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Roadmap for course (until spring break):     
Modeling, Analysis, and Control

What goes into “CAD tools” for embedded systems?

Modeling

Feb 11, 13: “Pure” Modal Modeling (finite-state machines)

Feb 20: Concurrency

Feb 25, 27: Hybrid Systems (modeling discrete + 

continuous behavior)
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Roadmap for course (until spring break)

Analysis and Control

Analysis: Does my model satisfy its specification?

Mar 3, 5: Techniques to simulate discrete/continous/hybrid 

models

Mar 10, 12: Exhaustive state-space exploration 

techniques, reachability analysis, model checking

Control: Synthesizing a strategy to achieve a goal

Mar 17, 19: Controller synthesis for hybrid systems
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Modal Model (Finite-State Machine) for                 
Engine Control

Source: 

Delphi Automotive Systems (2001)
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Elements of a Modal Model (FSM)

Source: 

Delphi Automotive Systems (2001)

mode /

state

initial state

transition

input

output
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Topic: Modeling with Finite-State Machines 
(FSMs)

Suppose that our only modeling formalism is the     
Finite-State Machine

Four questions:

1. How to represent the system for:

� Mathematical analysis 

� So that a computer program can manipulate it

2. How to model its environment?

3. How to represent what the system MUST do – its 
specification?

4. How to check whether the system satisfies its 
specification in its operating environment? 
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Example: Discretized iRobot Hill Climber  
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Main Concepts in this Lecture

Q1: System representation

� Finite-state machine – syntax and semantics

� Behavior/trace on infinite inputs

Q2 & 3: Environment modeling/specification

� Non-determinism

� Abstraction in modeling

Q4: Comparing state machines

� Simulation, bisimulation, trace equivalence and trace 

containment

�How do we know whether implementation does what the 
specification states?
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State Machines: Formal Definition

A state machine is a tuple:                                            

(States, Inputs, Outputs, update, initialState)

where

States = set of states/modes of the system

Inputs = set of input symbols

Outputs = set of output symbols

update: States × Inputs � States × Outputs

� called “transition function” or “update function”

initialState = the starting state/mode of the system

� denoted by incoming arrow or special “init” label
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Finite State Machines

The definition on the previous slide is general – the state 

machine could have infinitely many states

We will restrict ourselves to a finite set of states, in this 

and the next lecture
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FSM Steps and Signals

Each time a transition occurs, the FSM takes a step

(note: time need not advance)

StepNumbers = {0, 1, 2, … } = N

A signal is a function mapping N to symbols

� Input, output, and control (state-holding) signals

� We will restrict attention to “pure” signals

• Signal models presence/absence of an event

An input/output symbol is an element of                        

{present, absent}n (assuming n input/output signals)
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Example: Discretized iRobot Hill Climber  
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The Input/Output Interface of the iRobot
Controller

ControllerSensors Actuators
level

rotate

drive_one_sq

Signal that is present What it means

level  Robot is facing the right way up/down hill

rotate Robot rotates by 45o clockwise

drive_one_sq Robot drives to neighboring square
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FSM Controller for iRobot

States = {init, tilt, drive}     Inputs = ?     Outputs = ?

update = ?         Any transitions missing?
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FSM Controller for iRobot (version 2)

Will this robot always drive uphill?                       

(assume that it starts facing uphill)

Also need to specify “else”

arcs for tilt and drive
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Properties of FSMs: Determinacy

� An FSM is deterministic if

�Different transitions out of a state do not have overlapping 
guards

Is the iRobot FSM (prev. slide) deterministic?

Note: A guard is a subset of Inputs

guard1

guard2
guard1 ∩ guard2 = ∅
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Properties of FSMs: Receptiveness

� An FSM is receptive if

�It has a transition defined for every input symbol from   

every state

Is the iRobot FSM receptive?

guard1

guard2
Ui guardi = Inputs

guardn
. 
. 
.
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Behavior of a FSM

How do we model the input-output behavior of an FSM? 

Let 

InputSeq = set of infinite sequences of input symbols

OutputSeq = set of infinite sequences of output symbols

Then, the behavior of an FSM is 

a function from InputSeq to OutputSeq



�10

EECS 124, UC Berkeley: 19

Trace

A trace of a FSM is an infinite sequence of triples 

(i0, s0, o0), (i1, s1, o1), (i2, s2, o2), …

where  update(sj, ij) = (sj+1, oj)

Also written as:

Sometimes we are only interested in the “observable”

trace of the system, which includes only input & output 

symbols    (i0, o0), (i1, o1), (i2, o2), …

�Note: as above, the trace represents a single system 
behavior

s0 s1 s2 s3 ….
i0 / o0 i1 / o1 i2 / o2
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Example: a Counter

Suppose the count starts with 0

Trace is

(1,0,0), (0,1,1), (0,1,1), (0,1,1), (1, 2, 0), (1, 3, 1), ….

Count mod 10
X

…0110110001
Y

(parity of count)
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Example 2:

Give an example trace for the iRobot modal model on 

slide 15
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Modeling the iRobot’s environment

L level=true

NL45 level=false, 45o offset

NL90    level=false, 90o offset
Self loops on: rotate=false

Is this model deterministic?



�12

EECS 124, UC Berkeley: 23

Non-determinism

guard1

guard2
guard1 ∩ guard2 ≠ ∅

More than one transition possible on an input symbol

For the iRobot environment:                                                   

non-determinism in transition from initial state
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More non-determinism in iRobot’s environment

Self loops on rotate=false

How will the FSM change if we want to model this:

Lifting up the robot at any step and placing it 

with a different orientation
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Uses of non-determinism

1. Modeling unknown aspects of the environment or 

system

� Such as: how the environment changes the iRobot’s

orientation

2. Hiding detail in a specification of the system

� We will see an example of this later (see notes to be 

posted)

Any other reasons why non-deterministic FSMs might be 

better than deterministic FSMs?
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Size Matters

Non-deterministic FSMs are more compact than 

deterministic FSMs

� ND FSM � D FSM: Exponential blow-up in #states in 
worst case
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Non-deterministic Behavior: Tree of Computations

For a fixed input sequence:

� A deterministic system exhibits a single behavior

� A non-deterministic system exhibits a set of behaviors

� visualized as a computation tree

. . .

. . .

. . .

. . .

. . .

Deterministic FSM behavior:

Non-deterministic FSM behavior:
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Non-determinism: Formal Definition

A non-deterministic state machine is a tuple:                                            

(States, Inputs, Outputs, possibleUpdates, initialStates)

where

States = set of states/modes of the system

Inputs = set of input symbols

Outputs = set of output symbols

possibleUpdates: States ×××× Inputs ���� 2States ×××× Outputs

� also termed as “transition relation”

initialStates = the starting states/modes of the system
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Related points

What does receptiveness mean for non-deterministic 

state machines?

Non-deterministic ≠ Probabilistic

EECS 124, UC Berkeley: 30

Representing a state machine

1. Pictorial notation

2. Table representing transition relation

3. Functional notation

When would you use each representation?


