
�1

Introduction to
Embedded Systems

Edward A. Lee & Sanjit A. Seshia
UC Berkeley

EECS 124

Spring 2008

Copyright © 2008, Edward A. Lee & Sanjit A. Seshia, All rights reserved

Lecture 6: Modeling Modal Behavior, Part I

EECS 124, UC Berkeley: 2

Roadmap for course (until spring break):
Modeling, Analysis, and Control

What goes into “CAD tools” for embedded systems?

Modeling

Feb 11, 13: “Pure” Modal Modeling (finite-state machines)

Feb 20: Concurrency

Feb 25, 27: Hybrid Systems (modeling discrete +

continuous behavior)

�2

EECS 124, UC Berkeley: 3

Roadmap for course (until spring break)

Analysis and Control

Analysis: Does my model satisfy its specification?

Mar 3, 5: Techniques to simulate discrete/continous/hybrid

models

Mar 10, 12: Exhaustive state-space exploration

techniques, reachability analysis, model checking

Control: Synthesizing a strategy to achieve a goal

Mar 17, 19: Controller synthesis for hybrid systems

EECS 124, UC Berkeley: 4

Modal Model (Finite-State Machine) for
Engine Control

Source:

Delphi Automotive Systems (2001)

�3

EECS 124, UC Berkeley: 5

Elements of a Modal Model (FSM)

Source:

Delphi Automotive Systems (2001)

mode /

state

initial state

transition

input

output

EECS 124, UC Berkeley: 6

Topic: Modeling with Finite-State Machines
(FSMs)

Suppose that our only modeling formalism is the
Finite-State Machine

Four questions:

1. How to represent the system for:

� Mathematical analysis

� So that a computer program can manipulate it

2. How to model its environment?

3. How to represent what the system MUST do – its
specification?

4. How to check whether the system satisfies its
specification in its operating environment?

�4

EECS 124, UC Berkeley: 7

Example: Discretized iRobot Hill Climber

EECS 124, UC Berkeley: 8

Main Concepts in this Lecture

Q1: System representation

� Finite-state machine – syntax and semantics

� Behavior/trace on infinite inputs

Q2 & 3: Environment modeling/specification

� Non-determinism

� Abstraction in modeling

Q4: Comparing state machines

� Simulation, bisimulation, trace equivalence and trace

containment

�How do we know whether implementation does what the
specification states?

�5

EECS 124, UC Berkeley: 9

State Machines: Formal Definition

A state machine is a tuple:

(States, Inputs, Outputs, update, initialState)

where

States = set of states/modes of the system

Inputs = set of input symbols

Outputs = set of output symbols

update: States × Inputs � States × Outputs

� called “transition function” or “update function”

initialState = the starting state/mode of the system

� denoted by incoming arrow or special “init” label

EECS 124, UC Berkeley: 10

Finite State Machines

The definition on the previous slide is general – the state

machine could have infinitely many states

We will restrict ourselves to a finite set of states, in this

and the next lecture

�6

EECS 124, UC Berkeley: 11

FSM Steps and Signals

Each time a transition occurs, the FSM takes a step

(note: time need not advance)

StepNumbers = {0, 1, 2, … } = N

A signal is a function mapping N to symbols

� Input, output, and control (state-holding) signals

� We will restrict attention to “pure” signals

• Signal models presence/absence of an event

An input/output symbol is an element of

{present, absent}n (assuming n input/output signals)

EECS 124, UC Berkeley: 12

Example: Discretized iRobot Hill Climber

�7

EECS 124, UC Berkeley: 13

The Input/Output Interface of the iRobot
Controller

ControllerSensors Actuators
level

rotate

drive_one_sq

Signal that is present What it means

level Robot is facing the right way up/down hill

rotate Robot rotates by 45o clockwise

drive_one_sq Robot drives to neighboring square

EECS 124, UC Berkeley: 14

FSM Controller for iRobot

States = {init, tilt, drive} Inputs = ? Outputs = ?

update = ? Any transitions missing?

�8

EECS 124, UC Berkeley: 15

FSM Controller for iRobot (version 2)

Will this robot always drive uphill?

(assume that it starts facing uphill)

Also need to specify “else”

arcs for tilt and drive

EECS 124, UC Berkeley: 16

Properties of FSMs: Determinacy

� An FSM is deterministic if

�Different transitions out of a state do not have overlapping
guards

Is the iRobot FSM (prev. slide) deterministic?

Note: A guard is a subset of Inputs

guard1

guard2
guard1 ∩ guard2 = ∅

�9

EECS 124, UC Berkeley: 17

Properties of FSMs: Receptiveness

� An FSM is receptive if

�It has a transition defined for every input symbol from

every state

Is the iRobot FSM receptive?

guard1

guard2
Ui guardi = Inputs

guardn
.
.
.

EECS 124, UC Berkeley: 18

Behavior of a FSM

How do we model the input-output behavior of an FSM?

Let

InputSeq = set of infinite sequences of input symbols

OutputSeq = set of infinite sequences of output symbols

Then, the behavior of an FSM is

a function from InputSeq to OutputSeq

�10

EECS 124, UC Berkeley: 19

Trace

A trace of a FSM is an infinite sequence of triples

(i0, s0, o0), (i1, s1, o1), (i2, s2, o2), …

where update(sj, ij) = (sj+1, oj)

Also written as:

Sometimes we are only interested in the “observable”

trace of the system, which includes only input & output

symbols (i0, o0), (i1, o1), (i2, o2), …

�Note: as above, the trace represents a single system
behavior

s0 s1 s2 s3 ….
i0 / o0 i1 / o1 i2 / o2

EECS 124, UC Berkeley: 20

Example: a Counter

Suppose the count starts with 0

Trace is

(1,0,0), (0,1,1), (0,1,1), (0,1,1), (1, 2, 0), (1, 3, 1), ….

Count mod 10
X

…0110110001
Y

(parity of count)

�11

EECS 124, UC Berkeley: 21

Example 2:

Give an example trace for the iRobot modal model on

slide 15

EECS 124, UC Berkeley: 22

Modeling the iRobot’s environment

L level=true

NL45 level=false, 45o offset

NL90 level=false, 90o offset
Self loops on: rotate=false

Is this model deterministic?

�12

EECS 124, UC Berkeley: 23

Non-determinism

guard1

guard2
guard1 ∩ guard2 ≠ ∅

More than one transition possible on an input symbol

For the iRobot environment:

non-determinism in transition from initial state

EECS 124, UC Berkeley: 24

More non-determinism in iRobot’s environment

Self loops on rotate=false

How will the FSM change if we want to model this:

Lifting up the robot at any step and placing it

with a different orientation

�13

EECS 124, UC Berkeley: 25

Uses of non-determinism

1. Modeling unknown aspects of the environment or

system

� Such as: how the environment changes the iRobot’s

orientation

2. Hiding detail in a specification of the system

� We will see an example of this later (see notes to be

posted)

Any other reasons why non-deterministic FSMs might be

better than deterministic FSMs?

EECS 124, UC Berkeley: 26

Size Matters

Non-deterministic FSMs are more compact than

deterministic FSMs

� ND FSM � D FSM: Exponential blow-up in #states in
worst case

�14

EECS 124, UC Berkeley: 27

Non-deterministic Behavior: Tree of Computations

For a fixed input sequence:

� A deterministic system exhibits a single behavior

� A non-deterministic system exhibits a set of behaviors

� visualized as a computation tree

. . .

. . .

. . .

. . .

. . .

Deterministic FSM behavior:

Non-deterministic FSM behavior:

EECS 124, UC Berkeley: 28

Non-determinism: Formal Definition

A non-deterministic state machine is a tuple:

(States, Inputs, Outputs, possibleUpdates, initialStates)

where

States = set of states/modes of the system

Inputs = set of input symbols

Outputs = set of output symbols

possibleUpdates: States ×××× Inputs ���� 2States ×××× Outputs

� also termed as “transition relation”

initialStates = the starting states/modes of the system

�15

EECS 124, UC Berkeley: 29

Related points

What does receptiveness mean for non-deterministic

state machines?

Non-deterministic ≠ Probabilistic

EECS 124, UC Berkeley: 30

Representing a state machine

1. Pictorial notation

2. Table representing transition relation

3. Functional notation

When would you use each representation?

