
Static Stability Analysis of
Autocoded Software for Aviation

Systems

Eric Feron and Arnaud Venet
Georgia Tech and Kestrel Technologies

October 6, 2006

Core message

Modern model-based design environments
such as Matlab/Simulink have auto coding
capabilities. These auto coding capabilities
can substantially modify the properties of the
initial design.
We are working on static analyzers aimed at
proving that essential safety and functional
properties of the design are not substantially
affected by the auto coding process.

Outline

• Problem statement

• Abstract interpretation
• Autocode verification challenges

• Simple design example
– Closed-loop stability: Spec. level
– From spec-level to implementation-level
– Implementation artifacts

• Need for good collecting semantics
• Conclusion

Problem statement

• Autocoding tools have made real-time
executable embedded software available
seconds away from design specifications

• There remains need for certification
• “Certified autocoder” concept is nearly

impossible concept (“forall correct specification
inputs, autocoded output is correct”)

• Static analysis, eg using Cousot’s abstract
interpretation techniqes, can help answer more
reasonable statement “for a given correct
specification input, autocoded output is correct”

Abstract interpretation
• Proposed by Cousot in late 70’s

• Based on building conservative, but easier to
analyze approximations of program behavior

• Similar in spirit to robust control system analysis

• ASTRÉE static analyzer (Cousot / Ecole
Normale Supérieure, Paris) used to verify
consistency of floating point arithmetic on A380

• C Global Surveyor (Kestrel Technology LLC)
used to verify absence of pointer manipulation
errors on NASA’s Mars rovers

Autocode verification challenges

1. How do we translate a property of the high-level model
into a property of the code generated from a model?
What are the features of the autocoder we must know
to effectively build this translator?
The autocoder of the model-based design environment generates code from the
model in a predictable way. There are rich, structured libraries of basic components
for building systems but properties of interest may greatly vary across systems.

2. How do we specify the basic components of the static
analyzer required to verify the desired property? How
do we specialize the analyzer to the code generated by
a given autocoder?
Use Matlab/SimulinkTMtool suite as exprimental test-bed; study family of closed-
loop dynamical systems: Differential equations that capture the system’s physics +
closed-loop control algorithm & code.
Functional properties of interest: closed-loop systems stability, closed-loop system
performance

Simple Design Example

• Simple dynamical system

m=1

u

w

x

x’=y

(x, y)= position/velocity

u = controlled input force

w = exogenous disturbance force

Controller

Model-based specificationPhysics

Simple Design Example (ct’d)
Model-based specification Implementation

Closed loop stability (w=0)

Specification level
• Use invariant function

We have V>0 (except at 0) and

To be exact: V positive-definite Stability

From system-level properties to
implementation-level properties

• Ellipsoidal invariant tailored to continuous-
time specification – Does it prove
sampled-data implementation closed-loop
stability?

• Impact of roundoff errors due to floating-
point arithmetic?

• Designing efficient abstract domains

Implementation artifacts

• Many auxiliray static analyses to recover
data structures, from layers and layers of
pointers (probably “cover letters” due to
successive Matlab/Simulink upgrades)

• Must perform pointer / variable range
analysis to distinguish elements of arrays
and index variables used to manipulating
model data

What collecting semantics?

• Closed-loop system feels like

Invariant to prove sability

Stability iff

(P symmetric, positive-definite matrix)

What collecting semantics? (ct’d)

Code implementation requires several lines
of code, eg, instruction
is implemented as

But evolution of V(x) may not be monotonic when looking at line-by-line
evolution. In fact it is NEVER monotonic in most cases of interest.
Substantially constrains the design of the collecting semantics
and the static analysis: Execution traces of some loops must be collected
and represented by one semantic object.

Conclusions

• Outlined a research program aimed at
static analysis of autocoded software

• Outlined some of the issues and
approaches
– “Invariant invariance” across autocoding step

– Collecting semantics must be adapted to
properties of interest

Thanks to

• NSF: Embedded and Hybrid Systems
program, GTech: Dutton/Ducoffe
Professorship in Aerospace Software
Engineering

• Patrick Cousot (ENS), Alexandre
Megretski (MIT), Cesar Munoz (NASA-
Langley), Rene Valenzuela (GTech)

