
DUSD(Labs)

Communication/ComponentCommunication/Component--Based DesignBased Design
(Theme Leader: Alberto SV)(Theme Leader: Alberto SV)

Roberto Roberto PasseronePasserone (UC Berkeley)(UC Berkeley)
RaduRadu MarculescuMarculescu (CMU)(CMU)

GSRC Symposium & WorkshopGSRC Symposium & Workshop
June 9June 9--10, 200210, 2002

OutlineOutline
MotivationMotivation

Platform and CommunicationPlatform and Communication--based Designbased Design
DefinitionDefinition
Design MethodologyDesign Methodology
Network PlatformsNetwork Platforms
Analog PlatformsAnalog Platforms

The Metropolis FrameworkThe Metropolis Framework
MetamodelMetamodel
VerificationVerification
SynthesisSynthesis
Theory of ModelsTheory of Models
Analysis (Analysis (RaduRadu MarculescuMarculescu))
Communication Synthesis (Communication Synthesis (RaduRadu MarculescuMarculescu))

Motivation: Motivation:
Distributed Applications Distributed Applications

The PicoRadio Networking PlaygroundThe PicoRadio Networking Playground

Properties:
• system consisting of sensors
(sources), monitors (controllers),
and actuators (sinks)

Assumptions:
• no or minimal infrastructure
• range of any node << network size
• any node can act as repeater

Optimization Goals:
• Global energy
• System survivability

• nodes can go down
temporarily lacking energy

• delivery of information to be
ensured

sensor
actuator

monitor

node range

OutlineOutline

MotivationMotivation

Platform and CommunicationPlatform and Communication--based Designbased Design
DefinitionDefinition
Design MethodologyDesign Methodology
Network PlatformsNetwork Platforms
Analog PlatformsAnalog Platforms

The Metropolis FrameworkThe Metropolis Framework
MetamodelMetamodel
VerificationVerification
SynthesisSynthesis
Theory of ModelsTheory of Models

PlatformsPlatforms
Texas Instruments OMAP, Philips nExperia, Infineon Texas Instruments OMAP, Philips nExperia, Infineon MGoldMGold
Concentrates on full applicationConcentrates on full application

Delivers comprehensive set of libraries hardware and softwareDelivers comprehensive set of libraries hardware and software
Delivers several mapping and application examplesDelivers several mapping and application examples

Hardware PlatformHardware Platform
A coordinated family of architectures that satisfy a set of A coordinated family of architectures that satisfy a set of
architectural constraints imposed to support rearchitectural constraints imposed to support re--use of hardware use of hardware
and software componentsand software components

Texas Instruments
OMAP

Beyond Hardware Platforms Beyond Hardware Platforms
Platforms Examples

TI: OMAP
Philips: Nexperia
ARM: PrimeXSys

System

HW
SW

Xilinx: Virtex II
eASIC: eUnit

Implementation
Fabrics

Manufacturing

Cisco: ONS 15800 DWDM Platform
Ericsson: Internet Services platformService

Nokia: Mobile Internet Architecture
Intel: Personal Internet Client Architecture
Sony: Playstation 2

Application

ASV PlatformsASV Platforms

Platform

Mapping Tools

Platform

Platform stack {

In general, a platform is an abstraction layer that covers a
number of possible refinements into a lower level.

The design process is meet-in-
the-middle:
•Top-down: map an instance of
the top platform into an instance
of the lower platform and
propagate constraints
•Bottom-up: build a platform by
defining the “library” that
characterizes it and a
performance abstraction (e.g.,
number of literals for tech.
Independent optimization, area
and propagation delay for a cell
in a standard cell library)

The library has elements and
interconnects

ASV PlatformsASV Platforms

For every platform, there is a view that is
used to map the upper layers of abstraction
into the platform and a view that is used to
define the class of lower level abstractions
implied by the platform.

For every platform, there is a view that is
used to map the upper layers of abstraction
into the platform and a view that is used to
define the class of lower level abstractions
implied by the platform.

Upper layer of abstraction

Lower layer of abstraction

Constraints Performance Annotation

PlatformPlatform--Based ImplementationBased Implementation
Platforms eliminate Platforms eliminate large loop iterationslarge loop iterations for affordable designfor affordable design

Restrict design space via new forms of regularity and structureRestrict design space via new forms of regularity and structure that surrender that surrender
somesome design potential for lower cost and firstdesign potential for lower cost and first--pass successpass success

The number and location of intermediate platforms is the essencThe number and location of intermediate platforms is the essence of platforme of platform--
based designbased design

Silicon Implementation

Application

Platform
Design-Space

Exploration

Platform
Specification

Architectural Space

Application Space
Application Instance

Platform Instance

System
Platform

Specification

Analysis

After Sales Service

Calibration

Implementation

D
ev

el
op

m
en

t P
ro

ce
ss

BusesBuses
Matlab

CPUs Buses Operating
Systems

Software Components Virtual Architectural Components

C-Code
IPs

ASCET

ECUECU--11 ECUECU--22

ECUECU--33
BusBus

f1f1 f2f2

f3f3

System Behavior System Platform

Mapping

Performance
Simulation

Refinement

Evaluation of
Architectural
and
Partitioning
Alternatives

Design Methodology: Design Methodology: OrthogonalizeOrthogonalize ConcernsConcerns

UMLUML--Platform: Platform: Notation and Methodology for PBDNotation and Methodology for PBD
Overview:Overview: –– a projection of platforms into the UML notation space a projection of platforms into the UML notation space

Results:Results: –– a new UML profile for platforma new UML profile for platform--based design (PBD)based design (PBD)
–– a methodology for representation of platform layers,a methodology for representation of platform layers,

relations, relations, QoSQoS, constraints, extension points, etc., constraints, extension points, etc.

Directions: Directions: –– a fronta front--end language for Metropolisend language for Metropolis
–– a fulla full--fledged design methodology based on Metropolisfledged design methodology based on Metropolis

µP and
memory

inter-
connection

I/OHW

RTOS
network

communication
subsystem

device
driver

application domain-specific
services (functions, user interfaces)

ASP

ARC

API

•••• Identify platform layers

<<stack>>

<<transparent stack>> <<opaque stack>>

<<use/need>>

<<peer>>

•••• Build stereotypes and hierarchy

Model and Design of Network PlatformsModel and Design of Network Platforms

Max Power, BER

Multi-hop Request delivery, multi-hop Response delivery

Network Layer

CS:

Pull Push

Application Layer

CS:

Formalization of Network Platforms
APIs: sets of Communication Services

Application: Design of Picoradio networks
Communication Refinement

Analog PlatformsAnalog Platforms

Analog Platforms are Analog Platforms are parametrizedparametrized
architectural componentsarchitectural components

Analog Platforms along with Analog Platforms along with
hierarchies of behavioral models hierarchies of behavioral models
define an define an Analog IPAnalog IP

System Specs
Behavioral models
Performance models

Circuit design
– Size, Simulate and iterate

Layout design
– Verify and iterate with both prior levels

Ci
rc

ui
t

siz
in

g &
sy

nt
he

sis

Sy
st

em
Le

ve
l

Ex
pl

or
at

io
n

Analog IP

Roles of the Analog IPRoles of the Analog IP
Separate System Level Design from Circuit DesignSeparate System Level Design from Circuit Design
Hide all implementation details, only export performancesHide all implementation details, only export performances

The goal of Analog The goal of Analog IPsIPs is to support optimizations at the system levelis to support optimizations at the system level
Define Define optimal optimal specs for individual blocks, thus selecting particular instancesspecs for individual blocks, thus selecting particular instances of the of the
Analog Platforms Analog Platforms

CommunicationCommunication--Network CentricNetwork Centric

Ulysses: Protocol Synthesis from ScenarioUlysses: Protocol Synthesis from Scenario--
based Specificationsbased Specifications

Avoid early partitioning into componentsAvoid early partitioning into components

Specify scenarios independentlySpecify scenarios independently

Compose scenariosCompose scenarios

Interface SynthesisInterface Synthesis
Synthesis of converters from property Synthesis of converters from property
specificationspecification

Blend of synthesis and verification techniques Blend of synthesis and verification techniques
(with T. (with T. HenzingerHenzinger and L. de Alfaro)and L. de Alfaro)

DirectionsDirections
Generalization of synthesis techniques to Generalization of synthesis techniques to
arbitrary abstraction layerarbitrary abstraction layer

P1 P2U1 U2

read a write b

1a

0-

1a

0b

0b

0- 1a 0b

0-0-
1a0-

0-
1a

0-
0b

0-1a

0-0b

1a1a

1a1a 0b1a

1a0b

1a0b 0b0b

0b0b

0b1a

0b0-

OutlineOutline

MotivationMotivation

Platform and CommunicationPlatform and Communication--based Designbased Design
DefinitionDefinition
Design MethodologyDesign Methodology
Network PlatformsNetwork Platforms
Analog PlatformsAnalog Platforms

The Metropolis FrameworkThe Metropolis Framework
MetamodelMetamodel
VerificationVerification
SynthesisSynthesis
Theory of ModelsTheory of Models

Metro ShellMetro Shell
Command InterpreterCommand Interpreter

Functional Spec

Communication Spec

Constraints

Architecture

Meta model

MetropolisMetropolis

Verification
Analysis

tool

Synthesis
tool

Front end

Simulator
tool

...Back end1

Abstract syntax tree

Back end2 Back endNBack end3

Meta model
compiler

Meta Model

etropolis

Must describe objects at different levels of abstraction
Do not commit to the semantics of a particular Model of Computation

Define a set of “building blocks”:
specifications with many useful MoCs can be described using the building blocks
Processes, communication media and schedulers separate computation,
communication and coordination

Represent behavior at all design phases - mapped or unmapped

P1 P2M

S

P1.pZ.write() P2.pX.read()

pX pZ pX pZ

M’ M’

Computation

Communication

Coordination

Metropolis: meta modelMetropolis: meta model

EmphasisEmphasis

RefinementRefinement
Functional refinementFunctional refinement
Communication refinementCommunication refinement

ConstraintsConstraints
Quantities, Temporal logic, SchedulersQuantities, Temporal logic, Schedulers

Architecture definitionArchitecture definition

m1

p0
m0

p1

p3

p2
c1

c0

refm0
w0

mb

w1
r0

w0
w1

r0

refm1

SYSTEM:
- SW modules, HW
- bounded FIFO, lossy channels
- no address, bus independent

TRANSACTION:
- address, data split in chunk
- no detailed bus protocol or width

PHYSICAL:
- specific bus protocol
- detailed RTOS characterization

CPU ASIC2ASIC1

Sw1 Hardware
moduleSw2

Sw I/F Channel I/F

Wrappers

Hw

Bus I/F

C-Ctl Channel Ctl

B-I/FCPU-IOs

e.g. PIBus 32b

e.g. OtherBus 64b...

C-Ctl

RTOS

OutlineOutline

MotivationMotivation

Platform and CommunicationPlatform and Communication--based Designbased Design
DefinitionDefinition
Design MethodologyDesign Methodology
Network PlatformsNetwork Platforms
Analog PlatformsAnalog Platforms

The Metropolis FrameworkThe Metropolis Framework
MetamodelMetamodel
VerificationVerification
SynthesisSynthesis
Theory of ModelsTheory of Models

Simulating the Simulating the MetaModelMetaModel in the Metropolis in the Metropolis
FrameworkFramework

MultiMulti--threaded (single or multithreaded (single or multi--processor) simulation codeprocessor) simulation code
JavaJavaTMTM, , SystemCSystemC, C++, C++

Extension to performance simulationExtension to performance simulation
Architecture: Architecture: netlistnetlist of blocks that provide servicesof blocks that provide services
Quantities: manage performance metrics (time, power, area, etc.)Quantities: manage performance metrics (time, power, area, etc.)
Mapping: annotation of functional processes using quantities andMapping: annotation of functional processes using quantities and architecture servicesarchitecture services

Simulator PerformanceSimulator Performance
Constructed and profiled various models in Constructed and profiled various models in SystemCSystemC and Metropolisand Metropolis
Identified bottlenecks and implemented changes to match the perfIdentified bottlenecks and implemented changes to match the performance of System C ormance of System C
and Metropolis model simulatorsand Metropolis model simulators

Metropolis benefits come at no extra simulation costMetropolis benefits come at no extra simulation cost
Directions:Directions:

Techniques for Interactive & batch based simulation Techniques for Interactive & batch based simulation
Simulation Coverage Enhancement [Simulation Coverage Enhancement [IpIp, ICCAD 2000], ICCAD 2000]
Heuristics to guide the simulator for finding bugs [Dill, DAC 19Heuristics to guide the simulator for finding bugs [Dill, DAC 1998]98]

Formal Specification and Analysis:Formal Specification and Analysis:
Metropolis at UCMetropolis at UC--Riverside (H. Hsieh, et al)Riverside (H. Hsieh, et al)
1.1. Defining Defining MOCsMOCs in MMMin MMM

SDF, Dataflow PN, Synchronous FSM network, SDF, Dataflow PN, Synchronous FSM network, SystemCSystemC subset, …subset, …

2.2. Translating Ptolemy/CAL designs into MMMTranslating Ptolemy/CAL designs into MMM
SDF, Dataflow PNSDF, Dataflow PN

3.3. Formal verification of MMM designs using SPINFormal verification of MMM designs using SPIN
Property verification, implementation verificationProperty verification, implementation verification

4.4. Conformance checking of MMM design using SPINConformance checking of MMM design using SPIN
Simulation trace containment of implementation vs. specSimulation trace containment of implementation vs. spec

5.5. Verifying constraint formulae with simulationVerifying constraint formulae with simulation
Simulation monitor for quantitative constraintsSimulation monitor for quantitative constraints

Architecture

MMM

Synthesis

Communication
Processes

Verification

2 1

3 4 5

Successive Refinement in MetropolisSuccessive Refinement in Metropolis

Verify properties of components : wellVerify properties of components : well--timednesstimedness, , livenessliveness
Properties preserved byProperties preserved by

Composition of components (Composition of components (compositionalitycompositionality))
Restriction by constraints (Restriction by constraints (composabilitycomposability))

Integration of the incremental modeling tool Prometheus in MetroIntegration of the incremental modeling tool Prometheus in Metropolis (work in polis (work in
progress).progress).
Case study: Case study: TinyOSTinyOS networking application.networking application.

DirectionsDirections
Provide modeling guidelines for the metaProvide modeling guidelines for the meta--model to support incremental model to support incremental
modeling.modeling.
Extend results to more “difficult” properties, e.g. Extend results to more “difficult” properties, e.g. schedulabilityschedulability of processes.of processes.
Efficiently synthesize a refinement satisfying required, more spEfficiently synthesize a refinement satisfying required, more specific ecific
properties.properties.

OutlineOutline

MotivationMotivation

Platform and CommunicationPlatform and Communication--based Designbased Design
DefinitionDefinition
Design MethodologyDesign Methodology
Network PlatformsNetwork Platforms
Analog PlatformsAnalog Platforms

The Metropolis FrameworkThe Metropolis Framework
MetamodelMetamodel
VerificationVerification
SynthesisSynthesis
Theory of ModelsTheory of Models

Application Driven SchedulingApplication Driven Scheduling
Scheduling for realScheduling for real--time feedback controllerstime feedback controllers

http://wwwhttp://www--cad.eecs.berkeley.edu/~pinellocad.eecs.berkeley.edu/~pinello

DRAFTS: Distributed RealDRAFTS: Distributed Real--time Applications time Applications
Fault Tolerant Scheduling Fault Tolerant Scheduling

Automatic (offAutomatic (off--line) synthesis of fault line) synthesis of fault
tolerant schedules for periodic algorithms tolerant schedules for periodic algorithms
on a distributed architectureon a distributed architecture

Automatic (offAutomatic (off--line) verification that all line) verification that all
intended faults are covered intended faults are covered

LongLong--term goals:term goals:

Design Methodology for Safety Critical Design Methodology for Safety Critical
Distributed Systems Distributed Systems

Manage the design complexity of modern Manage the design complexity of modern
DriveDrive--ByBy--Wire applicationsWire applications

RACS: ResourceRACS: Resource--Aware Control Aware Control
SynthesisSynthesis

Optimal Synthesis of control gains Optimal Synthesis of control gains
and scheduling parametersand scheduling parameters

Performance metric: stability Performance metric: stability
robustness robustness

Constraints: execution capacity and Constraints: execution capacity and
scheduling policy (e.g. EDF, RM)scheduling policy (e.g. EDF, RM)

Stabilizing gains

Stability Center

Stability Radius

DrivDriv
erer

Braking central Braking central
control unitcontrol unit

Wheel control Wheel control
unitunit

Wheel control Wheel control
unitunit

Wheel control Wheel control
unitunit

Wheel control Wheel control
unitunit

Braking central Braking central
control unitcontrol unit

Wheel control Wheel control
unitunit

Wheel control Wheel control
unitunit

Wheel control Wheel control
unitunit

Wheel control Wheel control
unitunit

Desired Desired
DeceleratiDecelerati
onon

LAN BusLAN Bus

Force Force
SettinSettin
gsgs

WhWh
eel eel
SpeSpe
eded

Software Synthesis: QuasiSoftware Synthesis: Quasi--Static SchedulingStatic Scheduling
Sequentialize concurrent operations

Can handle data-dependent control, multi-rate communication
Better starting point for code generation

Philips MPEG2 decoder: Performance increased by 45%
reduction of communication (no internal reduction of communication (no internal FIFOsFIFOs between statically scheduled processes)between statically scheduled processes)
reduction of runreduction of run--time scheduling (OS)time scheduling (OS)
no reduction in computationno reduction in computation

Future directions
False path analysis, design partitioning, multiprocessor systems

QSS

From ISA to microFrom ISA to micro--architecturearchitecture
Leverage Communication Based DesignLeverage Communication Based Design
High PerformanceHigh Performance
Correct by Construction DesignCorrect by Construction Design
Reusability and FlexibilityReusability and Flexibility

Case Study Specification of a MIPS 32Case Study Specification of a MIPS 32
Developed a TraceDeveloped a Trace--Driven Simulator for Driven Simulator for
Multiprocessor Cache Coherence in Multiprocessor Cache Coherence in SystemCSystemC
Preliminary results forPreliminary results for

Representing SpeculationRepresenting Speculation
Modeling various levels of abstraction using Process Modeling various levels of abstraction using Process
Networks and Synchronous LanguagesNetworks and Synchronous Languages

DirectionsDirections
Examples From Industry (Intel and Cypress)Examples From Industry (Intel and Cypress)
Further exploration of modeling memory systemsFurther exploration of modeling memory systems

Communication Driven HW Synthesis(CDHWSYNTH) Communication Driven HW Synthesis(CDHWSYNTH)
for Highfor High--Performance Microprocessor DesignPerformance Microprocessor Design

ISA
Specification

Architectural
Library

Methodology:
Mappings,

Refinements,
Transformations

Intel Pentium IV Die (source: Intel web site)

OutlineOutline

MotivationMotivation

Platform and CommunicationPlatform and Communication--based Designbased Design
DefinitionDefinition
Design MethodologyDesign Methodology
Network PlatformsNetwork Platforms
Analog PlatformsAnalog Platforms

The Metropolis FrameworkThe Metropolis Framework
MetamodelMetamodel
VerificationVerification
SynthesisSynthesis
Theory of ModelsTheory of Models

Metropolis Semantics: Action AutomataMetropolis Semantics: Action Automata

B y = x + 1 B x + 1 E x + 1 E y = x + 1
Y := Vx+1

B x + 1 E x + 1 E y = x + 1
Y := any

c

c

c

c

* = write y* * *

B x + 1 E x + 1
Vx+1 := x + 1

E y = x + 1
Vx+1 := any

c

c

write x

y = x + 1

x + 1

One for each action (statement, function call, expressions, etc.One for each action (statement, function call, expressions, etc.) of each) of each
processprocess
Composed synchronouslyComposed synchronously
May update shared memory variables:May update shared memory variables:

process and media member variablesprocess and media member variables
values of actionsvalues of actions--expressionsexpressions

Have guards that depend on states of other action automata and mHave guards that depend on states of other action automata and memory emory
variablesvariables

Algebraic Theory of ModelsAlgebraic Theory of Models

P1 P2M

S

P1.pZ.write() P2.pX.read()

pX pZ pX pZ

M’ M’

Meta Model

Pre-Post

Process Networks

Data Flow

Discrete Time
Non-metric Time

Continuous Time

Trace Algebras
Conservative Approximations

DirectionsDirections
Generalization to Agent AlgebrasGeneralization to Agent Algebras
Generalization to sequential compositionGeneralization to sequential composition

OutlineOutline
MotivationMotivation

Platform and CommunicationPlatform and Communication--based Designbased Design
DefinitionDefinition
Design MethodologyDesign Methodology
Network PlatformsNetwork Platforms
Analog PlatformsAnalog Platforms

The Metropolis FrameworkThe Metropolis Framework
MetamodelMetamodel
VerificationVerification
SynthesisSynthesis
Theory of ModelsTheory of Models
Analysis (Analysis (RaduRadu MarculescuMarculescu))
Communication Synthesis (Communication Synthesis (RaduRadu MarculescuMarculescu))

Design of
Communication Media

Design of
Function Processes

Design of
Architecture Components

Metropolis Point Tools:
Synthesis/Refinement

Metropolis Point Tools:
Verification

Metropolis Infrastructure

Analysisabstract mapping +
performance numbers

scheduling policy +
adaptation mechanisms

Where does the Analysis Module fit?Where does the Analysis Module fit?

The Big PictureThe Big Picture
Informal
description

P: (a,λλλλ)…| …(b,µµµµ) System description

a,λλλλ b,µµµµ

a,λλλλ
d,λλλλ Semantic model

formal semantics

temporal

deadlock

functional

performance evaluation

Resultspower

non-functional

…

Possibly several
inputs here!

Our choice: SANs

A Multimedia Stream: Informal DescriptionA Multimedia Stream: Informal Description

Constraints on behavior -> QoS requirements
The data source repeatedly transmits data frames every 50ms (e.g. 20fps)
After generation of a frame, 5ms elapse before it is transmitted
Communication is asynchronous and channel may have errors
Successfully transmitted frames arrive at sink between 80ms and 90ms (latency)
If the number of frames arriving at the data sink is not within 15 to 20 fps (channel
throughput), then an error should be reported
End-to-end latency should be between 100ms and 120 ms (this is the acceptable jitter
on latency). A frame taking longer than 120ms is assumed to be lost

Note
May change through system development (parameters that change should be easily
identifiable and easy to change) (mostly a research issue)
Specify and work w/ probabilities (mostly a research issue)

Data
Source

Data
Sink

Send frames Play frames

channel

Header
decoder VLD

Buffer

IDCT
IQ

Baseline Unit

+ Recovery
Unit

MC Unit

Decoded
video

MPEG
coded
video

What is our Driver Application?What is our Driver Application?

How do we Model the Application?How do we Model the Application?

…
void Fast_IDCT(block)
short *block;
{

int i;
for (i=0; i<8; i++)
idctrow(block+8*i);

for (i=0; i<8; i++)
idctcol(block+i);

}
…

?

SOC

This is Hard!

“Processes” and “medium” participate in communication!

We talk about MCs and steady-state analysis because
we assume exponentially distributed RVs (that is, F(t) = 1 - e–rt)!

T}))(:{Act,(C, r)(∈→ α,rα,

action rate ∈∈∈∈R+

625

625

How do we Build a SANHow do we Build a SAN--based Semantic Model?based Semantic Model?
Four concurrent automata, five states each

a,λλλλ b,µµµµ

a,λλλλ

d,λλλλ One iteration

Model of a CPU

How do we Model the Architecture?How do we Model the Architecture?

Model of the memory

Putting Everything TogetherPutting Everything Together

This is a shared resource!

This is a guarded transition

…… and Getting the Results: the Nodeand Getting the Results: the Node--Centric Centric
PerspectivePerspective

buffer length 1.15

…… and Getting the Results: the Nodeand Getting the Results: the Node--Centric Centric
PerspectivePerspective

This comes from steady-state analysis

How about the Communication Channel?How about the Communication Channel?

Application level
∞∞∞∞ Buffer

Encoder Decoder

Tx RxError
ModelBuffer-Tx Buffer-Rx

Communication Error

Encoder

Real Channel

Decoder
scheduler

HW

Encoder
Finite Buffer

Rx Decoder
Buffer-Rx

Application
mapped to
Hardware

Tx
Buffer-Tx scheduler

HW

Ideal Channel

The ‘node’ behavior depends dramatically on channel behavior!

What are we Trying to Analyze?What are we Trying to Analyze?
Communication Error

Tx Rx
Error
Model

Buffer-Tx Buffer-Rx
Real Channel

B1B1 B2B2

Again, the NetworkAgain, the Network--Centric Perspective…Centric Perspective…
Communication Error

Tx Rx
Error
Model

Buffer-Tx Buffer-Rx
Real Channel

B1 B2

0

0.2

0.4

0.6

0.8

1

36fps 30fps 24fps 20fps

0%
15%

30%
50%

0%
15%
30%
50%

0
0.1
0.2
0.3
0.4
0.5
0.6

36fps 30fps 24fps 20fps

0%
15%

30%
50%

0%
15%
30%
50%

ConstraintConstraint--Driven, PlatformDriven, Platform--based Synthesis of based Synthesis of
Communication ArchitecturesCommunication Architectures

Library of
pre-designed
Communication
Components
(platform)

Point-to-Point
Channel
Communication
Requirements

Communication
Architecture
Implementation

Synthesis

System modules communicate by means of point-to-point channels

High-level communication constraints for each channel in the system are captured as
a Constraint Graph

Similarly, the characteristics of all components in the Communication Library are
captured as a set of feature resources together with their cost figure

The synthesis result is represented by an Implementation Graph and obtained by
solving a constrained optimization problem

LatencyLatency--Insensitive Design Insensitive Design

Channels (short wires)
Channels (long wires)

Shells (interface logic blocks)

P1

P2

P3

P4

P5

P6

P7

Pearls (synchronous IP cores)

RS
RS

RS

RS

RS

RS RS

RS

Relay Stations

SummarySummary
Main ideas

Formal models emphasis
SAN analysis reduces the gap between simulation and verification

Communication architectures can be synthesized from requirements

Current research
Exploiting regularity in system-level analysis

Efficient analysis enabled by symmetries (Nick Zamora)
We expect orders of magnitude reduction in the complexity of the analysis

Connect system-level analysis w/ lower levels of abstraction (Jingcao Hu)
Efficient mapping techniques for regular architectures

Communication Architectures: On- and off-chip
Analytical models for traffic analysis (Girish Varatkar)

Architecture/design implications
Build fast and realistic simulators

Communication architecture synthesis (Luca Carloni, Alessandro Pinto)
Protocol design for efficient on-chip communication (Luca Carloni, Tudor Dumitras)

SummarySummary
Interdisciplinary, intercontinental project (10 institutions in 5 countries)
Goal:

Design methodologies: abstraction levels, design problem formulations
EDA: formal methods for automatic synthesis and verification,

a modeling mechanism: heterogeneous semantics, concurrency
Primary thrusts:

Metropolis Meta Model:
Building blocks for modular descriptions of heterogeneous semantics
The internal modeling mechanism for function, architecture, and constraints

Design Methodology:
Multi-media digital systems
Wireless communication
Fault-tolerant automotive systems
Microprocessors

Formal Methods

Metropolis Project: ParticipantsMetropolis Project: Participants
UC Berkeley (USA): methodologies, modeling, formal methods

CMU (USA): methodologies, modeling, formal methods

Politecnico di Torino (Italy): methodologies, modeling, formal methods

Universita Politecnica de Catalunya (Spain): modeling, formal methods

UC Riverside (USA): modeling, formal methods

Cadence Berkeley Labs (USA): methodologies, modeling, formal methods

PARADES (Italy): methodologies, modeling, formal methods

ST (USA, France-Italy): methodologies, modeling

Philips (USA, Netherlands): methodologies (multi-media)

Nokia (USA, Finland): methodologies (wireless communication)

BWRC (USA): methodologies (wireless communication)

Magneti-Marelli (Italy): methodologies (power train control)

BMW (USA, Germany): methodologies (fault-tolerant automotive controls)

Intel (USA): methodologies (microprocessors)

Cypress (USA): methodologies (network processors, USB platforms)

Honeywell (USA): methodologies (FADEC)

ReferencesReferences
• Platform-Based Design

• Alberto Sangiovanni-Vincentelli, “Defining Platform-Based Design”, EE Design, March
5, 2002.

• Alberto Sangiovanni-Vincentelli and Grant Martin, A Vision for Embedded
Systems: Platform-Based Design and Software Methodology, IEEE Design and Test of
Computers, Volume 18, Number 6, November-December, 2001, pp. 23-33

• K. Keutzer, S. Malik, A. R. Newton, J. M. Rabaey, and A. Sangiovanni-Vincentelli,
“System Level Design: Orthogonalization of Concerns and Platform-Based Design”,
IEEE Transactions on Computer-Aided Design, Vol. 19, No. 12, December 2000

• Metropolis
• F. Balarin et al., “Modeling and Designing Heterogeneous Systems”, in J. Cortadella

and A. Yakovlev editors, Advances in Concurrency and System Design, Springer-
Verlag, 2002.

• F. Balarin et al., “Constraints Specification at Higher Levels of Abstraction”, in
Proceedings of the IEEE International High Level Design Validation and Test
Workshop, Monterey, California, November 7-9, 2001.

ReferencesReferences
• Quasi-Static Scheduling

• C. Passerone, Y. Watanabe, L. Lavagno, “Generation of Minimal Size Code for
Schedule Graphs”, Proceedings of the Design Automation and Test in Europe, Munich,
Germany, 2001.

• Cortadella et al: “Task generation and compile-time scheduling for mixed data-control
embedded software”, Proceedings of the 37th Design Automation Conference, Los
Angeles, CA, June 2000.

• Application Driven Scheduling
• L. Palopoli, C. Pinello, A. Sangiovanni Vincentelli, L. Elghaoui, A. Bicchi, “Synthesis of

robust control systems under resource constraints”, HSCC2002, Lecture Notes in
Computer Science, March 2002.

• Algebraic Theory
• J. Burch, R. Passerone, A. Sangiovanni-Vincentelli, “Using Multiple Levels of

Abstraction in Embedded Software Design”, Proceedings of the First International
Workshop on Embedded Software, Tahoe City, CA, October 2001.

• J. Burch, R. Passerone, A. Sangiovanni-Vincentelli, ”Overcoming Heterophobia:
Modeling Concurrency in Heterogeneous Systems”, Proceedings of Application of
Concurrency to System Design, Newcastle (UK), 2001.

ReferencesReferences

Power/performance analysis for platform-based design
R. Marculescu, A. Nandi, L. Lavagno, and A. Sangiovanni-Vincentelli, 'System-Level
Power/Performance Analysis of Portable Multimedia Systems Communicating over
Wireless Channels', in Proc. ICCAD, Nov. 2001.
A. Nandi, R. Marculescu, 'System-Level Power/Performance Analysis for Embedded
Systems Design', in Proc. DAC, June 2001.
R. Marculescu, A. Nandi, 'Probabilistic Application Modeling for System-Level
Performance Analysis', in Proc. DATE, March 2001.

On-chip communication
G. Varatkar and R. Marculescu, 'Traffic Analysis for On-chip Networks Design of
Multimedia Applications', in Proc. DAC, June 2002.
J. Hu, Y. Deng, R. Marculescu, 'System-Level Point-to-Point Communication Synthesis
Using Floorplanning Information', in Proc. ASP-DAC, Jan. 2002.

References References –– continue continue
Constraint-Driven Communication Synthesis

A. Pinto, L.P. Carloni, and A. Sangiovanni-Vincentelli, ‘Constraint-Driven
Communication Synthesis’, in Proc. DAC June 2002.

Latency-Insensitive Design
L.P. Carloni, K. McMillan and A. Sangiovanni-Vincentelli, ‘Theory of Latency-Insensitive
Design’, IEEE Transactions On Computer-Aided Design, Vol. 20, No. 9, Sept. 2001.
L.P. Carloni and A. Sangiovanni-Vincentelli, ‘Performance Analysis of Latency-
Insensitive Systems’, in Proc. DAC June 2000.

Communication Driven Hardware Synthesis
SRC Technical Report, Report on problem formulation, state of the art and theory
review, SRC Task 837.001, Sept. 2001
SRC Technical Report, Report on Case Study Specification, SRC Task 837.001, Sept
2001
Graduate Computer Architecture Project Report, Available at:
http://www.cs.berkeley.edu/~densmore/documents/252_Final.pdf

