := (L, 70,71,...), provided that [r] = (70,71, -.)
> [7 —> 7] := (70,71, 72,...),
provided that [7] = (70, 71,...) and [x] = (7o, 71,...)
» [7 when @] = (4. 7t, Tt,, - -.), provided that
> [7] = (70, 71,...)
» {to,t1,...} is the set of points in time where [¢] holds
> Jeurrent(7)] = (L, ..oy Ly Ttgy vy Tty Ttys e oo Ttys Thoy - - +) s

provided that

> [7] = (70, 71,...)
» {to,t1,...} is the set of points in time where the highest clock
of current(7) holds

C|AlU EE 249 Slide 16



Lustre
Assertions
Data Streams

A Short Tour

Node Expansion
Clock Operators

Example for Semantics of Clock-Operators

o]0 1 0 1 0 0 1
T|T0o T1 T2 T3 T4 T T6

pre(t) | L 170 1 ™ T3 T4 Ts

T > vpre(r) |70 To TL T2 T3 T4 Ts

T when @ 1 T3 T6
current(r when ) | L 7 T T3 T3 T3 Te

» Note: [7 when ¢] = (m1,73,7s,-..), I. €., gaps are not
filled!

» This is done by current(7 when ¢)

C|AlU EE 249 Slide 17



Example: Clock Expressions

Examples
P Example: Counter

Example: ABRO

Example for Semantics of Clock-Operators

0/0 OO O0OTGO
11111111
n=(0 ->pre(m)+1) [0 1 2 3 4 5
e= (1 ->notpre(e)) |1 01 0 1 O
n when e | 0 2 4
current(n when e) |0 0 2 2 4 4
current (n when e) div2 |0 0 1 1 2 2

C|AlU EE 249 Slide 18



Example: Clock Expressions

Examples
P Example: Counter

Example: ABRO

Example for Semantics of Clock-Operators

n=0->prem+1 |0 1 2 3 4 5 6 7 8 9 10 11
d2=(ndiv2)*2=n|1 0 1 0 1 0 1 0 1 0 1 O
n2 = n when d2 | 0 2 4 6 8 10
d3=(ndiv3)*x3=n|1 0 0 1 0 0 1 0 0 1 0 O
n3 = n when d3 | 0 3 6 9
d3’ = d3 when 42 | 1 0 0 1 0 0
n6 = n2 when d3’ | 0 6
c3 = current(n2 when d3’) | 0 0 0 6 6 6

C|AlU EE 249 Slide 19



Example: Clock Expressions

Examples Example: Counter

Example: ABRO

Example: Counter

node Counter(x0, d:int; r:bool) returns (n:int)
let

n = x0 -> if r then x0 else pre(n) + d
tel

Initial value of nis x0
If no reset r then increment by d

If reset by r, then initialize with xg

vy VY y

Counter can be used in other equations, e.g.

» even = Counter(0,2,0) yields the even numbers
» mods = Counter(0,1, pre(mods) = 4) yields numbers mod 5

C|AlU EE 249 Slide 20



Example: Clock Expressions

Examples
P Example: Counter

Example: ABRO

ABRO in Lustre

node EDGE(X:bool) returns (Y:bool);
let

Y = false -> X and not pre(X);
tel

node ABRO (A,B,R:bool) returns (0: bool);
var seenA, seenB : bool;
let
0 = EDGE(seenA and seenB);
seenA = false -> not R and (A or pre(seend));
seenB = false -> not R and (B or pre(seenB));
tel

C|AlU EE 249 Slide 21



Causality

Clock Consistency Clock Consistency

Causality Problems in Lustre

» Synchronous languages have causality problems

» They arise if preconditions of actions are influenced by the
actions

» Therefore they require to solve fixpoint equations

» Such equations may have none, one, or more than one
solutions

~> Analogous to Esterel, one may consider reactive,
deterministic, logically correct, and constructive programs

C|AlU EE 249 Slide 22



Causality

Clock Consistency Clock Consistency

Causality Problems in Lustre

» x = 7 is acyclic, if x does not occur in 7 or does only occur as
subterm pre(x) in 7

v

Examples:
» a = a and pre(a) is cyclic
» a = b and pre(a) is acyclic

» Acyclic equations have a unique solution!

» Analyze cyclic equations to determine causality?

» But: Lustre only allows acyclic equation systems
»

Sufficient for signal processing

C|AlU EE 249 Slide 23



Causality

Clock Consistency Clock Consistency

Malik's Example

» However, some interesting examples are cyclic

y = if c then y_f else y_g;
y_f = £(x_£);

v-g = g(x_g);

x_f = if c then y_g else x;
x_g = if c then x else y_f;

> Implements if ¢ then £(g(x)) else g(£(x)) with only one
instance of £ and g

» Impossible without cycles

[§ Sharad Malik.
Analysis of cyclic combinatorial circuits.

in IEEE Transactions on Computer-Aided Design, 1994

C|AlU EE 249 Slide 24



Causality

Clock Consistency Clock Consistency

Clock Consistency

Consider the following equations:
b
y

0->not pre(b);
x + (x when b)

» We obtain the following:

X X0 X1 X2 X3 Xa
b 0 1 0 1 0
x when b X1 X3
x4+ (x when b) | xo+x1 x1+x3 x+x x3+x1 X+ X

» To compute y; := x; + X2j41, We have to store x;, ... , X2i41
» Problem: not possible with finite memory

C|AlU EE 249 Slide 25



Causality

Clock Consistency Clock Consistency

Clock Consistency

Expressions like x + (x when b) are not allowed
Only streams at the same clock can be combined
What is the ‘same’ clock?

Undecidable to prove this semantically

vV v . v v Y

Check syntactically

C|AlU EE 249 Slide 26



Causality

Clock Consistency Clock Consistency

Clock Consistency

» Two streams have the same clock if their clock can be
syntactically unified

» Example:
x = a when (y > z);
y=b+c;
u=d when (b+ c > z);
v=e when (z <y);

» x and u have the same clock

» x and v do not have the same clock

C|AlU EE 249 Slide 27



Arrays
Static Recursion

Arrays and Recursive Nodes

Arrays

» Given type «, " defines an array with n entries of type «
» Example: x: bool™n

» The bounds of an array must be known at compile time, the
compiler simply transforms an array of n values into n
different variables.

» The i-th element of an array X is accessed by X[i].

» X|i..j] with i <j denotes the array made of elements i to j of
X.

» Beside being syntactical sugar, arrays allow to combine
variables for better hardware implementation.

C|AlU EE 249 Slide 28



Arrays

Static Recursion
Arrays and Recursive Nodes

Example for Arrays

node DELAY (const d: int; X: bool) returns (Y: bool);
var A: bool~(d+1);

let
A0l = X;
Al1..d] = (false~(d))-> pre(A[0..d-11);
Y = A[d];

tel

> false~(d) denotes the boolean array of length d, which entries
are all false

» Observe that pre and —> can take arrays as parameters

» Since d must be known at compile time, this node cannot be
compiled in isolation

» The node outputs each input delayed by d steps.

» So Y, = X,_gq with Y}, = false for n < d

EE 249 Slide 29



Arrays
Static Recursion

Arrays and Recursive Nodes

Static Recursion

» Functional languages usually make use of recursively defined
functions

» Problem: termination of recursion in general undecidable
~> Primitive recursive functions guarantee termination

» Problem: still with primitive recursive functions, the reaction
time depends heavily on the input data

~ Static recursion: recursion only at compile time

» Observe: If the recursion is not bounded, the compilation will
not stop.

C|AlU EE 249 Slide 30



Arrays
Static Recursion

Arrays and Recursive Nodes

Example for Static Recursion

» Disjunction of boolean array

node BigOr(const n:int; x: bool™n) returns (y:bool)
let
y = with n=1 then x[0]
else x[0] or BigOr(mn-1,x[1..n-1]);
tel

» Constant n must be known at compile time

» Node is unrolled before further compilation

C|AlU EE 249 Slide 31



Arrays
Static Recursion

Arrays and Recursive Nodes

Example for Maximum Computation

Static recursion allows logarithmic circuits:

node Max(const n:int; x:int"n) returns (y:int)
var y_1,y_2: int;
let
y_1 = with n=1 then x[0]
else Max(n div 2,x[0..(n div 2)-1]);
y-2 = with n=1 then x[0]
else Max((n+1) div 2, x[(n div 2)..n-1]);
y = if y_1 >= y_2 then y_1 else y_2;
tel

C|AlU EE 249 Slide 32



Arrays
Static Recursion

Arrays and Recursive Nodes

Delay node with recursion

node REC_DELAY (const d: int; X: bool) returns (Y: bool);
let

Y = with d=0 then X

else false -> pre(REC_DELAY(d-1, X));
tel

A call REC_DELAY (3, X) is compiled into something like:
Y = false -> pre(Y2)

Y2 = false -> pre(Y1)
Y1 = false -> pre(YO0)
YO = X;

C|AlU EE 249 Slide 33



Arrays
Static Recursion

Arrays and Recursive Nodes

Summary

» Lustre is a synchronous dataflow language.

» The core Lustre language are boolean equations and clock
operators pre, —>, when, and current.

» Additional datatypes for real and integer numbers are also
implemented.

User types can be defined as in Esterel.
Lustre only allows acyclic programs.

Clock consistency is checked syntactically.

vV v v Vv

Lustre offers arrays and recursion, but both array-size and
number of recursive calls must be known at compile time.

C|AlU EE 249 Slide 34



Arrays
Static Recursion

Arrays and Recursive Nodes

To Go Further

» Nicolas Halbwachs and Pascal Raymond, A Tutorial of Lustre,
2002 http://www-verimag.imag.fr/~halbwach/
lustre-tutorial.html

» Nicolas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel
Pilaud, The Synchronous Data-Flow Programming Language
Lustre, In Proceedings of the IEEE, 79:9, September 1991,
http://wuw-verimag.imag.fr/~halbwach/lustre:
ieee.html

C|AlU EE 249 Slide 35


http://www-verimag.imag.fr/~halbwach/lustre-tutorial.html
http://www-verimag.imag.fr/~halbwach/lustre-tutorial.html
http://www-verimag.imag.fr/~halbwach/lustre:ieee.html
http://www-verimag.imag.fr/~halbwach/lustre:ieee.html

	A Short Tour
	
	
	
	
	

	Examples
	
	
	

	Clock Consistency
	
	

	Arrays and Recursive Nodes
	
	


