
Quadqwopter
Ken Katagiri, Jeffrey Lu, Lawrence Ng

Model, Physical Dynamics
Simulation

● What values should we output to the motors
given a desired torque

Inspiration from Andrew Gibiansky, Harvey Mudd student

Simulation: Quadcopter
Dynamics

Andrew Gibiansky: A current
student at Harvey Mudd
College studying
mathematics and
‘computational everything’.
Extensive background in
computer science. Former
Intern at Google and
Counsyl.

source: <http://andrew.gibiansky.
com/downloads/pdf/Quadcopter%
20Dynamics,%20Simulation,%20and%
20Control.pdf> Feb. 21, 2013, Gibiansky,
Andrew

http://andrew.gibiansky.com/downloads/pdf/Quadcopter%20Dynamics,%20Simulation,%20and%20Control.pdf
http://andrew.gibiansky.com/downloads/pdf/Quadcopter%20Dynamics,%20Simulation,%20and%20Control.pdf
http://andrew.gibiansky.com/downloads/pdf/Quadcopter%20Dynamics,%20Simulation,%20and%20Control.pdf
http://andrew.gibiansky.com/downloads/pdf/Quadcopter%20Dynamics,%20Simulation,%20and%20Control.pdf

Simulation: P Controller

http://www.youtube.com/watch?v=6UngU8vkTMo

Simulation: PD Controller

http://www.youtube.com/watch?v=GyPl5mLGbUY

Implementation
● Our onboard processor use the Timer1 Arduino library

for a single timed interrupt to poll sensors, receive user
input, and calculate and actuate motor outputs.

● The ServoTimer2 Arduino library was used to time the
PWM signals to each motor.

Implementation
● Sensors were calibrated using an affine model.
● An exponential smoothing filter was used to filter the

accelerometer readings.
● For the angular velocity readings, and the extrapolated

angle values from the angular velocity and acceleration,
we used a Kalman filter, implemented by Kristian
Lauszus of TKJ Electronics, to help reduce noise.

Source: https://github.com/TKJElectronics/KalmanFilter/

https://github.com/TKJElectronics/KalmanFilter/blob/master/README.md

Implementation
● A simple communication protocol was used to send

signals from the user, to the onboard processor.
● There were 4 bytes of information that we had to send,

but since the processor reads a byte at a time from a
sequence, we needed to be able to show where every
four bytes began and ended.

● We abstracted the information into packets, with a
simple byte header marking where the packet began,
and a checksum at the end to ensure data integrity.

Implementation
● We wanted to have an insight of the internal state
● We had onboard XBee send state information in a CSV

format when not servicing interrupts, and used MATLAB
to plot the values.

Verification

● Plotting state variables with Matlab

● Harness to minimize risk of crashing while
collecting data from hardware.

http://www.youtube.com/watch?v=QorE53GnbS4

Post Mortem
● Large source of noise is due to unbalanced propellers.
● We were afraid to try our project for a long time without

restraints.

Next Steps

● Buy a tool to properly balance propellers to
improve performance

● Test with outside disturbances.
● Add finer grain control with a joystick.
● Add some type of collision avoidance

