
Static Analysis of Autocoded Software for
Aerospace Systems

Eric Feron
School of Aerospace Engineering

Georgia Institute of Technology, Atlanta, GA 30332
feron@gatech.edu

Phone: (404) 894-3062

Arnaud Venet
Kestrel Technology LLC

4984 El Camino Real #230, Los Altos, CA 94022
arnaud@kestreltechnology.com

Phone: (650) 967-4408

I. OVERVIEW OF OUR APPROACH

Embedded software-based control systems are commonly
constructed using model-based design environments such as
MATLAB/SimulinkTM from MathWorks. These environments
allow the system designer to establish critical properties ensur-
ing the reliability of the system (stability, disturbance rejection,
etc.) directly at the model level, using a rich mathematical
toolset. However, the software implementation substantially
transforms the mathematical model by introducing numerous
programming artifacts (aggregate data structures, pointers)
and altering the numerical representation (platform-dependent
floating/fixed-point arithmetic, and, in the most extreme cases,
conversion from continuous-time dynamics to discrete-time
dynamics). Verifying that the reliability properties of the
system are preserved by the implementation is extremely
challenging, yet in many cases critically important. Model-
based design environments usually come with an autocoder
i.e., a code generation tool that automatically synthesizes an
implementation of the embedded controller from the specifi-
cation of its model. Autocoders are getting increasingly used
in practical applications for they greatly simplify the imple-
mentation process. In aerospace industry however, autocoding
is essentially precluded because its properties are considered
to be not adequately trustworthy.

Static program analysis tools have recently proven successful
in tackling the certification of embedded software-based con-
trol systems. ASTREE [1], developed by P. Cousot’s team in
France, can automatically verify the consistency of floating-
point arithmetic in the electric-command control system of
the A380, Airbus’ super-jumbo carrier. C Global Surveyor [2],
developed by Kestrel Technology LLC, can verify the absence
of pointer manipulation errors in the mission-control software
of NASA’s Mars Exploration Rovers. However, the scope
of static analysis has been essentially limited to robustness
properties, i.e., ensuring the absence of runtime errors during
the execution of the program. Verifying functional properties
by static analysis for a system to be used in the field requires
(1) translating a reliability property of the model into the
implementation setting, using the appropriate data structures
and numerical libraries, and (2) tracking the evolution of this

property over all execution paths using abstract interpretation
techniques. This process requires a tight coupling between the
model description and its implementation. While such tight
coupling is rarely achieved in practice, it can exist at least
when the implementation is automatically generated from the
model. Autocoders, like Real-Time StudioTM for SimulinkTM,
are increasingly being used in industry for the development
of embedded control software. This means that static analysis
techniques specialized for codes automatically generated from
high-level models can be developed to meet market needs.

The approach we are investigating consists of translating the
formal proof of reliability properties of an embedded logic into
a dedicated static analyzer that automatically carries out the
corresponding proof on the code generated from the model.
Whereas today’s commercial (and even known academic)
static analyzers for embedded mission- and safety-critical
software are handcrafted, we propose to use our prior research
to construct the dedicated static analyzer automatically. Ulti-
mately, the system designer would be provided with a fully
automated engine that performs verification of the generated
code without requiring any additional information other than
the high-level model specification.

II. CHALLENGES

There are two major challenges in developing a tool for the
automated verification of reliability properties of embedded
control software automatically generated from a high-level
model:

1) How do we translate a property of the high-level model
into a property of the code generated from that model?
What are the features of the autocoder we must know
to effectively build this translator?

2) How do we specify the basic components of the static
analyzer required to verify the desired property? How
do we specialize the analyzer to the code generated by
a given autocoder?

We discuss these challenges in the following subsections.



A. Property Translator

The autocoder of the model-based design environment gener-
ates code from the model in a predictable way. Therefore, we
expect to be able to map a property of the model’s variables
into a property of the data structures used in the model’s im-
plementation. Commercial model-based design environments
offer rich libraries of basic components for building systems
and the properties of interest may greatly vary depending on
the nature of the system designed. The family of systems
we have been investigating is that of closed-loop dynamical
systems, represented on the one hand by a family of differ-
ential equations that capture the system’s physics, and on the
other hand the closed-loop control algorithm and its associated
code. The functional properties we are interested in include
closed-loop systems stability, closed-loop system performance
(eg tracking performance), and reachability analyses. We are
currently interested in describing how to map that property to
the implementation by conducting an extensive study of the
code generated from a benchmark of systems in that family.

B. Static Analysis Specification Framework

Checking the transposed property of the model on the code
may require a specific analysis algorithm that takes into
account the underlying computational model (floating/fixed-
point) and the nature of the reliability property (linear or
ellipsoidal invariants). Moreover, the code generated by the
model-based design environment may use programming lan-
guage constructs (like pointers or union types in C) that
pose a difficulty for the static analyzer. These constructs
may require dedicated analysis algorithms (pointer analysis,
type analysis) specially tailored for the particular structure
of code produced by the autocoder. These static analyzers
are strongly specialized toward the family of models and
properties considered. This does not require rewriting the
analyses from scratch for each of these configurations. We
need a library of baseline static analysis algorithms (pointer
analysis, floating-point analysis, type analysis, etc.) and a
framework for combining them in a way to address each
configuration’s unique requirements. We are in the process
of establishing a taxonomy of static analysis algorithms and
describing a specification framework for expressing arbitrary
combinations of these algorithms.

REFERENCES

[1] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival. The ASTRÉE Analyser. In Proceedings of the European
Symposium on Programming (ESOP’05), volume 3444 of Lecture Notes
in Computer Science, pages 21–30, 2005.

[2] A. Venet and G. Brat. Precise and efficient static array bound checking
for large embedded C programs. In Proceedings of the International
Conference on Programming Language Design and Implementation,
pages 231–242, 2004.

Dr. Feron is the Dutton/Ducoffe Professor of Aerospace
Software Systems at Georgia Institute of Technology since
2005. Prior to that, he was a tenured associate Professor of
Aeronautics and Astronautics at MIT from 1993 to 2005.
He holds degrees from Ecole Polytechnique, Ecole Normale
Superieure and Stanford University in Applied Mathematics,
Computer Science and Aeronautics and Astronautics. His
research focuses on the applications of control system theory
and optimization to the design and analysis of real-time
systems ranging from Air Traffic Control to autonomous
helicopter flight to control system software analysis. His
research on autonomous aerobatic helicopter flight is featured
in MIT’s list of Research Firsts as the lone entry for the
year 2002 and has received world-wide news coverage. Eric
Feron’s research in static software analysis aims at applying
advanced optimization methods to automatically search for
invariants in time-critical control software. Eric Feron has
authored or co-authored two books and over 100 research
publications. He has three pending patents. He has been the
associate editor for several academic journals, most lately
the International Journal of Field Robotics. Eric Feron is an
Advisor for the French Academy of Technologies. He has
supervised the research of 10 PhD students and more than 40
MS students.

Dr. Venet is a specialist in the application of Abstract Inter-
pretation to static analysis. Since his thesis work, he has held
R&D positions at PolySpace and Trusted Logic in France, and
Kestrel Technology (KT) in the United States. Dr. Venet was
one of the early contributors at PolySpace, helping to create the
first commercial static analyzer for industrial-size applications.
There he led the industrialization of PolySpace Verifier for C
and designed a version of PolySpace Verifier for JavaCard.
At KT, his initial assignments were in support of NASA’s
high assurance goals. There he designed and developed C
Global Surveyor (CGS). CGS is a large-scale static array-
bound checker that currently holds the distinction for the
largest code set analyzed with 100% verification assurance
for array bound compliance. CGS was successfully applied to
the mission control software of Mars Exploration Rovers and
science components of the ISS. Currently he is developing
a platform for the design and deployment of customizable,
industrial-scale static analyzers for robust large scale inte-
grated systems, malware detection, and other applications. Dr.
Venet holds patents on the application of static analysis for
JavaCard bytecode compression and software watermarking.
Dr. Venet received a Ph.D. in Computer Science from Ecole
Polytechnique (France) and an M.Sc. in Computer Science
from Ecole Normale Superieure (France).


