METHODS

Keynote

Certification is ultimately about judgment that a system is adequately safe. We need a “science of certification”.

· Favor explicit over implicit approaches

· Be wary of qualitative evidence

A proposed research agenda

· Science for certification

· Specification and verification of integration frameworks

· High performance automated verification for strong properties of model based designs

· Compositional certification

· Tool qualification

· Integrated methods and arguments

Presentations

· Lui R. Sha

· Verification is as good as the assumptions you base it on, and assumptions change as technologies change. Testing is vital.

· Architecture and Implementation Divergence.

· Two most important issues are interaction complexity reduction and the co-stability of software and hardware.
· Allen Goldberg

· Making reliable software systems from less reliable software subsystems
· Idea is Software Fault Protection – model how the software behaves and what response should be made to fault sin software.

· Software redundancy maybe an option but it is expensive.

· Effective redundancy can be done at runtime and maybe better than doing it at verification time.

· Our work extends ARINC 653.

· Fault containment is essential to fault isolation.

· Peter Skaves

· Eric Feron and Arnaud Venet

· Static stability analysis for autocoded software for aviation systems.

· Matlab should not be looked at as a programming language but instead should be looked at as a specification environment.

· The autocode that is generated from Simulink/Matlab does not free you from verifying the code it has generated.

· Certified autocode cannot be done from a mathematical perspective.

· Emilio Frazzoli
· Matthew B. Dwyer

· All validation, verification, synthesis has limits, and industry, govt, and research need to understand these limits.

· When techniques fail there is a lot of information that can help with the follow on analysis.

· Use a mixture of techniques to validate, but what to do when we are at the point of deployment. How to detect and respond to errors at runtime.

· Natasha Neogi

· Safety and security properties can lead to competing requirements.

· What to do – build in safety and security from system inception.

· Questions – how do you quantify and qualify safety and security, what are the effects of other qualities?

· Robin Bloomfield
· Reinhard Wilhelm

· Concerned with real time guarantees for hard real time systems
· A380 subsystems are being certified using aiT.

· Over-provisioning will no longer work. Completely deterministic system will not perform.

· A new research agenda – design for predictability, and design only what you can analyze.

General Discussion
· Eric’s Slides
· Sha

· We need to understand and document the limitations

· How can we handle residual bugs in the system
· Storm (Lockhead)

· Not one technique will address it all

· Biased towards formal methods in this workshop however there are other elements

· Shohan (NASA AMES)

· People underestimate error handling, underflow and overflow

· What does it mean if my tool cannot search through the space
· Need to know how to codify the science and put trust into the methods.

· Taft
· What does the FAA do to certify the hardware components?

· Lingberg (FAA) – FAA is not in the business of telling applicants how to do something, only what needs to be done.

· Feron – should we also include the legal system
· Lingberg – it is involved, that is where you get the formal standards
· Feron – for example law professors or lawyers working with research teams

· Lingberg – lawyers are always involved, within the standards as well as guidance.

· (audience) – maybe they are helpful for clarification of law but not more than that.

· Hansmen – bringing in extra people may not help with the understanding.

· Stosch (Idaho) – lawyers do have experience in interpreting evidence, and that is where they can help.

· Susner Aircraft

· Need to state our assumptions and how they impact on V&V

· Wheeler (North Carolina)

· Timing predicitability is important, and need to look at average and worse case performances.

· How you achieve it is interesting – we need to be more proactive and find new ways instead of just turning off architecture to see what the impact is.

· Need special support in hardware

· Feron – are you arguing that we should have more self-aware processes?

· Need a rethinking of process design to look at aspects of worst case and average case.

· Sha

· Can you enter onto your slides the point of software stability despite residual errors

· Feron – what do you mean residual errors?

· It means you cannot completely debug the system

· Feron – what kind of errors?

· Need to look at types of errors, as tackling specific errors can lead to more bugs.
· Winbuilt

· Need to understand what it means by diversity? This is a difficult research theme and we need to address it.

· One technique is to map out who is responsible for particular areas.

· Hansmen

· One issue is to archive and document the assumptions – both implicit and explicit.

· Storm (Lockhead)

· There are always issues with integrating someone else’s stuff, so we cannot bring together affordable code. So specifying interfaces will not help all the time.
· Pearce (FAA) – granted we need more rigorous interface, however maybe thinking of it as a contract (or at least formalizing) may help

· Feron

· Control has given us a number of tools to look at composibility and aspects of interface design
· Hushby (SRI)
· Strong notions of interfaces will help in composition and construction.

· Cormen (Boeing)

· The real challenge is to build in safety and security into a complex air control system and keep the air control system working.

· Feron – how about having a PGP like process, where every airplane publishes a public key.

· Gabor – there are many aspects – implementing security affects performance. Bad thing about security is that you can’t port onto an existing system easily.
· Neogi – one of the biggest problems with security is the interlinking of mixed aircraft. Essentially you have to have teirs and different levels of security.

· Gabor

· What needs to be put into an interface to identify it? – for example what processor was it compiled on?

· Ziloskwy – one way is to wrap it into the component, or you can separate the processor out.

· Feron – is there a way to specify software as a block and hardware as a block in such a way that we can predict the hardware/software block.

· Sha – we need to formalise the components and the FAA should take that up.

· Feron – is there a way of doing this so that the whole community agrees

· Sha – no, which is why the FAA needs to enforce it.

· Taft - DO297 standard maybe a place to start to go to the next level of interface design.

· Ziloskwy – there are architectural approaches to defining this.

· Lingberg – FAA is in the process of updating the DO297.

