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ABSTRACT 

This paper describes a project that aims to control a 
quadcopter in an innovative way. Many engineering 
principles are exemplified along the way, and they 
demonstrate that modelling, design, and analysis are 
interlinked concepts in well-orchestrated projects. 

 

1    DESCRIPTION 

The goal of this project is to implement the Nintendo 
WiiMote as an input device in dictating the motion of a 
quadcopter. Additionally, to account for the prevalent 
safety issue of the quadcopter flying into an obstacle, 
this project will implement a rudimentary safety system 
for obstacle avoidance; namely, the drone will detect 
walls in advance and slow down/stop in sufficient time 
to prevent collision, all through the use of proximity 
sensors. 

 

2    IMPLEMENTATION 

2.1   Data Flow 

On the physical layer, the WiiMote is connected to the 
laptop over Bluetooth, while the laptop and mbed 
share a Wifi network originating from the drone. The 
purpose of the laptop is to extend the WiiMote’s range 
since Wifi fairs better than Bluetooth over longer 
distances. 

 

Figure 1: Block diagram of physical connections 

 

User input data begins at the WiiMote with button 

presses and accelerometer fluctuations. This data 
moves from the Wiimote to the laptop over a L2CAP 
bluetooth connection, which is the WiiMote’s only 
method of communication. The laptop then 
immediately forwards the WiiMote data to the mbed 
using the UDP protocol, which is connectionless. 

The mbed is the main decision maker for the 
quadcopter, which is why all data flows to it. Upon 
receiving both WiiMote and sensor data, the mbed 
determines what the best action is and issues a 
command directly to the quadcopter using the UDP 
protocol. 

2.2   Operation
1 

The operation of the quadcopter encompasses fairly 
standard motions, such as flying forward, reversing, 
and turning. For these movements, the laptop will 
calculate the roll and pitch of the accelerometer values 
output by the WiiMote. When those values are relayed 
to the mbed, it will translate them into appropriate 
actions for the drone to exercise. The subtlety here is 
that the roll of the WiiMote affects the yaw of the 
quadcopter, rather than its roll. The design reason 
behind this choice is so that the on-board camera is 
always facing forward, akin to driving a car; this allows 
the user to be less dependent on being aligned with 
the drone. 

Aside from actual movement, other operations include 
the self-explanatory take-off and land functionality, as 
well as useful features such as calibration and 
emergency toggle. These operations are controlled via 
the buttons on the WiiMote, in contrast to the 
previously-mentioned flight motions that are controlled 
based on accelerometer values. A side feature is the 
ability to adjust the altitude at which the quadcopter 
flies, which are also controlled via buttons. 

In regards to safety, there will be proximity sensors 
along the front and sides of the quadcopter to detect 
obstacles and move away from them. 

2.3   Construction 

Ideal construction of our WiiCopter includes mounting 
two sensors in the front and one sensor per remaining 
side.  We feel this is the ideal amount and placement 

                                                
1
 Video of our project in action: 

https://www.youtube.com/watch?v=FBJBY91HUqU 

https://www.youtube.com/watch?v=FBJBY91HUqU


because no side should be blind, allowing the user to 
bump into a wall. Moreover, additional sensors beyond 
these five add precious weight.  The front makes 
better use of two sensors since the user may have the 
WiiCopter flying in an arc instead of in a straight line. 

Once the sensors are mounted, an mbed and 
breadboard are similarly mounted to the WiiCopter’s 
hull (being careful to keep the drone balanced).  The 
drone battery is then connected to two jumpers, 
powering the regulator circuit on our breadboard (see 
Section 2.4). 

2.4   Power 

One design aspect of our project is the fact that the 
mbed needs to be mounted on the quadcopter, for two 
reasons: 

1. The sensors are mounted. 
2. The sensors are not wireless. 

As a result, voltage will need to be supplied to three 
varieties of components: the KL25Z mbed 
microprocessor, the CC3000 Wifi module, and the 
proximity sensors. Regarding the specific voltage to 
supply to each component, the mbed and the Wifi 
module have a fairly broad range of acceptable 
voltage inputs – 4.5V - 9V [1] and 2.7V - 4.8V [2] 
respectively. However, the voltage range of the 
sensors is a restrictive 4.5V - 5.5V [3], and thus we 
decided to regulate a reliably higher voltage down to 
5V. Initially, this voltage source was an external 9V 
battery, but we modified this design for weight reasons 
(more detail in Section 3.1). We instead took 
advantage of the on-board AR Drone battery, which 
has three 4V cells to supply a total of 12V to the drone; 
we utilized two of the cells to simultaneously power the 
regulator circuit with 8V. (It should be mentioned that 
we did not feed all 12V to the circuit due to power 
limitations of the regulator device itself.) 

    

Figure 3: 5V regulator circuit 

 

Figure 4: AR Parrot Drone 12V Battery 

2.5   Logic 

The logic of the quadcopter operation is best illustrated 
by the state machine in Figure 2. Once we calibrate in 
our initial state and subsequently take flight, we enter 
a composite state that has a reset transition within the 
state to HOVER and a preemptive transition out of the 
state to LAND. The reset transition is appropriate so 
that the quadcopter does not immediately fly off upon 
take off, and the preemptive transition prioritizes the 
LAND state – preventing the lag between when the 
user desires the quadcopter to land and when it 
actually lands. The latter aspect is especially useful 
because it allows the user to immediately prevent the 
quadcopter from succumbing to any possible dangers. 

 

Figure 5: Composition State Machine, with preemptive 
and reset transitions 

 

The astute reader will notice that turning and driving 
are separate states. We elected to pursue this 
arrangement because an evasive maneuver that is 
appropriate for drive (just reversing) may not be 
appropriate for turning. 

 

3    LIMITATIONS AND THEIR SOLUTIONS 

3.1   Weight 

The most fundamental limitation of our project is the 
extra weight that the quadcopter can carry: if our 
mounted circuitry is too heavy – no matter how robust 
it is, the project will fail or at the very least drain the 
battery and wear out motors more quickly. Keeping 
this in mind, we conducted some weight tests of our 
own, in which we added some dummy weight and 
gradually incremented it until the quadcopter failed to 
be practical. This payload bound of ours was about 
120 grams. Note that this may differ from a higher, 
theoretical out-of-box limit, due to previous usage of 
the drone by other groups in previous years [4]. 



During our implementation, we trimmed weight where 
we could: we sliced breadboards, shortened screws, 
and utilized wire wrap to reduce solder. In fact, weight 
was a deciding factor of why we chose to use the 
mbed processor – which we weighed to be 21 grams – 
as opposed to other processors, such as the 
Raspberry Pi – which can weigh as much as 45 grams 
[5]. 

However, our optimizations could only lower us to 138 
grams, which still exceeds our experimental threshold. 
We realized that minor tweaks will not push us below 
our limit, so we made a considerable change to utilize 
the already-present AR Drone battery in place of the 
secondary 9V external battery, as mentioned in 
Section 2.4.. This provided a 46 gram reduction in 
weight, which fortunately dropped the total payload to 
an acceptable 92 grams. 

3.2   Sensors 

The IR proximity sensors used on the quadcopter 
presented challenges beyond just their weight. The 
first of these problems stems from the fact that these 
sensors are active rather than passive, meaning that 
they emit and affect the world around them instead of 
just passively listening. During our project, we noticed 
something that we coined “sensor coupling”: where 
two sensors could each assist the other’s reading. 

For example, take the left front sensor: normally, by 
itself, it would read the light emitted from its IR led that 
bounced off of an object and into it’s receiver. When 
placed near another sensor in a similar orientation, the 
left sensor now bases its readings off of the light 
emitted/reflected from both IR leds. The solution to 
this problem was to slightly angle the sensors away 
from each other, as well as experimentally determining 
what new distance-to-voltage curve the sensors 
operated on when interfering with each other. 

Another challenge we faced was that the sensors had 
a non-uniform sensitivity. We noticed that at very close 
distances, the sensor voltage fluctuated more wildly for 
a small change in distance. Therefore, to ensure 
adequate precision, we chose sensors with higher 
sensitivity over the range we wanted to measure. 
Since we wanted to detect objects about 30 cm away 
and further, we chose sensors with an appropriate 
range for that. Moreover, while the sensors do begin to 
lose sensitivity when objects were closer than 30 cm, 
they still address an important qualitative issue: 
detecting when something is too close, even without 
knowing its exact distance. 

3.3   Latency  

Latency was a serious consideration for our project, 
given that we need to respond to a user and address 

the issue of safety. On a technical level, latency is the 
time it can take for data to flow from one point to 
another, but in more practical terms we are asking 
ourselves: “How responsive is this?” A quadcopter with 
a 2-second reaction time would have a hard time 
avoiding walls, unless it moves at an extremely slow 
speeds – in which case it would be quite boring to 
control. 

We first addressed latency in the way we moved data 
around, which, as mentioned, in Section 2.1, is 
primarily UDP. By using UDP to send data across the 
Wifi network, we eliminate the need for devices to 
establish a connection with each other and develop a 
more real-time sense of communication. While TCP 
ensures that data arrives – and in order, it involves 
much repetition of data and handshaking to facilitate 
those benefits. Data not arriving was not an issue with 
UDP because of the level of repetition we use for 
appropriate actions. For example, if the user is 
depressing the take-off button, it’s perfectly acceptable 
to continuously send takeoff packets until the button is 
released. To address the issue of data arriving out of 
order, we label our data with a sequence number 
which should always be increasing. 

Another key area to reduce latency was our 
device/programming choice. By using an mbed, we 
gain access to a more real-time device. The mbed can 
live up to guarantees in terms of execution time, 
whereas alternatives such as a laptop or Raspberry Pi 
cannot since they run on operating systems that 
schedule tasks as they see fit. However, since even an 
mbed is subject to hiccups in terms of timing (a task 
like reading/sending data may take longer than 
expected), we keep track of the time of execution in 
our code’s control loop. If we notice that our frame rate 
(how often we make and issue a decision) is dropping, 
then the mbed can take appropriate action such as 
landing the copter or issuing the user a warning. 

Finally, after mitigating latency everywhere possible, 
we account for any remaining latency issues by 
making the mbed the primary decision maker for the 
quadcopter. This way, if data is not received from 
either the WiiMote or the laptop, the quadcopter is not 
left without a valid action to take. 

 

4    TESTING 

The course staff have always made the distinction 
between someone who is an engineer, and someone 
who just plugs in their creation to see if it works before 
returning to the drawing board. Keeping that in mind, 
we chose to be engineers and gather data in a 
controlled manner before proceeding. This section will 



outline our exploration of our hardware, its abilities, 
and our attempts to intelligently test it. 

4.1   Latency 

In order to get a better idea of what latency we could 
expect from the components before actually allowing 
the quadcopter to fly, we tried to measure 
responsiveness at every key point in the setup.  Our 
approach was to send data on a round trip between 
two devices, measure the elapsed time from departure 
to return, and divide that in half.  Repeating this many 
times (automated), we could compose ideas of each 
connection’s average and worst-case latency.  
Summing these latencies like resistors in series gave 
us a fairly realistic sense of the system’s reaction time. 

4.2   Quadcopter Abilities 

Knowing the quadcopter abilities is important for 
determining the distances we use for safety.  For 
example, initiating obstacle avoidance at a distance of 
50 cm does us no good if the quadcopter takes 60 cm 
to change direction.  For that and various other 
reasons, we ran the quadcopter through exercises 
where we tested its abilities on video while carrying 
weight.  This gave us an opportunity to measure the 
ability of the quadcopter to stop and change direction, 
leading us to believe 30 cm was a safe enough 
distance at which to trigger our sensors. 

4.3   Sensors 

Testing of sensors was simple, but it was also 
necessary in order to verify what the manufacturer 
says. After all, electronic components can vary from 
batch to batch, and our environment could have an 
unanticipated effect on the sensors.  After running 
multiple static tests on the sensors with a multimeter, 
we saw that (for most ranges) the sensor output 
accurately matched the datasheet. Though, one 
interesting discovery was that different surfaces could 
affect our readings. 

4.4   Debugging/Simulation 

To facilitate debugging, we used the laptop as a 
simulation tool.  A stand-in, for any device on the 
network.  By running the appropriate program to 
simulate a device, we could have the laptop 
send/receive data in a more predictable manner, and 
make observations about the data it comes across. 
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