

Representing Ptolemy II Models in Two-Dimensional Space

Ismael M. Sarmiento
Faculty Mentor: Dr. Edward Lee

Graduate Mentor: Stephen A. Neuendorffer
ismael.sarmiento@fiu.edu

Abstract

The Ptolemy II software is capable of modeling complex
problems through a simple, actor-based user interface.
Previously, the lack of a two-dimensional framework
limited the results of Ptolemy models involving any sort of
two-dimensional motion to simple position plots. The
need to generate intuitive two-dimensional
representations of models led us to develop such a
framework, in which the results of models involving two-
dimensional motion are now displayed as animations.
These animations give the author a more concrete, real-
world representation of the results, while the ability to
simultaneously display position plots allows the author to
maintain a more quantitative view of the data. Because
the two-dimensional animation actors receive nearly the
same input as the existing plotting actors, adding
animation functionality to existing models poses minimal
burden on the author.

1. Introduction

Ptolemy II is an extensive, open source software
package in development at the University of California,
Berkeley, which allows the simulation of concurrent
systems based on user-created models [1]. The software
is written entirely in Java, but the creation of models
requires little or no programming knowledge, as Ptolemy
II provides a robust graphical user interface for
constructing models. The user need only drag the
components required for the model into the editor
window and specify how they interact with each other.

1.1. Representations of output

When Ptolemy II models are executed, the results can

be displayed in a variety of ways. Strings of values can
be printed to the screen, various plots of the results can be
generated, and for models involving three-dimensional

motion, three-dimensional animations can be created.
While there are many options for displaying output
beyond the ones described above, Ptolemy II lacks a
framework for generating two-dimensional animations for
models involving 2D motion. The goal of the project
described herein is to create such framework, while
imposing only a minimal burden on the authors of
existing models who wish to add this functionality to their
models.

1.2. The structure of Ptolemy II models

Ptolemy II models contain two essential types of

components: directors and actors (Figure 1.1). Directors
are components based on certain models of computation
which drive Ptolemy II models. They determine when
and in what order the individual actors are to execute, or
“fire,” as it is known in Ptolemy II. While Ptolemy II
supports at least nine different directors, this project is
concerned only with the GR director, which is responsible
for driving models that display graphics.

Actors are components which represent objects or
behaviors and interact with each other. The interactions
between actors are defined by the connections between
them, which are visually represented as lines routed from
the output of one actor to the input of another. Ptolemy
II currently contains hundreds of actors, ranging in
function from simple mathematical operations to network
communication, with more actors being developed every
day. This project is essentially a collection of actors
which allow the user to display the output of models as a
two dimensional animation.

1.3. Diva

The actors in the two-dimensional graphics framework

make use of another University of California, Berkeley
software project, Diva. Diva wraps the standard Java2D
graphics classes into a package that makes much of the
functionality of Java2D more easily accessible to the
programmer. All of the figures used by Ptolemy in the
two-dimensional animations are based on Diva figures.

Figure 1.1 The structure of a Ptolemy II model.

3. Design principles

In designing the two-dimensional framework for
Ptolemy II, it was important to insure that the package
would be intuitive to use for those with experience in
Ptolemy II. To this end, significant consideration was
given to preserving many of the conventions used in the
existing three-dimensional graphics framework at both
the developer and user levels.

At the developer level, a class hierarchy for the 2D
framework parallel to that used by the 3D framework was
desirable. The parallel hierarchy between the 2D and 3D
frameworks would insure that extensions to one
framework could easily be implemented, if appropriate, in
the other framework. The similar hierarchy would also
allow authors familiar with the 3D framework to
contribute functionality to the 2D framework without
spending considerable time becoming familiar with the
newer package.

At the user level, generating output with the 2D
framework should be nearly identical to doing so with the
3D framework. There should be, where possible, a one-
to-one correspondence between the number and type of
actors and connections necessary for graphical output in
the 2D and 3D frameworks.

A final design principle important in the development
of the two-dimensional framework was that adding 2D
animation functionality to existing models be as little a
burden to the author as possible. Ideally, displaying the
results of an existing model as a two-dimensional
animation should be a matter of rerouting an existing
connection to a new 2D animation sink (Figure 3.1), or
simply adding another connection to maintain the existing
output format while adding a 2D animation sink.

Figure 3.1a A model which generates output as a
plot.

Figure 3.1b The model in Figure 3.1a converted
to use animation for output.

4. Implementation of the 2D framework

As set forth in the previous section, the two-
dimensional graphics framework developed in this project
closely resembles the three-dimensional framework in
structure. Both frameworks follow the same hierarchy
down to the abstract GRActor class which defines the
basic behavior of all graphical actors. Beneath the
GRActor class, the two frameworks divide, and the 2D
framework continues with the GRActor2D class on which
all two-dimensional actors are based. Figure 4.1 shows
the basic class hierarchy for the actors in the two-
dimensional framework. While there are more classes
backing the 2D framework than those shown in the
figure, the displayed classes define all of the actors
accessible to the user in the 2D framework (Figure 4.2).
Their functions are described in the following sections.

GRActorGRActor

GRActor2DGRActor2D

GRTransform2DGRTransform2D GRShape2DGRShape2D Image2DImage2D Viewscreen2DViewscreen2D

Rotate2DRotate2D

Scale2DScale2D

Translate2DTranslate2D

RectangularFigure2DRectangularFigure2D

Ellipse2DEllipse2D

Rectangle2DRectangle2D

GRActorGRActor

GRActor2DGRActor2D

GRTransform2DGRTransform2D GRShape2DGRShape2D Image2DImage2D Viewscreen2DViewscreen2D

Rotate2DRotate2D

Scale2DScale2D

Translate2DTranslate2D

RectangularFigure2DRectangularFigure2D

Ellipse2DEllipse2D

Rectangle2DRectangle2D
Figure 4.1 The 2D framework class hierarchy

4.1. GRActor and GRActor2D

GRActor2D and its super class, GRActor, define the
way in which all 2D actors are created. They initialize
and reset the scene graph connections of the actors to the
view screen in which they are displayed. Like GRActor,
GRActor2D is an abstract class which must be extended
by actors in the two-dimensional framework.

4.2. Viewscreen2D

Viewscreen2D is a specialized class within the two-
dimensional graphics framework used to display the
animations on the screen. It is essentially a Java JFrame
with a Diva JCanvas and multiple Diva layers. All
figures which are to be displayed on the screen are first
added to the view screen, where they are associated with
an interactor for handling mouse and keyboard events
which occur on the figure. All user events are first
captured by the frame of the view screen, which has a
listener associated with it. The listener determines what
figure, if any, the event was intended for, and forwards
the event to the interactor of the figure, which defines the
action to take when a particular event is encountered. If,
for example, the user clicks on a figure on the view
screen, a message will make its way down to the
interactor of the figure informing it the figure has been
clicked, and the figure will be selected. Any mouse drags
or arrow key presses would then translate the figure
around the view screen. If the message was not intended
for any figure—for example, the user wishes to translate
or scale the view screen—then the interactor of the view
screen handles the user event.

4.3. GRShape2D

The GRShape2D class is an abstract class which
defines the behaviors and properties common to all basic,
geometric shapes. These include the stroke and fill colors
of the figure, the stroke width, and the connection of the
figure to the view screen.

Currently, the only actor derived directly from
GRShape2D is RectangularFigure2D, which is an abstract
class serving as the parent of geometric figure actors
based on rectangles, i.e. rectangles, rounded rectangles,
and ellipses. RectangularFigure2D specifies that all
derived figures have a rectangular shape with a position
and size, and handles the updating of the figure on the
view screen when any of these properties change.

4.4. Image2D

Image2D is derived directly from GRActor2D, and

allows the user to display and manipulate figures based
on image files in GIF, JPEG, or PNG format. The image
files can be obtained from the local computer or from a
remote host if a URL is provided. Image2D objects are
identical to RectangularFigure2D objects in functionality,
but replace the color and stroke properties of rectangular
figures with a file path or URL.

4.5. Transform2D

Transform2D is the parent class of all affine
transformations in the 2D framework. The subclasses of
Transform2D include Rotate2D for rotating figures,
Scale2D for scaling figures and Translate2D for
translating figures.

4.5. Non-actor classes

The two-dimensional framework is supported by
various classes which do not create actors. These non-
actor classes include Viewscreen2DListener and
FigureInteractor, and are used primarily for handling
interaction between the user and the output of the model
as described in section 4.2.

Figure 4.2a A Ptolemy II model using all of the
actors of the two-dimensional framework.

Figure 4.2b A static image of the output of the
model in Figure 4.2a.

6. Improvements to the 2D framework

In its current state, the two-dimensional framework
could benefit significantly from improvements in two
major areas: speed and interaction. While the framework
can handle basic animation models with no difficulty, it
begins to struggle with more complex models involving
multiple forms of output—for example, plots and view
screens—rendering the contents of the view screen
sluggishly. The problem appears to be inherent in the
repainting mechanism of the 2D framework, and some
additional attention to it could result in a much more
useful framework.

The second problem is in the implementation of the
interactive parts of the 2D framework. Currently, all
interaction between the user and the view screen (see
section 4.2) is essentially hard-coded into the
Viewscreen2D, Viewscreen2DListener, and
FigureInteractor classes. This strays from the general
design of Ptolemy II, as any changes the user wishes to
make to the actions taken when a particular event occurs
requires additions and modifications to the underlying
Java code. Ideally, an actor should be designed around
the listener and interactor which processes user events
and forwards the result to another actor which will handle
the event according to the user’s preference.

7. Conclusion

Extending the Ptolemy II software to include a two-

dimensional framework for displaying the result of
models as animations allows the creators of models to see
their work running in a more intuitive fashion than simple
position plots. Displaying the results of a model as a
position plot and animation simultaneously provides the
user with a general overview of the results, as a well
quantitative data for analysis. While the 2D framework is
a useful tool for researchers, in its current state, the 2D
framework struggles to render animations at a reasonable
speed when more complex models are used, and limits the
interaction between the user and the view screen to hard-
coded actions. Once these two issues are resolved, nearly
every model involving some form of two dimensional
motion will benefit from using the 2D framework to the
display the results.

8. References

[1] Shuvra S. Bhattacharyya, Elaine Cheong, John Davis
II, Mudit Goel, Christopher Hylands, Bart Kienhuis,
Edward A. Lee, Jie Liu, Xiaojun Liu, Lukito Muliadi ,
Steve Neuendorffer, John Reekie, Neil Smyth, Jeff Tsay,
Brian Vogel, Winthrop Williams, Yuhong Xiong, Yang
Zhao, Haiyang Zheng, "Heterogeneous Concurrent
Modeling and Design in Java, (Volume 1:Introduction to
Ptolemy II) ", Technical Memorandum UCB/ERL
M03/27, University of California, Berkeley, CA USA
94720, July 16, 2003.

