
Poster Abstract: “PtidyOS: An Operating System
based on the PTIDES Programming Model”

Shanna-Shaye Forbes, Jia Zou, Slobodan Matic and Edward A. Lee
Dept. of Electrical Engineering and Computer Sciences

545 Cory Hall, University of California, Berkeley
Berkeley, CA 94720.

{sssf, jiazou, matic, eal}@eecs.berkeley.edu

Abstract—Most real-time embedded software is built on pro-
gramming abstractions that lack precise timing semantics. Our
earlier work presented PTIDES, a programming model for
distributed real-time software that delivers temporal semantics
by exploiting discrete-event model of computation. In this work
we introduce work we are doing to develop PtidyOS, a novel
lightweight embedded operating system based on PTIDES. In
PtidyOS, all event processing is done in interrupt service routines,
and we only use interrupts to ensure correct mutually exclusive
accesses to memory. Our approach combines PTIDES semantics
with traditional scheduling methods. The first implementation
leverages EDF scheduling scheme and guarantees correct event
order defined by PTIDES. This is achieved without requiring
totally ordered event processing. We describe a preliminary
implementation on an ARM based microcontroller. 1

I. PTIDES
We previously proposed PTIDES (Programming Tempo-

rally Integrated Distributed Event Systems), a programming
model for distributed platforms [3], [4]. PTIDES is based on
the discrete-event (DE) model [1] of computation, in which
components communicate through time-stamped events. Each
component processes events in the chronological order of time
stamps. PTIDES extends the DE by bounding time stamps
of events at specific ports in the system to physical time.
PTIDES leverages this fact to allow better processor utilization
in processing events and to guarantee on time delivery of
outputs.

Consider Figure 1 that shows a model of an embedded
system distributed over a set of platforms. For an output event
of a sensor the time-stamp represents the local time at which
the sensor reading is taken. Thus, the local real time at which
this event is inserted into the event queue is larger than or
equal to the value of the time stamp of the event. Conversely,
for an input event of an actuator, the time stamp represents
the latest real time at which the actuator action should take
place. The local real time at which this event is produced has

1This work was supported in part by the Center for Hybrid and Embedded
Software Systems (CHESS) at UC Berkeley, which receives support from the
National Science Foundation (NSF awards #0720882 (CSR-EHS: PRET) and
#0720841 (CSR-CPS)), the U. S. Army Research Office (ARO #W911NF-07-
2-0019), the U. S. Air Force Office of Scientific Research (MURI #FA9550-
06-0312), the Air Force Research Lab (AFRL), the State of California Micro
Program, and the following companies: Agilent, Bosch, Lockheed-Martin,
National Instruments, and Toyota. It was also supported in part by the NASA
Harriet G. Jenkins Pre-doctoral Fellowship Program (JPFP).

PTIDES: Programming Temporally 

Integrated Distributed Embedded Systems
with Yang Zhao and Jie Liu

Consider a scenario:

Lee, Berkeley 36
Fig. 1. Networked PTIDES Model

to be smaller than or equal to the time stamp of the event. In
fact, this time stamp can be interpreted as the deadline for the
delivery of the event to the actuator.

The second category of PTIDES components that bear the
same timing constraints as actuators are network interfaces.
We assume that platforms use a local network to communicate
time-stamped events. In addition, we assume the network delay
is bounded and known in advance. These constraints guarantee
an upper bound of the real time at which a time-stamped event
is received at its destination.

Key to making this programming model effective is to
ensure that described inequality constraints are preserved at
runtime. To accomplish this, we give a distributed execution
strategy that obeys DE semantics without the penalty of totally
ordered executions based on time stamps [4]. For instance,
at components other than sensors, actuators and network
interfaces, input events are processed in time-stamp order, but
an event can be processed at a real time unrelated to its time
stamp.

PTIDES uses static causality analysis to determine path
latencies in a model. These latencies are used during execution
to check whether an event can be safely processed. In general,
the technique requires local clocks to be time-synchronized
with a bounded and known error. Time synchronization, to-
gether with the real-time constraints described above, enables
simple passage of physical time to be used to check if an event
is safe to process.



II. PTIDYOS
The PTIDES programming model relies on the discrete-

event semantics to achieve determinism. PtidyOS is a proposed
lightweight kernel with timing determinism guaranteed by the
PTIDES semantics. Currently, our early PtidyOS prototype
runs only on a single processor. Like TinyOS, an operating
system widely used in sensor networks, PtidyOS is a library
that is linked against application C code, and it uses interrupts
as the sole mechanism to ensure correct memory synchroniza-
tion behaviors. In addition, as is common in many real-time
microkernels, we do not support dynamic memory allocation.

To reduce the latencies between PtidyOS software compo-
nents, all event processing is performed in interrupt service
routines. In our prototype, interrupts do not have priorities,
only events do. In particular, an interrupt is able to preempt
any other interrupt service routine. Though this is not directly
supported by most off-the-shelf microprocessor architectures,
we achieve this behavior through stack manipulations. Using
event priorities, the PtidyOS scheduler would return to the
preempted interrupt only if it was executing an event of higher
priority than the preempting one.

We divide our local execution strategy into two layers: safe-
to-process coordination, and local resource scheduling. When
receiving an event, the coordination layer determines whether
the event can be processed immediately or it has to wait
for other potentially preceding events. In particular, a safe-
to-process component of PtidyOS is used to specify when in
physical time this event can be processed.

Once it is sure that the current event can be processed
according to DE semantics, the event is handed over to a local
resource scheduler, which uses existing real-time scheduling
algorithms to prioritize the processing of all safe-to-process
events. Our preliminary investigations indicate some interest-
ing properties. In particular, PTIDES models provide a solid
foundation for earliest deadline first (EDF) scheduling, where
time-stamped events have a statically-computable deadline
based on causality analysis. While the PTIDES semantics
define a set of events that are safe to process, the deadline-
ordered queue ensures the event with smallest deadline from
that set is processed.

Our prototype platform for PtidyOS is the Luminary micro-
controller LM3S8962. It is based on the 32-bit ARM Cortex-
M3 controller (50 MHz, 256 kB flash, 64 kB SRAM) and
equipped with a series of standard peripheral devices. Our
preliminary experiments were performed on relatively simple
graphs of actor components with rates of input events in the
millisecond order. We demonstrated time-stamp deterministic
output behavior with microsecond level jitter which is gener-
ally acceptable in embedded controllers.

III. WORK IN PROGRESS

Our main objective in PtidyOS is to investigate the potential
advantages of PTIDES model for locally distributed systems.
The Luminary board contains an Ethernet controller that is
augmented with hardware assisted IEEE 1588 Precision Time
Protocol (PTP). PTP is a protocol for time synchronization of

processors over local networks that support multicast commu-
nication. With this hardware, on small local switched Ethernet
networks we expect to be able to achieve synchronization error
bounds of about one microsecond.

It appears that it may be possible to implement PTIDES with
EDF using a single stack, thus avoiding much of the overhead
of multithreading that dramatically increases timing variability
in conventional real-time operating systems. However, we
observe that such a solution may lead to priority inversion
problems. As a part of the event scheduling algorithm, we plan
to develop a more sophisticated stack manipulation algorithm
for PtidyOS.

The current PtidyOS design flow requires an executable
PTIDES model to be built in C, with causality analysis of
the model performed during system initialization. Moreover,
the current causality analysis works only for a subset of
PTIDES models but not for hierarchical and modal models for
instance. These limitations motivate us to employ the Ptolemy
II framework along with its code generation component [2] as
a design and implementation platform for PTIDES models.
Beside extending the set of PTIDES models, the partial
evaluation methods of code generation would allow efficient
memory and processor usage.

Finally, in a standard RTOS, a device driver typically
interacts with the executing program through shared memory.
This threading model is often problematic, and may result in
system crashes due to unexpected device driver interactions.
Our preliminary design shows that writing device drivers for
PtidyOS may in fact be much easier because of the clean
concurrency model. We plan to experiment with PtidyOS
sound drivers since audio applications often require millisec-
ond precision.

REFERENCES

[1] R. M. Fujimoto. Parallel discrete event simulation. Commun. ACM,
33(10):30–53, 1990.

[2] Gang Zhou, Man-Kit Leung, and Edward A. Lee. A code generation
framework for actor-oriented models with partial evaluation. In Inter-
national Conference on Embedded Software and Systems, LNCS 4523,
pages pp. 786–799, May 2007.

[3] Y. Zhao, J. Liu, and E. A. Lee. A programming model for time-
synchronized distributed real-time systems. In Proceedings of RTAS,
pages 259–268, Bellevue, WA, USA, Apr 2007.

[4] J. Zou, S. Matic, E. A. Lee, T. H. Feng, and P. Derler. Execution strategies
for ptides, a programming model for distributed embedded systems. In
to appear in RTAS, 2009.


