
WiiCopter

EECS 149/249A Final Report

Jimmy Su, Steven Campos, and Gangbaolede Li

ABSTRACT

This paper describes a project that aims to control a
quadcopter in an innovative way. Many engineering
principles are exemplified along the way, and they
demonstrate that modelling, design, and analysis are
interlinked concepts in well-orchestrated projects.

1 DESCRIPTION

The goal of this project is to implement the Nintendo
WiiMote as an input device in dictating the motion of a
quadcopter. Additionally, to account for the prevalent
safety issue of the quadcopter flying into an obstacle,
this project will implement a rudimentary safety system
for obstacle avoidance; namely, the drone will detect
walls in advance and slow down/stop in sufficient time
to prevent collision, all through the use of proximity
sensors.

2 IMPLEMENTATION

2.1 Data Flow

On the physical layer, the WiiMote is connected to the
laptop over Bluetooth, while the laptop and mbed
share a Wifi network originating from the drone. The
purpose of the laptop is to extend the WiiMote’s range
since Wifi fairs better than Bluetooth over longer
distances.

Figure 1: Block diagram of physical connections

User input data begins at the WiiMote with button

presses and accelerometer fluctuations. This data
moves from the Wiimote to the laptop over a L2CAP
bluetooth connection, which is the WiiMote’s only
method of communication. The laptop then
immediately forwards the WiiMote data to the mbed
using the UDP protocol, which is connectionless.

The mbed is the main decision maker for the
quadcopter, which is why all data flows to it. Upon
receiving both WiiMote and sensor data, the mbed
determines what the best action is and issues a
command directly to the quadcopter using the UDP
protocol.

2.2 Operation
1

The operation of the quadcopter encompasses fairly
standard motions, such as flying forward, reversing,
and turning. For these movements, the laptop will
calculate the roll and pitch of the accelerometer values
output by the WiiMote. When those values are relayed
to the mbed, it will translate them into appropriate
actions for the drone to exercise. The subtlety here is
that the roll of the WiiMote affects the yaw of the
quadcopter, rather than its roll. The design reason
behind this choice is so that the on-board camera is
always facing forward, akin to driving a car; this allows
the user to be less dependent on being aligned with
the drone.

Aside from actual movement, other operations include
the self-explanatory take-off and land functionality, as
well as useful features such as calibration and
emergency toggle. These operations are controlled via
the buttons on the WiiMote, in contrast to the
previously-mentioned flight motions that are controlled
based on accelerometer values. A side feature is the
ability to adjust the altitude at which the quadcopter
flies, which are also controlled via buttons.

In regards to safety, there will be proximity sensors
along the front and sides of the quadcopter to detect
obstacles and move away from them.

2.3 Construction

Ideal construction of our WiiCopter includes mounting
two sensors in the front and one sensor per remaining
side. We feel this is the ideal amount and placement

1
 Video of our project in action:

https://www.youtube.com/watch?v=FBJBY91HUqU

https://www.youtube.com/watch?v=FBJBY91HUqU

because no side should be blind, allowing the user to
bump into a wall. Moreover, additional sensors beyond
these five add precious weight. The front makes
better use of two sensors since the user may have the
WiiCopter flying in an arc instead of in a straight line.

Once the sensors are mounted, an mbed and
breadboard are similarly mounted to the WiiCopter’s
hull (being careful to keep the drone balanced). The
drone battery is then connected to two jumpers,
powering the regulator circuit on our breadboard (see
Section 2.4).

2.4 Power

One design aspect of our project is the fact that the
mbed needs to be mounted on the quadcopter, for two
reasons:

1. The sensors are mounted.
2. The sensors are not wireless.

As a result, voltage will need to be supplied to three
varieties of components: the KL25Z mbed
microprocessor, the CC3000 Wifi module, and the
proximity sensors. Regarding the specific voltage to
supply to each component, the mbed and the Wifi
module have a fairly broad range of acceptable
voltage inputs – 4.5V - 9V [1] and 2.7V - 4.8V [2]
respectively. However, the voltage range of the
sensors is a restrictive 4.5V - 5.5V [3], and thus we
decided to regulate a reliably higher voltage down to
5V. Initially, this voltage source was an external 9V
battery, but we modified this design for weight reasons
(more detail in Section 3.1). We instead took
advantage of the on-board AR Drone battery, which
has three 4V cells to supply a total of 12V to the drone;
we utilized two of the cells to simultaneously power the
regulator circuit with 8V. (It should be mentioned that
we did not feed all 12V to the circuit due to power
limitations of the regulator device itself.)

Figure 3: 5V regulator circuit

Figure 4: AR Parrot Drone 12V Battery

2.5 Logic

The logic of the quadcopter operation is best illustrated
by the state machine in Figure 2. Once we calibrate in
our initial state and subsequently take flight, we enter
a composite state that has a reset transition within the
state to HOVER and a preemptive transition out of the
state to LAND. The reset transition is appropriate so
that the quadcopter does not immediately fly off upon
take off, and the preemptive transition prioritizes the
LAND state – preventing the lag between when the
user desires the quadcopter to land and when it
actually lands. The latter aspect is especially useful
because it allows the user to immediately prevent the
quadcopter from succumbing to any possible dangers.

Figure 5: Composition State Machine, with preemptive
and reset transitions

The astute reader will notice that turning and driving
are separate states. We elected to pursue this
arrangement because an evasive maneuver that is
appropriate for drive (just reversing) may not be
appropriate for turning.

3 LIMITATIONS AND THEIR SOLUTIONS

3.1 Weight

The most fundamental limitation of our project is the
extra weight that the quadcopter can carry: if our
mounted circuitry is too heavy – no matter how robust
it is, the project will fail or at the very least drain the
battery and wear out motors more quickly. Keeping
this in mind, we conducted some weight tests of our
own, in which we added some dummy weight and
gradually incremented it until the quadcopter failed to
be practical. This payload bound of ours was about
120 grams. Note that this may differ from a higher,
theoretical out-of-box limit, due to previous usage of
the drone by other groups in previous years [4].

During our implementation, we trimmed weight where
we could: we sliced breadboards, shortened screws,
and utilized wire wrap to reduce solder. In fact, weight
was a deciding factor of why we chose to use the
mbed processor – which we weighed to be 21 grams –
as opposed to other processors, such as the
Raspberry Pi – which can weigh as much as 45 grams
[5].

However, our optimizations could only lower us to 138
grams, which still exceeds our experimental threshold.
We realized that minor tweaks will not push us below
our limit, so we made a considerable change to utilize
the already-present AR Drone battery in place of the
secondary 9V external battery, as mentioned in
Section 2.4.. This provided a 46 gram reduction in
weight, which fortunately dropped the total payload to
an acceptable 92 grams.

3.2 Sensors

The IR proximity sensors used on the quadcopter
presented challenges beyond just their weight. The
first of these problems stems from the fact that these
sensors are active rather than passive, meaning that
they emit and affect the world around them instead of
just passively listening. During our project, we noticed
something that we coined “sensor coupling”: where
two sensors could each assist the other’s reading.

For example, take the left front sensor: normally, by
itself, it would read the light emitted from its IR led that
bounced off of an object and into it’s receiver. When
placed near another sensor in a similar orientation, the
left sensor now bases its readings off of the light
emitted/reflected from both IR leds. The solution to
this problem was to slightly angle the sensors away
from each other, as well as experimentally determining
what new distance-to-voltage curve the sensors
operated on when interfering with each other.

Another challenge we faced was that the sensors had
a non-uniform sensitivity. We noticed that at very close
distances, the sensor voltage fluctuated more wildly for
a small change in distance. Therefore, to ensure
adequate precision, we chose sensors with higher
sensitivity over the range we wanted to measure.
Since we wanted to detect objects about 30 cm away
and further, we chose sensors with an appropriate
range for that. Moreover, while the sensors do begin to
lose sensitivity when objects were closer than 30 cm,
they still address an important qualitative issue:
detecting when something is too close, even without
knowing its exact distance.

3.3 Latency

Latency was a serious consideration for our project,
given that we need to respond to a user and address

the issue of safety. On a technical level, latency is the
time it can take for data to flow from one point to
another, but in more practical terms we are asking
ourselves: “How responsive is this?” A quadcopter with
a 2-second reaction time would have a hard time
avoiding walls, unless it moves at an extremely slow
speeds – in which case it would be quite boring to
control.

We first addressed latency in the way we moved data
around, which, as mentioned, in Section 2.1, is
primarily UDP. By using UDP to send data across the
Wifi network, we eliminate the need for devices to
establish a connection with each other and develop a
more real-time sense of communication. While TCP
ensures that data arrives – and in order, it involves
much repetition of data and handshaking to facilitate
those benefits. Data not arriving was not an issue with
UDP because of the level of repetition we use for
appropriate actions. For example, if the user is
depressing the take-off button, it’s perfectly acceptable
to continuously send takeoff packets until the button is
released. To address the issue of data arriving out of
order, we label our data with a sequence number
which should always be increasing.

Another key area to reduce latency was our
device/programming choice. By using an mbed, we
gain access to a more real-time device. The mbed can
live up to guarantees in terms of execution time,
whereas alternatives such as a laptop or Raspberry Pi
cannot since they run on operating systems that
schedule tasks as they see fit. However, since even an
mbed is subject to hiccups in terms of timing (a task
like reading/sending data may take longer than
expected), we keep track of the time of execution in
our code’s control loop. If we notice that our frame rate
(how often we make and issue a decision) is dropping,
then the mbed can take appropriate action such as
landing the copter or issuing the user a warning.

Finally, after mitigating latency everywhere possible,
we account for any remaining latency issues by
making the mbed the primary decision maker for the
quadcopter. This way, if data is not received from
either the WiiMote or the laptop, the quadcopter is not
left without a valid action to take.

4 TESTING

The course staff have always made the distinction
between someone who is an engineer, and someone
who just plugs in their creation to see if it works before
returning to the drawing board. Keeping that in mind,
we chose to be engineers and gather data in a
controlled manner before proceeding. This section will

outline our exploration of our hardware, its abilities,
and our attempts to intelligently test it.

4.1 Latency

In order to get a better idea of what latency we could
expect from the components before actually allowing
the quadcopter to fly, we tried to measure
responsiveness at every key point in the setup. Our
approach was to send data on a round trip between
two devices, measure the elapsed time from departure
to return, and divide that in half. Repeating this many
times (automated), we could compose ideas of each
connection’s average and worst-case latency.
Summing these latencies like resistors in series gave
us a fairly realistic sense of the system’s reaction time.

4.2 Quadcopter Abilities

Knowing the quadcopter abilities is important for
determining the distances we use for safety. For
example, initiating obstacle avoidance at a distance of
50 cm does us no good if the quadcopter takes 60 cm
to change direction. For that and various other
reasons, we ran the quadcopter through exercises
where we tested its abilities on video while carrying
weight. This gave us an opportunity to measure the
ability of the quadcopter to stop and change direction,
leading us to believe 30 cm was a safe enough
distance at which to trigger our sensors.

4.3 Sensors

Testing of sensors was simple, but it was also
necessary in order to verify what the manufacturer
says. After all, electronic components can vary from
batch to batch, and our environment could have an
unanticipated effect on the sensors. After running
multiple static tests on the sensors with a multimeter,
we saw that (for most ranges) the sensor output
accurately matched the datasheet. Though, one
interesting discovery was that different surfaces could
affect our readings.

4.4 Debugging/Simulation

To facilitate debugging, we used the laptop as a
simulation tool. A stand-in, for any device on the
network. By running the appropriate program to
simulate a device, we could have the laptop
send/receive data in a more predictable manner, and
make observations about the data it comes across.

5 ACKNOWLEDGEMENTS

Enormous thanks to Antonio Iannopollo (our
main GSI) for being with us every step of the way, as
well as Ben Zhang and John Finn for answering any
other questions we had.

We are additionally very grateful to professors
Edward Lee and Alberto L. Sangiovanni-Vincentelli for
giving us deeper insights into the world of embedded
systems, as well as solidifying our understanding of
the relationship between modelling, design, and
analysis.

6 REFERENCES

[1] http://developer.mbed.org/handbook/mbed-
FRDM-KL25Z

[2] http://www.ti.com/lit/ds/symlink/cc3000.pdf

[3]
https://www.sparkfun.com/datasheets/Sensors
/Infrared/gp2y0a02yk_e.pdf

[4]
http://forum.parrot.com/ardrone/en/viewtopic.p
hp?id=260

[5] http://en.wikipedia.org/wiki/Raspberry_Pi

http://developer.mbed.org/handbook/mbed-FRDM-KL25Z
http://developer.mbed.org/handbook/mbed-FRDM-KL25Z
http://www.ti.com/lit/ds/symlink/cc3000.pdf
https://www.sparkfun.com/datasheets/Sensors/Infrared/gp2y0a02yk_e.pdf
https://www.sparkfun.com/datasheets/Sensors/Infrared/gp2y0a02yk_e.pdf
http://forum.parrot.com/ardrone/en/viewtopic.php?id=260
http://forum.parrot.com/ardrone/en/viewtopic.php?id=260
http://en.wikipedia.org/wiki/Raspberry_Pi

