
Chapter 11

Sampling and Reconstruction

Digital hardware, including computers, take actions in discrete steps. So they can deal with discrete-
time signals, but they cannot directly handle the continuous-time signals that are prevalent in the
physical world. This chapter is about the interface between these two worlds, one continuous, the
other discrete. A discrete-time signal is constructed by sampling a continuous-time signal, and a
continuous-time signal is reconstructed by interpolating a discrete-time signal.

11.1 Sampling

A sampler for complex-valued signals is a system

SamplerT : [Reals→ Complex]→ [Integers→ Complex], (11.1)

where T is the sampling interval (it has units of seconds/sample). The system is depicted in
figure 11.1. The sampling frequency or sample rate is fs = 1/T , in units of samples/second (or
sometimes, Hertz), or ωs = 2π/T , in units radians/second. If y = SamplerT (x) then y is defined by

∀ n ∈ Integers, y(n) = x(nT ). (11.2)

11.1.1 Sampling a sinusoid

Let x:Reals→ Reals be the sinusoidal signal

∀ t ∈ Reals, x(t) = cos(2π f t), (11.3)

y: Integers → Complexx: Reals → Complex
SamplerT

Figure 11.1: Sampler.
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Basics: Units

Recall that frequency can be given with any of various units. The units of the f
in (11.3) and (11.4) are Hertz, or cycles/second. In (11.3), it is sensible to give
the frequency as ω = 2π f , which has units of radians/second. The constant 2π has
units of radians/cycle, so the units work out. Moreover, the time argument t has
units of seconds, so the argument to the cosine function, 2π f t, has units of radians,
as expected.

In the discrete time case (11.4), it is sensible to give the frequency as 2π f T , which
has units of radians/sample. The sampling interval T has units of seconds/sample,
so again the units work out. Moreover, the integer n has units of samples, so again
the argument to the cosine function, 2π f nT , has units of radians, as expected.

In general, when discussing continuous-time signals and their sampled discrete-
time signals, it is important to be careful and consistent in the units used, or con-
siderable confusion can result. Many texts talk about normalized frequency when
discussing discrete-time signals, by which they simply mean frequency in units of
radians/sample. This is normalized in the sense that it does not depend on the
sampling interval.

where f is the frequency of the sinewave in Hertz. Let y = SamplerT (x). Then

∀ n ∈ Integers, y(n) = cos(2π f nT ). (11.4)

Although this looks similar to the continuous-time sinusoid, there is a fundamental difference. Be-
cause the index n is discrete, it turns out that the frequency f is indistinguishable from frequency
f + fs when looking at the discrete-time signal. This phenomenon is called aliasing.

11.1.2 Aliasing

Consider another sinusoidal signal u given by

∀ t ∈ Reals, u(t) = cos(2π( f +N fs)t),

where N is some integer and fs = 1/T . If N 6= 0, then this signal is clearly different from x in (11.3).
Let

w = SamplerT (u).

Then for all n ∈ Integers,

w(n) = cos(2π( f +N fs)nT ) = cos(2π f nT +2πNn) = cos(2π f nT ) = y(n),

because Nn is an integer. Thus, even though u 6= x, SamplerT (u) = SamplerT (x). Thus, after being
sampled, the signals x and u are indistinguishable. This phenomenon is called aliasing, presumably
because it implies that any discrete-time sinusoidal signal has many continuous-time identities (its
“identity” is presumably its frequency).
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Example 11.1: A typical sample rate for voice signals is fs = 8000 samples/second,
so the sampling interval is T = 0.125 msec/sample. A continuous-time sinusoid with
frequency 440 Hz, when sampled at this rate, is indistinguishable from a continuous-
time sinusoid with frequency 8,440 Hz, when sampled at this same rate.

Example 11.2: Compact discs are created by sampling audio signals at fs = 44,100
Hz, so the sampling interval is about T = 22.7 µsec/sample. A continuous-time si-
nusoid with frequency 440 Hz, when sampled at this rate, is indistinguishable from a
continuous-time sinusoid with frequency 44,540 Hz, when sampled at this same rate.

The frequency domain analysis of the previous chapters relied heavily on complex exponential
signals. Recall that a cosine can be given as a sum of two complex exponentials, using Euler’s
relation,

cos(2π f t) = 0.5(ei2π f t + e−i2π f t).

One of the complex exponentials is at frequency f , an the other is at frequency − f . Complex
exponential exhibit the same aliasing behavior that we have illustrated for sinusoids.

Let x:Reals→ Complex be

∀ t ∈ Reals, x(t) = ei2π f t

where f is the frequency in Hertz. Let y = SamplerT (x). Then for all n in Integers,

y(n) = ei2π f nT

Consider another complex exponential signal u,

u(t) = ei2π( f +N fs)t

where N is some integer. Let

w = SamplerT (u).

Then for all n ∈ Integers,

w(n) = ei2π( f +N fs)nT = ei2π f nT ei2πN fsnT = ei2π f nT = y(n),

because ei2πN fsnT = 1. Thus, as with sinusoids, when we sample a complex exponential signal with
frequency f at sample rate fs, it is indistinguishable from one at frequency f + fs (or f + N fs for
any integer N).

There is considerably more to this story. Mathematically, aliasing relates to the periodicity of the
frequency domain representation (the DTFT) of a discrete-time signal. We will also see that the ef-
fects of aliasing on real-valued signals (like the cosine, but unlike the complex exponential) depend
strongly on the conjugate symmetry of the DTFT as well.
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Figure 11.2: As the frequency of a continuous signal increases beyond the
Nyquist frequency, the perceived pitch starts to drop.

11.1.3 Perceived pitch experiment

Consider the following experiment.1 Generate a discrete-time audio signal with an 8,000 sam-
ples/second sample rate according to the formula (11.4). Let the frequency f begin at 0 Hz and
sweep upwards through 4 kHz to (at least) 8 kHz. Use the audio output of a computer to listen to
the resulting sound. The result is illustrated in figure 11.2. As the frequency of the continuous-time
sinusoid rises, so does the perceived pitch, until the frequency reaches 4 kHz. At that point, the
perceived pitch begins to fall rather than rise, even as the frequency of the continuous-time sinusoid
continues to rise. It will fall until the frequency reaches 8 kHz, at which point no sound is heard at
all (the perceived pitch is 0 Hz). Then the perceived pitch begins to rise again.

That the perceived pitch rises from 0 after the frequency f rises above 8000 Hz is not surprising. We
have already determined that in a discrete-time signal, a frequency of f is indistinguishable from a
frequency f +8000, assuming the sample rate is 8,000 samples/second. But why does the perceived
pitch drop when f rises above 4 kHz?

The frequency 4 kHz, fs/2, is called the Nyquist frequency, after Harry Nyquist, an engineer at
Bell Labs who, in the 1920s and 1930s, laid much of the groundwork for digital transmission of
information. The Nyquist frequency turns out to be a key threshold in the relationship between
discrete-time and continuous-time signals, more important even than the sampling frequency. In-
tuitively, this is because if we sample a sinusoid with a frequency below the Nyquist frequency
(below half the sampling frequency), then we take at least two samples per cycle of the sinusoid. It
should be intuitively appealing that taking at least two samples per cycle of a sinusoid has some key

1This experiment can be performed at http://www.eecs.berkeley.edu/ẽal/eecs20/week13/aliasing.html. Similar exper-
iments are carried out in lab C.11.
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Figure 11.3: A sinusoid at 7.56 kHz and samples taken at 8 kHz.

significance. The two sample minimum allows the samples to capture the oscillatory nature of the
sinusoid. Fewer than two samples would not do this. However, what happens when fewer than two
samples are taken per cycle is not necessarily intuitive. It turns out that the sinusoid masquerades
as one of another frequency.

Consider the situation when the frequency f of a continuous-time sinusoid is 7,560 Hz. Figure 11.3
shows 4.5 msec of the continuous-time waveform, together with samples taken at 8 kHz. Notice
that the samples trace out another sinusoid. We can determine the frequency of that sinusoid with
the help of figure 11.2, which suggests that the perceived pitch will be 8000−7560 = 440 Hz (the
slope of the perceived pitch line is −1 in this region). Indeed, if we listen to the sampled sinusoid,
it will be an A-440.

Recall that a cosine can be given as a sum of complex exponentials with frequencies that are nega-
tives of one another. Recall further that a complex exponential with frequency f is indistinguishable
from one with frequency f +N fs, for any integer N. A variant of figure 11.2 that leverages this rep-
resentation is given in figure 11.4.

In figure 11.4, as we sweep the frequency of the continuous-time signal from 0 to 8 kHz, we move
from left to right in the figure. The sinusoid consists not only of the rising frequency shown by the
dotted line in figure 11.2, but also of a corresponding falling (negative) frequency as shown in figure
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Figure 11.4: As the frequency of a continuous signal increases beyond the
Nyquist frequency, the perceived pitch starts to drop because the frequency
of the reconstructed continuous-time audio signal stays in the range − fs/2
to fs/2.
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11.4. Moreover, these two frequencies are indistinguishable, after sampling, from frequencies that
are 8 kHz higher or lower, also shown by dotted lines in figure 11.4.

When the discrete-time signal is converted to a continuous-time audio signal, the hardware perform-
ing this conversion can choose any matching pair of positive and negative frequencies. By far the
most common choice is to select the matching pair with lowest frequency, shown in figure 11.4 by
the solid lines behind dotted lines. These result in a sinusoid with frequency between 0 and the
Nyquist frequency, fs/2. This is why the perceived pitch falls after sweeping past fs/2 = 4 kHz.

Recall that the frequency-domain representation (i.e. the DTFT) of a discrete-time signal is periodic
with period 2π radians/sample. That is, if X is a DTFT, then

∀ ω ∈ Reals, X(ω) = X(ω+2π).

In radians per second, it is periodic with period 2π fs. In Hertz, it is periodic with period fs, the
sampling frequency. Thus, in figure 11.4, the dotted lines represent this periodicity. This periodicity
is another way of stating that frequencies separated by fs are indistinguishable.

11.1.4 Avoiding aliasing ambiguities

Figure 11.4 suggests that even though a discrete-time signal has ambiguous frequency content, it is
possible to construct a uniquely defined continuous-time signal from the discrete-time waveform by
choosing the one unique frequency for each component that is closest to zero. This will always result
in a reconstructed signal that contains only frequencies between zero and the Nyquist frequency.

Correspondingly, this suggests that when sampling a continuous-time signal, if that signal contains
only frequencies below the Nyquist frequency, then this reconstruction strategy will perfectly re-
cover the signal. This is an intuitive statement of the Nyquist-Shannon sampling theorem.

If a continuous-time signal contains only frequencies below the Nyquist frequency fs/2, then it can
be perfectly reconstructed from samples taken at sampling frequency fs. This suggests that prior to
sampling, it is reasonable to filter a signal to remove components with frequencies above fs/2. A
filter that realizes this is called an anti-aliasing filter.

Example 11.3: In the telephone network, speech is sampled at 8000 samples per
second before being digitized. Prior to this sampling, the speech signal is lowpass
filtered to remove frequency components above 4000 Hz. This lowpass filtered speech
can then be perfectly reconstructed at the far end of the telephone connection, which
receives a stream of samples at 8000 sample per second.

Before probing this further, let us examine in more detail what we mean by reconstruction.

11.2 Reconstruction

Consider a system that constructs a continuous-time signal x from a discrete-time signal y,

DiscToContT :DiscSignals→ ContSignals.
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Probing further: Anti-Aliasing for Fonts

When rendering characters on a computer screen, it is common to use anti-aliasing
to make the characters look better. Consider the two figures below:

At the left is an image of the Greek letter omega. At the right is the result of
sampling that rendition by taking only one pixel out of every 100 pixels in the
original (every 10-th pixel horizontally and vertically), and then rescaling the image
so it has the same size as the one on the left. The original image is discrete, and the
resulting image is a smaller discrete image (this process is known as subsampling).
Rendered with normal-sized pixels the character on the right looks like this:

To the discerning eye, this can be improved considerably. The problem is that the
character at the upper left above has hard edges, and hence high (spatial) frequen-
cies. Those high frequencies result in aliasing distortion when subsampling. To
improve the result, we first lowpass filter the character (blurring it), and then sub-
sample, as shown below:

The result looks better to the discerning eye:
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y: Integers → Complex x: Reals → Complex
DiscToContT

Figure 11.5: Discrete to continuous converter.

This is illustrated in figure 11.5. Systems that carry out such ‘discrete-to-continuous’ conversion
can be realized in any number of ways. Some common examples are illustrated in figure 11.6, and
defined below:

• zero-order hold: This means simply that the value of the each sample y(n) is held constant
for duration T , so that x(t) = y(n) for the time interval from t = nT to t = (n + 1)T , as
illustrated in figure 11.6(b). Let this system be denoted

ZeroOrderHoldT :DiscSignals→ ContSignals.

• linear interpolation: Intuitively, this means simply that we connect the dots with straight
lines. Specifically, in the time interval from t = nT to t = (n+1)T , x(t) has values that vary
along a straight line from y(n) to y(n+1), as illustrated in figure 11.6(c). Linear interpolation
is sometimes called first-order hold. Let this system be denoted

LinearInterpolatorT :DiscSignals→ ContSignals.

• ideal interpolation: It is not yet clear what this should mean, but intuitively, it should result
in a smooth curve that passes through the samples, as illustrated in figure 11.6(d). We will
give a precise meaning below. Let this system be denoted

IdealInterpolatorT :DiscSignals→ ContSignals.

11.2.1 A model for reconstruction

A convenient mathematical model for reconstruction divides the reconstruction process into a cas-
cade of two systems, as shown in figure 11.7. Thus

x = S(ImpulseGenT (y)),

where S is an LTI system to be determined. The first of these two subsystems,

ImpulseGenT :DiscSignals→ ContSignals,
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Figure 11.6: A discrete-time signal (a), a continuous-time reconstruction
using zero-order hold (b), a reconstruction using linear interpolation (c),
a reconstruction using ideal interpolation (d), and a reconstruction using
weighted Dirac delta functions (e).

y: Integers → Complex x: Reals → Complex
DiscToContT

y: Integers → Complex
ImpulseGenT LTI System S

w: Reals → Complex
x: Reals → Complex

Figure 11.7: A model for reconstruction divides it into two stages.
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Figure 11.8: The impulse responses for the LTI system S in figure 11.7 that
yield the interpolation methods in figure 11.6(b-e).

constructs a continuous-time signal, where for all t ∈ Reals,

w(t) =
∞

∑
k=−∞

y(k)δ(t− kT ).

This is a continuous-time signal that at each sampling instant kT produces a Dirac delta function
with weight equal to the sample value, y(k). This signal is illustrated in figure 11.6(e). It is a
mathematical abstraction, since everyday engineering systems do not exhibit the singularity-like
behavior of the Dirac delta function. Nonetheless, it is a useful mathematical abstraction.

The second system in figure 11.7, S, is a continuous-time LTI filter with an impulse response that
determines the interpolation method. The impulse responses that yield the interpolation methods in
figure 11.6(b-e) are shown in figure 11.8(b-e). If

∀ t ∈ Reals, h(t) =
{

1 0≤ t < T
0 otherwise

then the interpolation method is zero-order hold. If

∀ t ∈ Reals, h(t) =





1+ t/T −T < t < 0
1− t/T 0≤ t < T

0 otherwise
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then the interpolation method is linear. If the impulse response is

∀ t ∈ Reals, h(t) =
sin(πt/T )

πt/T

then the interpolation method is ideal. The above impulse response is called a sinc function, and its
Fourier transform, from table 10.4, is given by

∀ ω ∈ Reals, X(ω) =
{

T if |ω| ≤ π/T
0 otherwise

Notice that the Fourier transform is zero at all frequencies above π/T radians/second, or fs/2 Hz,
the Nyquist frequency. It is this characteristic that makes it ideal. It precisely performs the strategy
illustrated in figure 11.4, where among all indistinguishable frequencies we select the ones between
− fs/2 and fs/2.

If we let SincT denote the LTI system S when the impulse response is a sinc function, then

IdealInterpolatorT = SincT ◦ ImpulseGenT .

In practice, ideal interpolation is difficult to accomplish. From the expression for the sinc function
we can understand why. First, this impulse response is not causal. Second, it is infinite in extent.
More importantly, its magnitude decreases rather slowly as t increases or decreases (proportional to
1/t only). Thus, truncating it at finite length leads to substantial errors.

If the impulse response of S is
h(t) = δ(t),

where δ is the Dirac delta function, then the system S is a pass-through system, and the reconstruc-
tion consists of weighted delta functions.

11.3 The Nyquist-Shannon sampling theorem

We can now give a precise statement of the Nyquist-Shannon sampling theorem:

If x is a continuous-time signal with Fourier transform X and if X(ω) is zero outside
the range −π/T < ω < π/T radians/second, then

x = IdealInterpolatorT (SamplerT (x)).

We can state this theorem slightly differently. Suppose x is a continuous-time signal with no fre-
quency larger than some f0 Hertz. Then x can be recovered from its samples if f0 < fs/2, the
Nyquist frequency.
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Probing further: Sampling

We can construct a mathematical model for sampling by using Dirac delta func-
tions. Define a pulse stream by

∀ t ∈ Reals, p(t) =
∞

∑
k=−∞

δ(t− kT ).

Consider a continuous-time signal x that we wish to sample with sampling period
T . That is, we define y(n) = x(nT ). Construct first an intermediate continuous-time
signal w(t) = x(t)p(t). We can show that the CTFT of w is equal to the DTFT of y.
This gives us a way to relate the CTFT of x to the DTFT of its samples y. Recall that
multiplication in the time domain results in convolution in the frequency domain
(see table 10.9), so

W (ω) =
1

2π
X(ω)∗P(ω) =

1
2π

∞Z
−∞

X(Ω)P(ω−Ω)dΩ.

It can be shown (see box on page 386 that the CTFT of p(t) is

P(ω) =
2π
T

∞

∑
k=−∞

δ(ω− k
2π
T

),

so

W (ω) =
1

2π

∞Z
−∞

X(Ω)
2π
T

∞

∑
k=−∞

δ(ω−Ω− k
2π
T

)dΩ

=
1
T

∞

∑
k=−∞

∞Z
−∞

X(Ω)δ(ω−Ω− k
2π
T

)dΩ

=
1
T

∞

∑
k=−∞

X(ω− k
2π
T

)

where the last equality follows from the sifting property (9.11). The next step is to
show that

Y (ω) = W (ω/T ).

We leave this as an exercise. From this, the basic Nyquist-Shannon result follows,

Y (ω) =
1
T

∞

∑
k=−∞

X
(

ω−2πk
T

)
.

This relates the CTFT X of the signal being sampled x to the DTFT Y of the
discrete-time result y.
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Probing further: Impulse Trains

Consider a signal p consisting of periodically repeated Dirac delta functions with
period T ,

∀ t ∈ Reals, p(t) =
∞

∑
k=−∞

δ(t− kT ).

This signal has the Fourier series expansion

∀ t ∈ Reals, p(t) =
∞

∑
m=−∞

1
T

eiω0mt ,

where the fundamental frequency is ω0 = 2π/T . This can be verified by applying
the formula from table 10.5. That formula, however, gives an integration range
of 0 to the period, which in this case is T . This integral covers one period of the
periodic signal, but starts and ends on a delta function in p. To avoid the resultant
mathematical subtleties, we can integrate from−T/2 to T/2, getting Fourier series
coefficients

∀ m ∈ Integers, Pm =
1
T

T/2Z
−T/2

[
∞

∑
k=−∞

δ(t− kT )

]
eiω0mtdt.

The integral is now over a range that includes only one of the delta functions.
The kernel of the integral is zero except when t = 0, so by the sifting rule, the
integral evaluates to 1. Thus, all Fourier series coefficients are Pm = 1/T . Using
the relationship between the Fourier series and the Fourier Transform of a periodic
signal (from section 10.6.3), we can write the continuous-time Fourier transform of
p as

∀ ω ∈ Reals, P(ω) =
2π
T

∞

∑
k=−∞

δ
(

ω− 2π
T

k
)

.
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Figure 11.9: Steps in the justification of the Nyquist-Shannon sampling the-
orem.
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Figure 11.10: Relationship between the CTFT of a continuous-time signal
and the DTFT of its discrete-time samples. The DTFT is the sum of the
CTFT and its copies shifted by multiples of 2π/T , the sampling frequency in
radians per second. The frequency axis is also normalized.

A formal proof of this theorem involves some technical difficulties (it was first given by Claude
Shannon of Bell Labs in the late 1940s). But we can get the idea from the following three-step
argument (see figure 11.9).

Step 1. Let x be a continuous-time signal with Fourier transform X . At this point we do not require
that X(ω) be zero outside the range −π/T < ω < π/T . We sample x with sampling interval T to
get the discrete-time signal

y = SamplerT (x).

It can be shown (see box on page 385 ) that the DTFT of y is related to the CTFT of x by

Y (ω) = 1
T

∞
∑

k=−∞
X

(ω
T − 2πk

T

)
.

This important relation says that the DTFT Y of y is the sum of the CTFT X with copies of it shifted
by multiples of 2π/T . Also, the frequency axis is normalized by dividing ω by T . There are two
cases to consider, depending on whether the shifted copies overlap.

First, if X(ω) = 0 outside the range −π/T < ω < π/T , then the copies will not overlap, and in the
range −π < ω < π,

Y (ω) =
1
T

X
(ω

T

)
. (11.5)

In this range of frequencies, Y has the same shape as X , scaled by 1/T . This relationship between
X and Y is illustrated in figure 11.10, where X is drawn with a triangular shape.

In the second case, illustrated in figure 11.11, X does have non-zero frequency components higher
than π/T . Notice that in the sampled signal, the frequencies in the vicinity of π are distorted by the
overlapping of frequency components above and below π/T in the original signal. This distortion
is called aliasing distortion.
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Figure 11.11: Relationship between the CTFT of a continuous-time signal
and the DTFT of its discrete-time samples when the continuous-time signal
has a broad enough bandwidth to introduce aliasing distortion.

We continue with the remaining steps, following the signals in figure 11.9.

Step 2. Let w be the signal produced by the impulse generator,

∀ t ∈ Reals, w(t) =
∞

∑
n=−∞

y(n)δ(t−nT ).

The Fourier Transform of w is W (ω) = Y (ωT ) (see box on page 385).

Step 3. Let z be the output of the IdealInterpolatorT . Its Fourier transform is simply

Z(ω) = W (ω)S(ω)
= Y (ωT )S(ω),

where S(ω) is the frequency response of the reconstruction filter IdealInterpolatorT . As seen in
exercise 21 of chapter 10,

S(ω) =
{

T −π/T < ω < π/T
0 otherwise

(11.6)

Substituting for S and Y , we get

Z(ω) =
{

TY (ωT ) −π/T < ω < π/T
0 otherwise

=





∞
∑

k=−∞
X(ω−2πk/T ) −π/T < ω < π/T

0 otherwise

If X(ω) is zero for |ω| larger than the Nyquist frequency π/T , then we conclude that

∀ ω ∈ Reals, Z(ω) = X(ω).
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That is, w is identical to x. This proves the Nyquist-Shannon result.

However, if X(ω) does have non-zero values for some |ω| larger than the Nyquist frequency, then z
will be different from x, as illustrated in figure 11.11.

11.4 Summary

The acts of sampling and reconstructing a continuous-time signal bridge the continuous-time world
with the discrete computational world. The periodicity of frequencies in the discrete world implies
that for each discrete-time sinusoidal signal, there are multiple corresponding discrete-time fre-
quencies. These frequencies are aliases of one another. When a signal is sampled, these frequencies
become indistinguishable, and aliasing distortion may result. The Nyquist-Shannon sampling theo-
rem gives a simple condition under which aliasing distortion is avoided. Specifically, if the signal
contains no sinusoidal components with frequencies higher than half the sampling frequency, then
there will be no aliasing distortion. Half the sampling frequency is called the Nyquist frequency
because of this key result.

Exercises

Each problem is annotated with the letter E, T, C which stands for exercise, requires some thought,
requires some conceptualization. Problems labeled E are usually mechanical, those labeled T re-
quire a plan of attack, those labeled C usually have more than one defensible answer.

1. E Consider the continuous-time signal

x(t) = cos(10πt)+ cos(20πt)+ cos(30πt).

(a) Find the fundamental frequency. Give the units.

(b) Find the Fourier series coefficients A0,A1, · · · and φ1,φ2, · · ·.
(c) Let y be the result of sampling this signal with sampling frequency 10 Hz. Find the

fundamental frequency for y, and give the units.

(d) For the same y, find the discrete-time Fourier series coefficients, A0,A1, · · · and φ1, · · ·.
(e) Find

w = IdealInterpolatorT (SamplerT (x))

for T = 0.1 seconds.

(f) Is there any aliasing distortion caused by sampling at 10 Hz? If there is, describe the
aliasing distortion in words.

(g) Give the smallest sampling frequency that avoids aliasing distortion.

2. E Verify that SamplerT defined by (11.1) and (11.2) is linear but not time invariant.
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3. E A real-valued sinusoidal signal with a negative frequency is always exactly equal to another
sinusoid with positive frequency. Consider a real-valued sinusoid with a negative frequency
−440 Hz,

y(n) = cos(−2π440nT +φ).

Find a positive frequency f and phase θ such that

y(n) = cos(2π f nT +θ).

4. T Consider a continuous-time signal x where for all t ∈ Reals,

x(t) =
∞

∑
k=−∞

r(t− k).

where

r(t) =
{

1 0≤ t < 0.5
0 otherwise

.

(a) Is x(t) periodic? If so, what is the period?

(b) Suppose that T = 1. Give a simple expression for y = SamplerT (x).

(c) Suppose that T = 0.5. Give a simple expression for y = SamplerT (x) and z = IdealInterpolatorT (SamplerT (x)).

(d) Find an upper bound for T (in seconds) such that x = IdealInterpolatorT (SamplerT (x)),
or argue that no value of T makes this assertion true.

5. T Consider a continuous-time signal x with the following finite Fourier series expansion,

∀ t ∈ Reals, x(t) =
4

∑
k=0

cos(kω0t)

where ω0 = π/4 radians/second.

(a) Give an upper bound on T (in seconds) such that x = IdealInterpolatorT (SamplerT (x)).

(b) Suppose that T = 4 seconds. Give a simple expression for y = SamplerT (x).

(c) For the same T = 4 seconds, give a simple expression for

w = IdealInterpolatorT (SamplerT (x)).

6. T Consider a continuous-time audio signal x with CTFT shown in figure 11.12. Note that it
contains no frequencies beyond 10 kHz. Suppose it is sampled at 40 kHz to yield a signal that
we will call x40. Let X40 be the DTFT of x40.

(a) Sketch |X40(ω)| and carefully mark the magnitudes and frequencies.

(b) Suppose x is sampled at 20,000 samples/second. Let x20 be the resulting sampled signal
and X20 its DTFT. Sketch and compare x20 and x40.

(c) Now suppose x is sampled at 15,000 samples/second. Let x15 be the resulting sampled
signal and X15 its DTFT. Sketch and compare X20 and X15. Make sure that your sketch
shows aliasing distortion.



392 CHAPTER 11. SAMPLING AND RECONSTRUCTION

H(2π f)

f (kHz)
1

10 -10 

Figure 11.12: CTFT of an audio signal considered in exercise 6.

7. C Consider two continuous-time sinusoidal signals given by

x1(t) = cos(ω1t)

x2(t) = cos(ω2t),

with frequencies ω1 and ω2 radians/second such that

0≤ ω1 ≤ π/T and 0≤ ω2 ≤ π/T.

Show that if ω1 6= ω2 then

SamplerT (x1) 6= SamplerT (x2).

I.e., the two distinct sinusoids cannot be aliases of one another if they both have frequencies
below the Nyquist frequency. Hint: Try evaluating the sampled signals at n = 1.




