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A new category of static analysis tool is beginning to appear in the marketplace that goes 
beyond checking of relatively local characteristics of software modules to assess the logical 
consistency of an entire software system.  Our belief is that these tools have the potential to 
dramatically enhance the effectiveness and timeliness of validation and verification of 
software for critical systems.  Nevertheless, these tools have limitations, and it is important 
to understand both the capabilities and limitations of such tools to ensure that they are 
utilized most productively in the overall development life cycle of software for critical 
systems.

Thanks in large part to dramatic increases in computational horsepower available today to 
software development organizations, it is now practical to do significant static checking of 
large software systems.  Although the theories underpinning static checking of software go 
back several decades, the intense computational requirements of these theories when 
applied to large software systems has made them more of academic than industrial interest.  
However, today the hardware has caught up with the theory, and million line software 
systems are now amenable to sophisticated static analysis.

There are various techniques for advanced software static analysis, but they can be broken 
down into roughly three general approaches, one which is based on program proving 
theory, one which is based on model checking, and one which is based on flow analysis 
and abstract interpretation.  Historically, program proof engines have required human 
interaction to avoid getting stuck when attempting to handle loops or recursion.  This has 
made them less appropriate for the analysis of large systems, which might requires hours of 
computation where periodic human interaction would likely be impractical.  Advances in 
program proving are beginning to create useful fully automated proof engines, and 
applying program proof techniques to large systems may become possible.  Another 
limitation of program proving approaches can be the requirement for a precise specification 
of what the program is doing.  This simply doesn’t exist for many large systems, or it is 
expressed in a kind of structured English that may not be amenable to automated analysis.

The model checking approach originated in tools for validating hardware designs, and such 
tools can have scalability issues when applied to large software systems, because of their 
dependence on examining the entire state space.  Even for hardware systems, tricks are 
often necessary to reduce the size of the state space.  For software systems, transforming 
the program into a “boolean” program or other techniques to dramatically reduce the state 
space are generally the first step in any model checking process.  Another issue with model 
checking is it tends to be limited to verifying a single predicate at a time, and if the predicate 
is not verifiable, it may only find a single error rather than all of the errors that cause the 
predicate to be false.

Flow analysis with abstract interpretation is a somewhat more flexible approach, and is 
similar to the kinds of analysis being performed on a routine basis by optimizing compilers.  
As such, it tends to be a better fit to the large state spaces of software, and incorporates 



relatively straightforward approximation techniques to deal with structures that could lead to 
very large numbers of iterations.  The major difference between what typical optimizing 
compilers do and what advanced static analyzers do relates to the level of interprocedural 
analysis.  Compilers tend to limit interprocedural analysis because the benefits in terms of 
object code performance are often outweighed by the costs of full optimization.  For static 
analysis, on the other hand, object code performance is not the measure, but instead the 
goal is to find logical inconsistencies or suspicious code that might indicate a design or 
coding error.  In addition, it is adequate to do the static analysis perhaps only once a day, 
while compiling is often being done hundreds of times a day, so the performance of the tool 
itself is not as critical.  Hence, the cost-benefit ratio tends to favor a higher level of 
interprocedural analysis, ultimately achieving full program or even full distributed system 
analysis.

While program proving can potentially show conformance to precise specifications of 
functionality, the other two approaches tend to focus on validating more generic properties 
relating to logical consistency, and freedom from undesirable behaviors such as race 
conditions, buffer overflows, memory leaks, dangling references, uses of uninitialized 
memory, etc.  In one sense, the big shift in thinking that has enabled more progress to be 
made in automated static error detection has been to bypass the need for precise 
specifications inherent in proving a program correct, and focus on properties that are 
desirable or undesirable independent of the particular application -- that is, focus on proving 
the program does not perform patently incorrect or meaningless actions.  This allows the 
tools to perform checks that are based on the underlying semantic rules of the language or 
machine, without the application programmer having to provide a detailed specification.  
Even with the program proving approach, proofs may focus on proving freedom from bad 
actions rather than presence of correct functionality.  And even with the other approaches, 
some degree of crossover from application independent analysis to application-specific 
analysis can be provided if there are programmer-provided assertions present in the code, 
as the model checker or flow analysis engine can attempt to prove the truth of such 
assertions.

Any of the approaches can suffer from either false “negatives” or false “positives.”  By this 
we mean that the approach might miss certain errors, or might identify constructs that are in 
fact not errors.  In general, these “imprecisions” in the analysis are due to the 
approximations being performed to enable the analysis to proceed.  Although program 
proving tends to make the fewest approximations, there may still be times when an 
imprecise assumption needs to be inserted to allow the proof to complete.  Model 
checking tends to require approximations as part of reducing the size of the state space to 
be explored.  Flow analysis with abstract interpretation tends to require approximations to 
allow iterative algorithms to reach a fixed-point.  Note that even when there are no false 
positives, there might be constructs that could fail eventually (such as a loop counter 
overflowing), but which will not fail in the typical lifetime of the system.  

Generally, if the analysis is considered “sound,” then there should be no false negatives for 
the kinds of errors that are detected.  However, there are cases where a “sound” analysis 
may produce an unacceptable level of false positives while an “unsound” analysis would 
produce a more acceptable number of both false negatives and false positives.  A 
common approach is to rank the identified problems by likelihood of their being a “true” 
error, as opposed to a false positive.  In this way, the user may choose to focus only on the 
messages with a very high likelihood of being real, while ignoring those where the likelihood 
is smaller, intentionally choosing to risk the possibility of a false negative due to not 
examining all low-likelihood messages.

Other sources of either false positives or false negatives can be due to capacity limitations, 



requiring partitioning of the system under analysis.  Some of the techniques suffer from 
nonlinear time or space scaling as the system grows larger, and even with those that can 
come close to linear scaling, some practical limits in terms of time, memory space, or disk 
space may ultimately limit the size of system that can be analyzed when accounting for all 
interprocedural dependencies. 

An important differentiator in analysis tools is whether they take a fundamentally “top-down” 
or “bottom-up” approach.  With a top-down approach, the tools start at one or more entry 
points to the system, and then check whether code can be reached with values that might 
cause bad behavior to occur.  With a bottom-up approach, the tools start at the “leaves” of 
the system, modules that don’t depend on any other module, and then work up toward the 
higher levels of the system, characterizing each module in terms of its pre- and 
postconditions, and checking those at the point of each call.  The bottom-up approach tends 
to be more scalable, but can have more challenges in terms of false-positives, in that it 
doesn’t generally have information on the parameter values provided by callers before it 
attempts to determine whether a given called module is correct.  And it is also possible to 
combine the two approaches in various ways, to perform multiple passes, iterate over the 
entire system, etc.  One of the biggest advantages of a bottom-up approach is that it 
naturally adapts to analyzing pieces of a system, from a single module, to a subsystem, to 
a library of modules, up to an entire system.  It also has the potential of providing useful as-
built documentation in terms of pre- and postconditions derived from the actual code, rather 
than relying on programmers providing annotations or testing only against the current points 
of call, rather than against all future potential uses of the code.

An important practical consideration when choosing a static analysis tool is whether it can 
handle the source language(s) used in the system, including any idiosyncrasies of the 
language that might be peculiar to a particular target or compiler.  For some languages, in 
particular Java and C#, there are relatively standardized representations, namely Java 
bytes codes and .NET IL, which can be used as a starting point for analysis.  For other 
languages, such as C and C++, finding a tool that can handle the particular dialect in use on a 
given system may be a significant challenge.

Other practical considerations include what kind of explanation the tool provides when it 
identifies a problem, and how hard it is to determine whether a message identifies a 
problem that is of actual concern to the developers.  Also, once a message has been 
determined to not be of interest, tools vary ini how difficult it is to prevent the message from 
reappearing in future analyses, either in exactly the same form, or in a similar form.

To conclude, our belief is that the new set of advanced static error detection tools deserve 
consideration in any software development organization that is building software for critical 
systems.  However, the tools have limitations, and it is important to understand how those 
limitations might affect the value of the tool, and how well the tool matches or is adaptable to 
the particular needs of the development organization.


