Introduction to

Y =l

; Embedded Systems
1'1_%“1 Edward A. Lee & Sanjit A. Seshia
UC Berkeley
EECS 124
Spring 2008

Copyright © 2008, Edward A. Lee & Sanjit A. Seshia, All rights reserved

Lecture 6: Modeling Modal Behavior, Part |

Roadmap for course (until spring break):
Modeling, Analysis, and Control

What goes into “CAD tools” for embedded systems?

Modeling

Feb 11, 13: “Pure” Modal Modeling (finite-state machines)
Feb 20: Concurrency

Feb 25, 27: Hybrid Systems (modeling discrete +
continuous behavior)
EECS 124, UC Berkeley: 2

o

Roadmap for course (until spring break)

Analysis and Control

Analysis: Does my model satisfy its specification?
Mar 3, 5: Techniques to simulate discrete/continous/hybrid

models
Mar 10, 12: Exhaustive state-space exploratio

n

techniques, reachability analysis, model checking

Control: Synthesizing a strategy to achieve a goal
Mar 17, 19: Controller synthesis for hybrid systems

EECS

124, UC Berkeley: 3

Modal Model (Finite-State Machine) for
Engine Control
[ShutdownComplete==t¥EbutdownToOfnit=1

Off o Shutdown/
= entry. Engine_State=EngOFF,

are==|gn_ON}/ShutdownTaOnlhit=1

entry:Engine_State=SHUTDOWN,
during: PwrOfiToDowninit=0;

PurdownTimeExpired==1).

FarOfToDownlnit=1

Ot DﬁTnOnlnéﬂ

PwrOfiDetay/

entry: Engine_State=KEYON; |lgnitian_State==lgn_OFF jKeyOnToPwrOfinit=
during:KeyOnlnit=0; - -
ShutdownTo Onbnit=0;
Py OfiToOnlinit=0,

{lgnition_State==lgn_0OFF|/Sta Pwmm!=1

Stall
1 entry:Engine_State=STALL;
during: CrankToStallinit=0;

umThrsh)y==1]..

it=1
" [CrankToStaliMetiFFM,
K0S _n_EngFamTheshy==1]. .
{CrankToStallinit=1

Crank/
entry: Engine_Stale=CRANK
1 during KeyOnToCrankini=0,
CrankToStallinit=0; i
StallTaCrankinit=0;

entry Engina_State=PWROFF,
duting: RunToPwrOfMnit=C;
StallToPwa Offlnit=0,
H KeyOnTaPwrOffinit=(;

[ignition_State==ign_OFF RunToPprOfilnit=1

[CrankToRun==1}/CrankTeR

Source:
Delphi Automotive Systems (2001)

CCUO

entry: Engine_State=EngRUN;
during: Crank ToRuninit=0;

124, UL Deikeley: 4

([Y2

Elements of a Modal Model (FSM)

initial state

[EhutdownCamplete=—=AEhutdowmTo Offnit=1

Shutdown/
entry:Engine_State=SHUTDOWN,
during PwrOfiToDowninit=0,;

[lgnition_Sta
[lgnition_Stare==lgn_ONJK aeyerinit=1

gfition_Siate==Ign_T

E==Ign_ON)/ShutdownToOnlnit=1

PurdownTimeExpired==1).

5 FearOfTaDownlnit=1
Ot OfToOnlnit=1

PwrOfiDetay/
entry Engina_State=PWROFF,
KeyOn/ duting: RunToPwrOffnit=0;
entry: Engine_State=KEYON, | ignition_State==lgn_OFF pikeyOnToPwrOfinit=) StallToPwrOfnit=0;
during:KeyOninit=0; - - | KeyOnToPwrOfini=0;
ShufdownToCnlnit=0;

state ParCiTaCninit=; lanition_State==lgn_OFF|/StalTAPwOfinit=1 .
Stall InPUt
=1 entry:Engine_State=STALL,
during: CrankToStalllnit=0;
¢ output
KAADS_n_EngP

{CrankToBtallini=
transition ———
[ignition_State==ign_OFF /RunToPprOffinit=1

entry: Engine_State=CRANK;

= during: KeyOnToCrankinit=0;
CrankToStallinit=0; = T rankhet(RPM,

StallToCrankinit=0, Rbs

[CrankToRun==1)/CrankTeR entry: Engine_State=EngRUN;

Source: during:CrankToRuninit=0;

Delphi Automotive Systems (2001)

CCUD 124, UL DEIKEIEY! 5

Topic: Modeling with Finite-State Machines
(FSMs)

Suppose that our only modeling formalism is the
Finite-State Machine

Four questions:
1. How to represent the system for:
Mathematical analysis
So that a computer program can manipulate it
2. How to model its environment?
3. How to represent what the system MUST do — its
specification?

4. How to check whether the system satisfies its
specification in its operating environment?

EECS 124, UC Berkeley: 6

Example: Discretized iRobot Hill Climber

EECS 124, UC Berkeley: 7

Main Concepts in this Lecture

Q1: System representation
o Finite-state machine — syntax and semantics
o Behavior/trace on infinite inputs
Q2 & 3: Environment modeling/specification
o Non-determinism
Abstraction in modeling
Q4: Comparing state machines

o Simulation, bisimulation, trace equivalence and trace
containment

How do we know whether implementation does what the
specification states?

EECS 124, UC Berkeley: 8

o4

State Machines: Formal Definition

A state machine is a tuple:
(States, Inputs, Outputs, update, initialState)

where

States = set of states/modes of the system

Inputs = set of input symbols

Outputs = set of output symbols

update: States x Inputs - States x Outputs
called “transition function” or “update function”

initialState = the starting state/mode of the system
denoted by incoming arrow or special “init” label

EECS 124, UC Berkeley: 9

Finite State Machines

The definition on the previous slide is general — the state
machine could have infinitely many states

We will restrict ourselves to a finite set of states, in this
and the next lecture

EECS 124, UC Berkeley: 10

o5

FSM Steps and Signals

Each time a transition occurs, the FSM takes a step

(note: time need not advance)
StepNumbers ={0,1,2, ...} =N

A signal is a function mapping N to symbols

Input, output, and control (state-holding) signals

We will restrict attention to “pure” signals
Signal models presence/absence of an event

An input/output symbol is an element of
{present, absent}" (assuming n input/output signals)

EECS 124, UC Berkeley: 11

Example: Discretized iRobot Hill Climber

EECS 124, UC Berkeley: 12

o6

The Input/Output Interface of the iRobot

Controller

level
Sensors| —

Signal that is present

rotate

Controller Actuators

—

drive_one_sq

What it means

level
rotate
drive_one_sq

Robot is facing the right way up/down hill
Robot rotates by 45° clockwise

Robot drives to neighboring square
EECS 124, UC Berkeley: 13

FSM Controller for iRobot

guard: true

output: drive_one_sg=false;

rotate=false

guard: !level
output: drive_one_sg=false;
rotate=true

guard: level
output: drive_one_sq=true;
rotate=false

States = {init, tilt, drive} Inputs =? Outputs = ?
update = ? Any transitions missing?

EECS 124, UC Berkeley: 14

FSM Controller for iRobot (version 2)

Also need to specify “else guard: llevel

arcs for tilt and drive output: drive_one_sq=false;
rotate=true

guard: true
output: drive_one_sq=false;

rotate=false guard: level

output: drive_one_sq=true;
rotate=false

Will this robot always drive uphill?

(assume that it starts facing uphill)
EECS 124, UC Berkeley: 15

Properties of FSMs: Determinacy

o An FSM is deterministic if

Different transitions out of a state do not have overlapping
guards

guard1

- guard1 N guard2 = ()
guar

Is the iRobot FSM (prev. slide) deterministic?

Note: A guard is a subset of Inputs

EECS 124, UC Berkeley: 16

o3

Properties of FSMs: Receptiveness

o An FSM is receptive if
It has a transition defined for every input symbol from
every state

guard,

U, guard, = Inputs

guard,

Is the iRobot FSM receptive?

EECS 124, UC Berkeley: 17

Behavior of a FSM

How do we model the input-output behavior of an FSM?
Let
InputSeq = set of infinite sequences of input symbols

OutputSeq = set of infinite sequences of output symbols

Then, the behavior of an FSM is
a function from InputSeq to OutputSeq

EECS 124, UC Berkeley: 18

o9

Trace

A trace of a FSM is an infinite sequence of triples

(iOs SOJ OO)J (i1s S1s 01)! (i2’ SZ’ 02)’
where update(s;, i) = (s;,1, 0)

Also written as:

in/ O i,/0 i,/ 0

Sy

Sometimes we are only interested in the “observable”
trace of the system, which includes only input & output
symbols (iy, 0g), (i1, 04), (ins O5), ...

Note: as above, the trace represents a single system

behavior
EECS 124, UC Berkeley: 19

Example: a Counter

X
...0110110001

Count mod 10

Y
(parity of count)

Suppose the count starts with 0

Trace is
(1,0,0), (0,1,1), (0,1,1), (0,1,1), (1,2, 0), (1, 3, 1),

EECS 124, UC Berkeley: 20

e10

Example 2:

Give an example trace for the iRobot modal model on
slide 15

EECS 124, UC Berkeley: 21

Modeling the iRobot’s environment

guard; true
output: level=true

guard: true
output: level=false

guard: rotate
output: level=true

guard: rotate
output: level=false

guard: rotate

guard: rotate
output: level=false

output: level=false

Is this model deterministic?
L level=true

NL45 level=false, 45° offset

Self loops on: rotate=false
NL90 level=false, 90° offset P

EECS 124, UC Berkeley: 22

o1

Non-determinism

guard1

- guard1 N guard2 =
guar

More than one transition possible on an input symbol

For the iRobot environment:
non-determinism in transition from initial state

EECS 124, UC Berkeley: 23

More non-determinism in iRobot’s environment

guard: true
output: level=true

guard: true
output: level=false

guard: rotate
output: level=true

guard: rotate
output: level=false

guard: rotate

guard: rotate
output: level=false

output: level=false

Self loops on rotate=false
How will the FSM change if we want to model this:
Lifting up the robot at any step and placing it

with a different orientation
EECS 124, UC Berkeley: 24

e12

Uses of non-determinism

1. Modeling unknown aspects of the environment or
system
Such as: how the environment changes the iRobot’s
orientation
2. Hiding detail in a specification of the system
We will see an example of this later (see notes to be
posted)

Any other reasons why non-deterministic FSMs might be
better than deterministic FSMs?

EECS 124, UC Berkeley: 25

Size Matters

Non-deterministic FSMs are more compact than
deterministic FSMs

ND FSM - D FSM: Exponential blow-up in #states in
worst case

EECS 124, UC Berkeley: 26

e13

Non-deterministic Behavior: Tree of Computations

For a fixed input sequence:

o A deterministic system exhibits a single behavior

o A non-deterministic system exhibits a set of behaviors
visualized as a computation tree

Deterministic FSM behavior:
o > @ > @ > @ > @ > =

Non-deterministic FSM behavior:

./. > @ > O > O > = = =
\./o > ® > = m
\./._>lll
\._>

" EECS 124, UC Berkeley: 27

Non-determinism: Formal Definition

A non-deterministic state machine is a tuple:
(States, Inputs, Outputs, possibleUpdates, initialStates)

where
States = set of states/modes of the system
Inputs = set of input symbols
Outputs = set of output symbols
possibleUpdates: States x Inputs - 2States x Outputs
also termed as “transition relation”
initialStates = the starting states/modes of the system

EECS 124, UC Berkeley: 28

ol4d

Related points

What does receptiveness mean for non-deterministic
state machines?

Non-deterministic # Probabilistic

EECS 124, UC Berkeley: 29

Representing a state machine

1. Pictorial notation
2. Table representing transition relation
3. Functional notation

When would you use each representation?

EECS 124, UC Berkeley: 30

e15

