
EECS 149 – Embedded Systems
Summer 2010

Page 1 of 13

Interfacing VRPN with Luminary Microcontroller over
Bluetooth

Philip Weiss and Dorsa Sadigh

July 27, 2010

1. Introduction... 2
2. General Usage... 2

1. Setup of Rigid Bodies and Tracking Tools... 2
2. BlueSMiRF Setup ... 2
3. Windows Programs... 3
4. Embedded Code .. 4

3. Implementation Details... 4
1. Windows C++ Code.. 4

1. Constants and global variables.. 4
2. Packet format .. 4

Description of Packet Elements .. 5
3. Important Functions (init, repeated functions).. 5
4. Guide to VRPN and Socket Functions/Data Structures/Classes Used 6

VRPN.. 6
Classes... 6
Functions... 6

Sockets .. 7
2. Python Bluetooth Code ... 7

1. Global variables .. 7
2. btClient class... 7
3. Important Functions .. 7
4. Guide to PyBluez and Socket Functions Used ... 8

PyBluez ... 8
BluetoothSocket Class .. 8
BluetoothSocket Class Important Member Functions .. 9
Other PyBluez Functions .. 9

Sockets .. 9
3. Embedded Code .. 10

1. Constants and global variables.. 10
2. Position Struct... 10

Member Variables... 10
Associated Functions .. 11

3. Important Functions .. 11
4. Guide to Serial Communication, Packet, and Xqueue Functions/Structs......................... 12

Luminary Serial Communication.. 12
Packet Functions ... 12
Xqueue .. 12

4. References... 13

EECS 149 – Embedded Systems
Summer 2010

Page 2 of 13

1. Introduction

Prerequisites: This document assumes you have read the EE149 Tracking Tools instructions and
have calibrated the cameras and enabled VRPN streaming.

 Naturalpoint’s OptiTrack streams real-time tracker position data over the VRPN (Virtual
Reality Peripheral Network) protocol, among others. We have chosen to use the VRPN protocol.
In our system, there are 3 programs that are involved. First there is the C program which reads
the incoming VRPN data from Tracking Tools over a network socket, puts it in a data packet,
and sends it over a socket to the Python Bluetooth program. The Python program accepts
incoming connections from the BlueSMiRF Bluetooth devices and sequentially broadcasts the
packet with the VRPN data to all properly configured BlueSMiRFs in range. Lastly, the
embedded program, which runs on the Luminary board, receives the data packet and decodes it
back into position data.

2. General Usage

Figure 1 - Block Diagram of Basic System

1. Setup of Rigid Bodies and Tracking Tools

Before running any of the programs, make sure that:

• You have started Tracking Tools and loaded a camera calibration
• You have defined at least one rigid body tracker whose name is a number in the range from 0

to NUM_TRACKERS-1 (defined in main.cpp of the Windows C++ code)
• This rigid body is in view of the cameras and being actively tracked
• VRPN streaming is enabled on port 3883

2. BlueSMiRF Setup

EECS 149 – Embedded Systems
Summer 2010

Page 3 of 13

 Before starting the programs, you first must verify that the BlueSMiRF’s settings are
correct. To do this, use USB-TTL RS232 adapter to interface the BlueSMiRF to a PC. Using a
terminal emulator like HyperTerminal, connect to the COM port assigned to the adapter at
115200 bps (if the BlueSMiRF isn’t configured right you may need to connect at 57600 bps or
another bitrate).

Figure 2 – Connection diagram for USB-TTL level RS232 adapter.1

 To enter programming mode, type “$$$” until you see “CMD”, or until the red light on
the BlueSMiRF begins to flash rapidly. To see the settings, type “d” and press enter. There are
various commands to change these settings. The important ones are:

Command Purpose Followed by
‘Enter’?

$$$ Enters command mode No
D Displays basic settings Yes
SU,11 Sets baud rate to 115.2 kbps Yes
SM,3 Set BlueSMiRF to autoconnect mode Yes
SR,001583be9cad Set Bluetooth address to connect to as

001583be9cad
Yes

--- Exits command mode Yes

Once these settings are correct, connect the BlueSMiRF back to the Luminary board.

The configuration above tells the BlueSMiRF to try to connect to the stored Bluetooth address.
The Bluetooth address is the address of the Bluetooth dongle in the desktop PC running the
Python Bluetooth script. This means it will be connected to the Python script as soon as the
script starts, if the Bluetooth devices are in range.

3. Windows Programs

EECS 149 – Embedded Systems
Summer 2010

Page 4 of 13

1. Compile and Launch C++ code. To compile, you must have the VRPN and quat headers
present and libraries linked. Once launched, the program will connect to the VRPN server
(Tracking Tools) and open a listening socket on port 10625.

2. Start Python script. Make sure a version of Python before 3.0, and the PyBluez library are
installed. This will connect to the listening socket and then continuously accept BlueSMiRFs
connecting and VRPN data packets, which will be forwarded to the BlueSMiRFs.

4. Embedded Code

 Compile and flash the µVision 4 project. Press the reset button on the Luminary.
Streaming data for properly named trackers will be displayed.

3. Implementation Details

1. Windows C++ Code

The purpose of this code is to connect to the Tracking Tools VRPN server, handle incoming
tracker data, and send a data packet over a socket to a client (the Python Bluetooth broadcast
code).

1. Constants and global variables

Name Value (or Initial Value) Description
CONSTANTS

M_PI 3.14159265358979323846 Value of π
UART_TX_BUFFER_SIZE 0x40 = 64 Size of the transmit xqueue’s

buffer
UART_VALUES_PER_PACKET 8 (subject to change) Number of int32 values per

packet
PORT 10625 Port number for the network

socket to listen on
NUM_TRACKERS 2 Number of OptiTrack trackers

to send data for
GLOBAL VARIABLES

static xqueue_t uartTx0 undefined The main xqueue to hold
packets to transmit

static byte uartTx0Buffer undefined The array containing the entire
packet to send

SOCKET sock, client undefined The network sockets for our
listening server and connected
client

2. Packet format

EECS 149 – Embedded Systems
Summer 2010

Page 5 of 13

0xFF 0xFF Length Name X Y Z Qx Qy Qz Qw checksum

Header Data (Each is a 32-bit int) Sum of every byte

Description of Packet Elements:

Name/Value Description/Purpose Number of
Bytes

Header (0xFF 0xFF) Used to detect the beginning of the
packet

2

Length (equal to
UART_VALUES_PER_PACKET)

Number of data elements in the packet 1

Name The id of the tracker 4
X X position of the tracker 4
Y Y position of the tracker 4
Z Z position of the tracker 4
Qx X component of the tracker’s

quaternion rotation
4

Qy Y component of the tracker’s
quaternion rotation

4

Qz Z component of the tracker’s
quaternion rotation

4

Qw W component of the tracker’s
quaternion rotation

4

Checksum Sum of each byte in the packet, used to
determine if packet has been corrupted

1

3. Important Functions (init, repeated functions)

Name Purpose Brief Outline Return Values
int main() main • Start VRPN connection

• Initialize
vrpn_Tracker_Remote’s

• Associate Trackers with
the handle_pos function

• Receive connection on
network socket

• Poll for new tracker data

• 0 on
termination

int openSocket() Listen for and
accept incoming
client socket’s
connection

• Initialize socket and bind
to port PORT

• Block while waiting for a
connection

• Start the connection with
the client

• 0 if the
function
fails

• 1 once a
connection
has been

EECS 149 – Embedded Systems
Summer 2010

Page 6 of 13

established
void closeSockets() Close network

sockets and
cleanup

• Close client and sock
sockets

• Cleanup Windows sockets

none

void sendPacket(…) Send a data
packet to the
client

• Assemble packet data
• Put data into a packet
• Put packet into an xqueue
• Send data over the socket

none

void
VRPN_CALLBACK
handle_pos(…)

This function is
called when new
data for a tracker
is received

• Convert quaternion values
to Euler angles

• Send a packet with the
tracker name and data

none

4. Guide to VRPN and Socket Functions/Data Structures/Classes Used

VRPN2, 3:

Classes:

vrpn_Connection: A class describing a connection to a VRPN server. See
“vrpn\vrpn_Connection.h” for member functions and variables.

vrpn_Tracker_Remote: A class describing one rigid body being tracked by the server. See
“vrpn\vrpn_Tracker.h” for member functions and variables.

Functions:

vrpn_get_connection_by_name(connectionName): Takes parameter connectionName as a
string containing “host:port” of the server. Returns a vrpn_Connection class containing the
connection information. See “vrpn\vrpn_Connection.h” for more information.

new vrpn_Tracker_Remote(namestr, connection): Constructor for vrpn_Tracker_Remote.
namestr is a string containing the name of the tracker. connection is the vrpn_Connection
class with a connection information to the VRPN server. See “vrpn\vrpn_Tracker_Remote.h”
for more information.

register_change_handler(name, handle_pos): Member function of vrpn_Tracker_Remote.
Registers the callback function handle_pos to be called when new data comes in for the tracker
registered in the constructor. See below for information on the callback function. name is a
pointer to a variable which will be passed into the callback function. name can be NULL.

void VRPN_CALLBACK handle_pos (void * userdata, const vrpn_TRACKERCB t): An
example callback function. Takes in a void pointer userdata with the data given in the
register_change_handler function to identify which tracker triggered the callback function (or

EECS 149 – Embedded Systems
Summer 2010

Page 7 of 13

any other use). t is a data structure containing information on the tracker’s position. See
“vrpn\vrpn_Tracker_Remote.h” for more information on the vrpn_TRACKERCB struct.

Sockets4:

Commented in the code, also refer to Beej’s Guide4, especially sections 5 and 9.

2. Python Bluetooth Code

1. Global variables

Name Initial
Value

Description

serverIP “localhost” The name or IP address of the computer running the Windows C++
code

serverPort 10625 The port to connect to on the server
clients [] The list of btClient objects
latestPacket ‘None’ The value of the most recent packet received

2. btClient class

Each instance of the btClient class represents an active connection with a Bluetooth device
(BlueSMiRF).

Member Variables
Name Value

btSock The socket object for the corresponding Bluetooth connection
btAddr The Bluetooth address of this client

Static Methods
Name Purpose

clientsList() Return a list of the Bluetooth sockets among all btClient instances
remClient(clSock) Remove this Bluetooth socket from clients

3. Important Functions

Name Purpose Brief Outline Return Values
Main Script Most of the

action is
here

• Open a TCP
socket and connect
to the server
serverIP:serverPort

• Open a Bluetooth
socket and
advertise virtual
serial port service

• Wait for an event

N/A

EECS 149 – Embedded Systems
Summer 2010

Page 8 of 13

on the TCP or
Bluetooth socket

• If Bluetooth event,
handle new client
or client
disconnect

• If TCP event,
handle incoming
data or server
disconnect

btBroadcast(message) Send the
message to
all
connected
Bluetooth
devices

• Loop through the
list of btSockets,
call send method
on associated
Bluetooth socket
to send message

none

shutdown(code) Cleanup and
exit with
code

• Call countdown
function to wait 5
seconds before
exiting

• Loop trough list f
Bluetooth sockets
and close them

• Close Bluetooth
server and TCP
client sockets

none

btClient.clientsList() See above • Loop through
clients list and
return the
associated btSock
Bluetooth socket

A list of all the sockets
associated with all
btClients

btClient.remClient(clSock) See above • Loop through
clients list until
the btSocket with
the matching
btSock is found

none

4. Guide to PyBluez and Socket Functions Used

For full documentation, see the PyBluez API Documentation5 and Python Sockets Standard
Library6.

PyBluez:

BluetoothSocket Class

EECS 149 – Embedded Systems
Summer 2010

Page 9 of 13

The BluetoothSocket class is used to describe a Bluetooth socket on the local machine.

BluetoothSocket Class Important Member Functions

BluetoothSocket(proto): The constructor for BluetoothSocket. proto is the Bluetooth protocol
to use (only RFCOMM is available in the Windows version of PyBluez). Defined in the
PyBluez API Documentation5 as __init__.

accept(): Blocks until an incoming connection has been received on this socket. Returns a tuple
(BluetoothSocket, addrport) where the BluetoothSocket is the socket associated with the
connection to the new client and addrport is the RFCOMM channel number (not used in this
application). bind and then listen must be called first.

bind(addrport): Associates the BluetoothSocket with a specific RFCOMM channel to listen or
transmit on. addrport is a tuple (host, channel) where host is the Bluetooth adapter and
channel is the RFCOMM channel. host = “” for default adapter.

close(): Closes any connection associated with this BluetoothSocket.

listen(backlog): Listens for incoming Bluetooth connections. backlog is the number of
connections it will allow to wait before rejecting them.

recv(buffersize): Receives up to buffersize bytes from the BluetoothSocket.

send(data): Sends a string data over the socket. Returns the number of bytes sent.

Other PyBluez Functions

advertise_service(sock, name, service_id, service_classes, profiles): Advertises a Bluetooth
service as being available to nearby Bluetooth devices. sock is a bound, listening
BluetoothSocket, name is a string containing the service name, service_id is a string containing
the hexadecimal UUID, service_classes is an array of service types, and profiles is an array of
Bluetooth profiles supported. See the PyBluez Documentation5 and “An Introduction to
Bluetooth Programming”7 for more information.

lookup_name(address, timeout): Blocks while looking up the name associated with the
Bluetooth address contained as a string in address. Gives up after timeout seconds. Not used in
our code because it stalls the program. It’s possible that using threads could eliminate the
blocking issue.

stop_advertising(sock): Stops advertising services registered with this BluetoothSocket.
Usually this is called before closing the socket

Sockets:

EECS 149 – Embedded Systems
Summer 2010

Page 10 of 13

Refer to Python Sockets Standard Library6. This Python Sockets Tutorial8 is also a good
introductory resource.

The select function9 is used in the Python code. The documentation10 for it gives the complete
information. Select is used when you want to handle input on multiple I/O objects (sockets in
this case). It takes a list of sockets that you’re waiting for, and returns a list of which sockets are
ready for reading or writing (or give an exception). At that point you can call the right function
(i.e. recv(…) or accept()) on the socket.

3. Embedded Code

1. Constants and global variables

Name Value (or
Initial
Value)

Description

CONSTANTS
NUM_TRACKERS 2 Number of objects to track
NAME_OFFSET 0 Number of first tracker to track – will track

rigid bodies with names in the set
[NAME_OFFSET, NAME_OFFSET +
NUM_TRACKERS)

DISP_RATE 0x10000 Frequency in µs at which the display is
updated

UART_RCV_BUFFER_SIZE 0x40 = 64 Size of the receive xqueue’s buffer
UART_VALUES_PER_PACKET 8 (subject

to change)
Number of int32 values per packet

GLOBAL VARIABLES
Position trackers none Array containing rigid body tracker position

values
int trackers_index 0 Index of next unused element in the trackers
static xqueue_t uartRx0 none The main xqueue to hold received packets
static byte uartRx0Buffer The array containing the entire packet

received

2. Position Struct

Member Variables:

Variable Purpose

int32 name The integer representing the name of the tracker this struct corresponds to.
int32 x X position of the tracker

EECS 149 – Embedded Systems
Summer 2010

Page 11 of 13

int32 y Y position of the tracker
int32 z Z position of the tracker
int32 qx X component of the tracker’s quaternion rotation
int32 qy Y component of the tracker’s quaternion rotation
int32 qz Z component of the tracker’s quaternion rotation
int32 qw W component of the tracker’s quaternion rotation
int32 yaw Yaw angle of the tracker
int32 pitch Pitch angle of the tracker
int32 roll Roll angle of the tracker

Associated Functions:

Name Purpose Brief Outline Return Values
int Position_add(int32
name)

Add a new position
struct to the
trackers array.

• Check if our array
still has space.

• Add tracker with
name name.

• 0 on success
• -1 on fail

int
Position_getIndex(int32
name)

Get the index of
Position with name
name in the
trackers array.

• Iterate through
trackers array

• -1 if the
function
fails

• Index of the
Position
we’re
looking for

void Position_update(…) Update the values of
a Position in the
trackers array.

• Call
Position_getIndex
to find array index.

• Fill in Position struct
with new values

none

3. Important Functions

Name Purpose Brief Outline Return
Values

int main() Main function • Initialize variables and call init().
• Infinite loop for displaying data
• Cycle between which tracker data

to show every 5 seconds.

none

void init() Initializes Luminary
board, UART, and
display.

• See function none

void
UART0Handler()

Interrupt service
routine (ISR) for
incoming data on

• Read all bytes stored in the receirve
buffer.

• Call packetExtractFromStream

none

EECS 149 – Embedded Systems
Summer 2010

Page 12 of 13

UART port 0
(BlueSMiRF)

(defined in “149_packet.h”
• Check if this is a packet we’re

interested in.
• Fill in a Position struct with the

packet data
• If this is a new tracker, add it to the

trackers array, in either case
update the element with the new
values.

4. Guide to Serial Communication, Packet, and Xqueue Functions/Structs

Luminary Serial Communication:

Functions associated with UART can be found on pg. 243 of the Stellaris Peripheral Driver
Library User’s Guide11.

Packet Functions:

Packet functions are outlined in “149_packet.h”.

Xqueue:

Xqueue data structure and functions are outlined in “149_xqueue.h”

EECS 149 – Embedded Systems
Summer 2010

Page 13 of 13

4. References

1. Future Technology Devices TTL-232R Datasheet,
http://www.ftdichip.com/Documents/DataSheets/Modules/DS_TTL-232R_CABLES_V201.pdf
2. VRPN Tracker Remote Class Documentation,
http://www.cs.unc.edu/Research/vrpn/vrpn_Tracker_Remote.html
3. VRPN Connection Class Documentation,
http://www.cs.unc.edu/Research/vrpn/Connection.html
4. Beej’s Guide to Network Programming,
http://beej.us/guide/bgnet/output/html/multipage/index.html
5. PyBluez 0.7 API Documentation, http://pybluez.googlecode.com/svn/www/docs-
0.7/index.html
6. Python Sockets Standard Library Documentation, http://docs.python.org/library/socket.html
7. An Introduction to Bluetooth Programming, http://people.csail.mit.edu/albert/bluez-
intro/c212.html
8. Sockets in Python, http://www.devshed.com/index2.php?option=content&do_pdf=1&id=593
9. select.select, http://docs.python.org/library/select.html#select.select
10. select — Waiting for I/O completion, http://docs.python.org/library/select.html
11. Stellaris Peripheral Driver Library User’s Guide,
http://chess.eecs.berkeley.edu/eecs149/sp10/docs/SW-DRL-UG-3618.pdf

