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Singular Event Detection

Rafael S. Garćıa

Abstract

The main objective in the study of event location is to find when the solution to an Ordinary Differential
Equation (ODE) crosses a switching surface. Due to the fact that it is almost always impossible to find the
exact solution to an arbitrary ODE, the event must be located with a numerical approximation to the exact
solution. Since approximate solutions are by nature inexact, the question is whether the real solution displays
the same qualitative behavior as its numerical approximation. This raises the need for a number that gauges
the validity of this approximation, i.e., a condition number. The purpose of this research is to show how
numerical approximations of the solutions of simple systems–linear systems–with simple switching surfaces–
hyperplanes–can lead to incorrect event detection. Motivated by these examples, a candidate condition number
will be proposed in an attempt to quantify this failure.

I. I NTRODUCTION

Consider an Initial Value Problem (IVP), for a set of ODEs such that:

ẋ =
{

f+(x) if g(x) ≥ 0
f−(x) if g(x) < 0

wheretε[a, b], x(a) = x0, andx ∈ R2. An event is said to occur at timet∗ if g(x̂+(t∗)) = 0; the point at which
the vector field changes fromf+ to f−. Due to the fact that the majority of the Ordinary Differential Equations
(ODEs) do not have an exact solution, it is imperative to utilize numerical methods to approximate the solution
of the IVP stated above. As a result, a level of uncertainty is introduced in the event location, which leads to
the need for a guarantee of its reliability. Thus creating a necessity of a condition number that could be capable
of quantifying the level of correctness of the event location, i.e, the correctness the approximated solution with
respect to the actual solution.

In vector algebra, the condition number,κ, of a square matrix, A, is defined as:

κ(A) =‖ A ‖ ‖ A−1 ‖
where,‖ · ‖ is a valid vector norm. Alternatively, if the square matrix A is singular decomposed asA = UΣV T ,
the condition number of a matrix can also be stated as:

κ(A) =
σmax

σmin

where,σmax andσmin are, respectively, the maximum and minimum scalar values of the diagonal matrixΣ.

The condition number of a matrix provides a measure of how sensitive is a matrix to numerical operations
and errors in the data. Additionally, it indicates the accuracy of matrix inversion and the accuracy of the
solution of the lineal equation. If the condition number of a matrix is approximately 1, the matrix is said to
be well-conditioned. In contrast, if the condition number of the matrix is much greater than one, it is said
to be ill-conditioned. Ill-conditioned matrices do not yield precise numerical solutions [2].This study seeks to
propose a condition number for event location. This number will serve as a mean to numerically judge its
reliability.

In fact, the proposed condition number is:

cond#(f) =
‖f+(x̂(t∗))‖‖f−(x̂(t∗))‖
Lf+g(x̂(t∗))Lf−g(x̂(t∗))

∏

tp∈P

sign(g(x̂(tp)))
g(x̂(tp))

∏

tp∈P
h‖x̂(tp)− x̂(t∗)‖



For a given subset,P, such that:

P = {tp ∈ Rn : Lf+g(x̂(tp)) = 0
d

dt
Lf+g(x̂(tp)) > 0}

Further details of this proposed number will be described later on.

II. N UMERICAL ODE SOLVERS

Already knowing that is impossible to find an exact solution to all of the existing ODEs, it is imperative to
find numerical ways to approximate the solutions to these equations. In this study, it was desirable to find a
numerical solution to an IVP in a given intervala ≤ t ≤ b. The studied ODEs were of the form:

ẋ =




ẋ1

ẋ2
...

ẋn


 = f(t, x)

with given initial valuesx(a). These equations are of special interest, for they are utilized to describe the
dynamics and behavior of switching systems. From [7], it is known that for a given tolerance,τ , the numerical
solver can approximate a solution,x̂, such that is accurate to the order ofr(τ). Furthermore, it can be assumed
that the solution is bounded by‖x(t)− x̂(t)‖ ≤ r(h), whereh is step size of the solver andr(h) → 0 ash → 0.

Following is a description of several ODEs that were used to solve the ODEs of the event detection algorithms
performed in section 3 and 5. All of the methods utilized were either one step methods or multi step methods.
The one step methods included: Forward Euler’s, 2nd order Taylor’s, and 4th order Runge-Kotta. Conversely,
the multistep methods included 3rd order Predictor Corrected Adams-Moulton (AM3) and Backward Difference
Formula (BDF).

The equationẋ = f(t, x) was considered 2 dimensional, and solved with these methods. The final system
of equations is composed of equations (1) and (2) as follows:

ẋ1 = F(t, x1, x2) (1)

ẋ2 = G(t, x1, x2) (2)

A. Forward Euler’s Method

The forward Euler method is attractive because it is easy to implement and visualize. Although, it has some
drawbacks as is the case of major error results with increasing step size numbers. This method is based on
the one-term Taylor series. From [6] (pg. 142), it can be found that the numerical solution of a system of two
variables can be approximated using:

x1(j + 1) = x1(j) + hF(t(j), x1(j), x2(j))

x2(j + 1) = x2(j) + hG(t(j), x1(j), x2(j))

where h is the time interval,h = tj+1 − tj , and j=0,1,2,...N. N represents the number of steps in the interval
studied. In this method the numerical solution is found by reusing the previously computed value to approximate
the subsequent value of the solution. This process continues iteratively until the desired interval is covered.



B. Second-Order Taylor Method

The second-order Taylor method offers a better local error than Euler’s method; although, it has also showed
very unpleasing results with increasing step size numbers. In [6](pg. 143), it is shown that the numerical solution
to an ODE using a second-order Taylor expansion is given by:

x1(j + 1) = x1(j) + hF (t(j), x1(j), x2(j)) +
h2

2
[
∂F

∂t
(t(j), x1(j), x2(j))

+
∂F

∂t
(t(j), x1(j), x2(j))F (t(j), x1(j), x2(j))]

x2(j + 1) = x2(j) + hG(t(j), x1(j), x2(j)) +
h2

2
[
∂G

∂t
(t(j), x1(j), x2(j))

+
∂G

∂t
(t(j), x1(j), x2(j))G(t(j), x1(j), x2(j))]

where h is the time interval,h = tj+1 − tj . As in the Forward Euler’s method, the numerical solution is
found by reusing the previously computed value to approximate the subsequent value of the solution.

C. Runge-Kotta Method

The Runge-Kotta method offers another alternative to approximate the solution of an ODE. This method is
widely used due to its higher accuracy in comparison to other one-step methods. Additionally, it offers a better
local error than Euler’s and Taylor’s, showing good approximations with increasing step size numbers. From
[1], it is found a 4th order Runge-Kotta numerical solution for the system of equations (1) and (2) as follows:

x̂1(j + 1) = x̂1(j) +
h

6
[k1 + 2k2 + 2k3 + k4]

x̂2(j + 1) = x̂2(j) +
h

6
[m1 + 2m2 + 2m3 + m4]

where,

k1 = F (t(j), x̂1(j), x̂2(j))

m1 = G(t(j), x̂1(j), x̂2(j))

k2 = F (t(j) +
h

2
, x̂1(j) +

h

2
k1, x̂2(j) +

h

2
m1)

m2 = G(t(j) +
h

2
, x̂1(j) +

h

2
k1, x̂2(j) +

h

2
m1)

k3 = F (t(j) +
h

2
, x̂1(j) +

h

2
k2, x̂2(j) +

h

2
m2)

m3 = G(t(j) +
h

2
, x̂1(j) +

h

2
k2, x̂2(j) +

h

2
m2)

k4 = F (t(j) + h, x̂1(j) + hk3, x̂2(j) + hm3)

m4 = G(t(j) + h, x̂1(j) + hk3, x̂2(j) + hm3)

In this method, h is once again the time interval,h = t(j + 1) − t(j). The numerical solution is found by
reusing the previously computed value to approximate the subsequent point of the solution.

D. Adam-Moulton Method

As opposite to the one-step methods developed by Euler, Taylor, and Runge-Kutta; the Adam-Moulton
method has the attractive of utilizing previously calculated points to find the subsequent point in the iteration.
Methods that follow this description are often referred as memory methods. Although, it is not self starting
and it has to be given previously calculated values to start its computations depending on the order of its
implementation. In order to achieve a better accuracy, it is good to utilize a good self-starting one-step method.
For this implementation, Runge-Kutta was chosen to perform this task for the three first points of the solution.



From [3], it is found that once those 3 initial points are reached the algorithm used for the 3rd order Predictor
Corrected Adams-Moulton (AM3) is the following:

x̄1(j + 1) = x̂1(j) +
h

12
[23F (t(j), x̂1(j), x̂2(j))− 16F (t(j − 1), x̂1(j − 1), x̂2(j − 1))

+5F (t(j − 2), x̂1(j − 2), x̂2(j − 2))]

x̄2(j + 1) = x̂2(j) +
h

12
[23G(t(j), x̂1(j), x̂2(j))− 16G(t(j − 1), x̂1(j − 1), x̂2(j − 1))

+5G(t(j − 2), x̂1(j − 2), x̂2(j − 2))]

x̂1(j + 1) =
h

12
[5F (t(j + 1), x̄1(j + 1), x̄2(j + 1)) + 8F (t(j), x̂1(j), x̂2(j))

−F (t(j − 1), x̂1(j − 1), x̂2(j − 1))]

x̂2(j + 1) =
h

12
[5G(t(j + 1), x̄1(j + 1), x̄2(j + 1)) + 8G(t(j), x̂1(j), x̂2(j))

−F (t(j − 1), x̂1(j − 1), x̂2(j − 1))]

As in the previous methods, h represents the time interval,h = tj+1 − tj . In this equation the predictor is
used to acquire a better approximation. Finally, the solution is found by reusing the previously computed value
to calculate the subsequent point of the solution.

E. Backward Difference Formula Method

The BDF method was another memory method implemented because of its attractiveness of utilizing pre-
viously calculated points to find the subsequent point in the iteration. As in the AM3 method, the memory
characteristic yields more accurate results than one-step methods such as similar to the AM3 method, the BDF
method is not self starting, it has to be given previously calculated values to start its computations. For accuracy
issues, a fourth order Runge-Kutta was used to calculate the three first points of the solution. From [6] (pag.
183), it is found that once those 3 initial points are reached, the algorithm to solve the system is the following:

x̂1(j + 1) =
6
11

[6F (t(j + 1), x̂1(j + 1), x̂2(j + 1)) + 3x̂1(j)− 3
2
x̂1(j − 1) +

1
3
x̂1(j − 2)]

x̂2(j + 1) =
6
11

[6G(t(j + 1), x̂1(j + 1), x̂2(j + 1)) + 3x̂2(j)− 3
2
x̂2(j − 1) +

1
3
x̂2(j − 2)]

As in the previous methods, h also represents the time interval,h = tj+1− tj . In this equation the predictor is
used to acquire a better approximation. Finally, the solution is found by reusing the previously computed value
to calculate the subsequent point of the solution.

III. E VENT DETECTION TECHNIQUES

The next task is to find and apply event detection techniques (EDTs), to the already stated IVP given by:

ẋ = f(x) =
{

f+(x) if g(x) ≥ 0
f−(x) if g(x) < 0 (3)

for the given intervaltε[a, b], and initial conditionx = x0, in which x ∈ R2. In order to simplify further
explanations, an event detection as (3) will be referred as

f = (f+, f−, g)

EDTs utilize different algorithms with the objective of finding the most accurate way to locate events. Two
different algorithms were simulated utilizing MATLAB. The first method will be referred as the zero-location
method and is similar to that of [4], while the second method is referred as the minimum-neighborhood method,
which is similar to the interval bisection algorithm found in [5], but with some slight changes.



A. Zero-Location Method

The zero-location method (ZLM) starts by numerically solving the ODE,ẋ = f+(x). The approximated
solution is denoted bŷx+(t) with initial condition x̂+(0) = x0. Subsequently, at each time step,tn of the
interval, it is checked ifg(x+(tn)) > 0 and g(x+(tn+1)) < 0. If this condition holds, an event has occurred.
Consequently, a linear interpolation between the pointsx̂+(tn) and x̂+(tn+1) is performed, and denoted by
x̂+(t). Then, it is numerically solved fort∗ such that

g(x̂+(t∗)) = 0

After the occurrence of an event, the same process is started again, except thatẋ = f−(x) is solved with
x̂−(0) = x̂+(t∗). Finally, this algorithm is repeated (with its respective sign changes) if multiple events are to
be detected.

B. Minimum-Neighborhood Method

The minimum-neighborhood method (MNM)follows the first couple of steps as the zero-location method.
It starts by numerically solvinġx = f+(x), where the approximated solution is denoted byx̂+(t) with initial
condition x̂+(0) = x0. Subsequently, at each time steptn of the interval, it is checked ifg(x+(tn)) > 0 and
g(x+(tn+1)) < 0. If this condition holds, an event has occurred and the next step is to subdivide the interval
[tn, tn+1]. This is performed by selecting timesτ0 = tn < τ1 < · · · < τk = tn+1 where k is input by the user.
Subsequently, values fori are found such thatg(x̂(τi)) > 0 andg(x̂(τi+1)) < 0 holds. Once this condition is
true, the interval is decremented again for the points in which it holds, until values are found such thatg(x̂(τi))
andg(x̂(τi+1)) are approximately zero. Consequently,t∗ is set toτi. After locating the event, the same process
is started again, except thatẋ = f−(x) with initial condition x̂−(0) = x̂+(t∗).

C. Example

The following IVP was implemented to illustrate the solutions of both algorithms:

ẋ =
(

1 − 1
1 1

)(
x1

x2

)

with anh = 0.01 andx+(a) = (−2,−2)T . By looking at the graphs, it is noticeable that both methods follow
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Fig. 1. Event detection for both methods

a very similar behavior. Although, they are slightly different in terms of computational issues. For instance, the
MNM offers greater precision but at the expense of more computational time. In our case, the computational
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time was an issue for the calculation of the condition number. As a result,the ZLM was used to performed the
event detection tasks.

IV. SOLUTION BEHAVIOR

Up to this point, the importance of the existence of a condition number has been pointed out but not properly
defined in terms of good or bad behavior of an IVP as given in (3). In order to do this, it is important to define
what constitutes a good scenario and what does not. A good scenario would be one in which

‖x(t)− x̂(t)‖ ≤
{

r+(h) if t ∈ [a, t∗]
r−(h) if t ∈ [t∗, b]

when

‖ x+(t)− x̂+(t)‖ ≤ r+(h) and ‖ x−(t)− x̂−(t)‖ ≤ r−(h)

wherex̂±(t) are the approximate solutions ofx±. This definition of a good scenario can be simplified by taking
r(h) = max{r+(h), r−(h)} yielding the following definition:



Definition 4.1: The solution of the IVPf = (f+, f−, g) is said to bewell-posedif

‖ x+(t)− x̂+(t)‖ ≤ r(h) and ‖ x−(t)− x̂−(t)‖ ≤ r(h)

for somer(h) implies that
‖x(t)− x̂(t)‖ ≤ r(h)

for all t ∈ [a, b].

This definition of a well-posed event can be used to give the definition of an ill-posed event

Definition 4.2: The solution of the IVPf = (f+, f−, g) is said to beill-posed if

‖ x+(t)− x̂+(t)‖ ≤ r(h) and ‖ x−(t)− x̂−(t)‖ ≤ r(h)

for somer(h), but
‖x(t)− x̂(t)‖ > r(h)

for somet ∈ [a, b]. Alternatively, anf is ill-posed if

‖x(t)− x̂(t)‖ ≤ r̃(h)

and r̃(h) > r(h) for all h.

An ill-posed solution creates a very unstable behavior in which the accurate detection of an event cannot
be guaranteed. The above definitions involve knowing the actual solution in order to detect wether an IVP
f is ill-posed. Since it cannot be assumed that the actual solution is known, the causes some difficulty. To
circumvent this, we introduction the following lemma:

Lemma 4.1: If two different approximate solutionŝx(t) and,ŷ(t) of an IVP f = (f+, f−, g), are ill-posed,
i.e., if

‖x±(t)− x̂±(t)‖ ≤ r(h) and ‖x±(t)− ŷ±(t)‖ ≤ r(h)

but,
‖x̂(t)− ŷ(t)‖ ≥ r(h)

then the actual solution of the IVP is ill-posed:

‖x(t)− x̂(t)‖ ≥ r(h) and ‖x(t)− ŷ(t)‖ ≥ r(h).

V. CONDITION NUMBER

Following is a detail explanation of the set of specifications utilized to propose a condition number for
event detection techniques. Consequently, the proposed conditioned number will be expressed and thoroughly
explained. Finally, two examples are going to be presented with the objective of providing an idea on the
behavior of the condition number in event detection applications.



A. Specifications

The following are a set of specifications created with the objective of narrowing the behavior of any
prospective candidate for the condition number:

1) For the perfect case, i.e., a case in which the solution hits the surface orthogonally, the condition number
should be one.

2) As the condition number increases, the accuracy of the approximate solution decreases; becoming pro-
gressively ill-posed.

3) The condition number is defined to be infinite for a singular event, i.e., when the vector field is tangent
to the surface at the event.

In order to understand these specifications, it is important to know their implication. First of all, these conditions
imply that the condition number will depend on a function that is capable of describing the way in which the
approximate solution intersects a switching surface. As a result, the Lie Derivative ofg with respect tof ,
referred asLfg, and given by

Lfg(x) =
∂g(x)
∂x

· f(x)

was targeted to perform this task. This function relates the change of the functiong(x) in the direction off(x).
Therefore, in the case in whichLfg = 0 at an event, it means that the switching surfaceG0 = {x|g(x) = 0} is
tangent to the vector field at this point, i.e., a singular event location. Conversely ifLfg = 1, it means that the
vector field is orthogonal to the surfaceG0 and the approximate solution is completely reliable, i.e, well-posed.

To state condition (2) of the specifications in a more precise way, consider two IVPf1 = (f−1 , f+
1 , g1) and

f2 = (f−2 , f+
2 , g2). Because these are ill-posed, if

‖x±1 (t)− x̂±1 (t)‖ ≤ r1(h) and ‖x±2 (t)− x̂±2 (t)‖ ≤ r2(h)

then
‖x1(t)− x̂1(t)‖ ≤ r̃1(h) and ‖x2(t)− x̂2(t)‖ ≤ r̃2(h)

where r̃1(h) > r1(h) and r̃2(h) > r2(h). Now a mesure of how ill-posed these events are can be obtained by
consideringr̃1(h)− r1(h) and r̃2(h)− r2(h). Therefore ifcond#(f1) denotes the condition number off1 and
cond#(f2) denotes the condition number off2, specification number (2) can be stated precisly as: if

cond#(f1) > cond#(f2) ⇒ r̃1(h)− r1(h) > r̃2(h)− r2(h). (4)

This condition is extremely important in that if a prospective condition number can be shown to satisfy this
condition (as well as specifications number (1) and (3)), then it is a valid condition number for the event
detection problem.

B. Proposed Condition Number

Consider the setP given by:

P = {tp ∈ Rn : Lf+g(x̂(tp)) = 0
d

dt
Lf+g(x̂(tp)) > 0}

where Lf+g and Lf−g are the Lie Derivatives of the event function at the right and left side of the event
respectively andtp is the point at which the approximate solution yields anLfg equal to zero, i.e., the time at
which the approximate solution is tangential to the solution. Subsequently, for a given functionf = (f+, f−, g),
in which g is a hyperplane of the formg(x) = x + α. Having said this, the proposed condition number will
have the form:

cond#(f) =
γ1(x̂(t∗))

Lf+g(x̂(t∗))Lf−g(x̂(t∗))

∏

tp∈P

γ2(x̂(tp))
g(x̂(tp))

∏

tp∈P
‖x̂(tp)− x̂(t∗)‖γ3(x̂(tp)) (5)

where the gamma functionsγ1, γ2 and γ3 will be discussed in the remainder of this section. This condition
number can be extended to the case wheng(x) is an arbitrary (smooth) function because of a specific



transformation. Namely, for the IVPf = (f−, f+, g) settingT (x) = (x, z = g(x))T we obtain an equivalent
IVP f̃ = (f̃−, f̃+, g̃) by setting

f̃−
(

x
z

)
=

(
f−(x)

Lf−g(x)

)
f̃+

(
x
z

)
=

(
f+(x)

Lf+g(x)

)
g̃(x, z) = z.

Note that in this case,̃g has the desired form. Using this transformation, for an IVPf = (f−, f+, g) with an
arbitrary smooth event functiong, the condition number can be defined by

cond#(f) = cond#(f̃).

So, from this point on, it can be assumed thatg(x) = x + α.
In order to discuss the gamma functions in more detail, some special cases will be considered. In the case

in which, P = ∅, i.e., there is not atp that satisfiesLf+g(x̂(tp)) = 0, the condition number becomes:

cond#(f) =
γ1(x̂(t∗))

Lf+g(x̂(t∗))Lf−g(x̂(t∗))

Alternatively, when there are no events in the interval[a, b] of the integration, i.e., there does not exists at∗

such thatg(x̂(t∗)) = 0, andP 6= ∅ then the condition number becomes:

cond#(f) =
∏

tp∈P

γ2(x̂(tp))
g(x̂(tp))

Finally, if P = ∅ and there are no events, the condition number is not defined. In this case the IVP is a normal
differential equation with no switching, so a condition number is not needed.

C. The gamma functions

γ1(x):
The first gamma function was taken to be

γ1(x̂(t∗)) = ‖f+(x̂(t∗))‖‖f−(x̂(t∗))‖
The objective of this function is to scale the condition number, so that it is insensitive the changes in the
magnitude of the vector field as it crosses the switching surface and sensitive to changes in the orientation of
the vector field at the switching surface.

To justify this, consider the case whenP = ∅ but an event occurs, i.e., there is not atp that satisfies
Lf+g(x̂(tp)) = 0, (5) resulting in:

cond#(f) =
‖f+(x̂(t∗))‖‖f−(x̂(t∗))‖
Lf+g(x̂(t∗))Lf−g(x̂(t∗))

.

This is the case for the IVP given byfc = (f−c , f+
c , g) where

f+
c (x) = f−c (x) =

(
c
0

)
, g(x) = x

In this case, withoutγ1(x̂(t∗)), for two constantsc > c′ > 0,

1
Lf+

c
g(x̂(t∗))Lf−c g(x̂(t∗))

=
1
c

<
1
c′

=
1

Lf+
c′
g(x̂(t∗))Lf−

c′
g(x̂(t∗))

so the condition number would scale with magnitude, while it should remain constant under this scaling. By
adding the termγ1(x̂(t∗)), the magnitude of the vector field is scaled down by its magnitude. As a result, the
condition number is no longer sensitive to the magnitude of the vector field at the switching surface, i.e., we
have

cond#(fc) =
‖f+

c (x̂(t∗))‖‖f−c (x̂(t∗))‖
Lf+

c
g(x̂(t∗))Lf−c g(x̂(t∗))

=
c

c
= 1 =

c′

c′
=
‖f+

c′ (x̂(t∗))‖‖f−c′ (x̂(t∗))‖
Lf+

c′
g(x̂(t∗))Lf−

c′
g(x̂(t∗))

= cond#(fc′)



Alternatively, γ1(x̂(t∗)) also accounts for the orientation of the vector field at the switching surface. For
example, consider the IVP given byfc = (f−c , f+

c , g) where

f+
c (x) = f−c (x) =

(
1
c

)
, g(x) = x

without theγ1(x̂(t∗)) term, the condition number would not be sensitive to changes in orientation of vector
field at the switching surface because for two constantsc > c′ > 0,

1
Lf+

c
g(x̂(t∗))Lf−c g(x̂(t∗))

= 1 =
1

Lf+
c′
g(x̂(t∗))Lf−

c′
g(x̂(t∗))

so as the vector because more and more tangent to the switching surface these values do not change. Now,
with the γ1(x̂(t∗)) term, we have

cond#(fc) =
‖f+

c (x̂(t∗))‖‖f−c (x̂(t∗))‖
Lf+

c
g(x̂(t∗))Lf−c g(x̂(t∗))

= 1 + c2 > 1 + (c′)2 =
‖f+

c′ (x̂(t∗))‖‖f−c′ (x̂(t∗))‖
Lf+

c′
g(x̂(t∗))Lf−

c′
g(x̂(t∗))

= cond#(fc′)

so as the vector field becomes more tangent to the switching surface, the condition number increases as desired.

γ2(x):
Another case for the condition number is when there are no events occur in the interval[a, b], but the setP is
not null, i.e.,@ t∗ such thatg(x̂(t∗)) = 0, and soP 6= ∅. Assuming for simplicity thatP = {p} (5) becomes:

cond#(f) =
γ2(x̂(tp))
g(x̂(tp))

In this case we would likecond#(f) to measure how close the solution gets to the switching surfaceG0. With
this in mind take

γ2(x̂(tp)) = sign(g(x̂(tp))).

Wherein it follows that

γ2(x̂(tp))
g(x̂(tp))

=
1

d(x(tp), G0)
(6)

whered(x(tp), G0) is the distance betweenx(tp) and a subset of pointsG0 = {x|g(x) = 0}. This is due to the
fact that the event function was chosen to be of the formg(x) = x + α. To see this, note that

d(x(tp), G0) = min
y∈G0

d(x(tp), y) = min
y∈G0

‖x(tp)− y‖

but becauseg(x) = x + α,

min
y∈G0

‖x(tp)− y‖ = ‖g(x(tp))‖ = sign(g(x(tp)))g(x(tp))

Now, substituting into (6),

γ2(x̂(tp))
g(x̂(tp))

=
1

sign(g(x(tp)))g(x(tp))
=

1
d(x(tp), G0)

as desired.

γ3(x):
The last case to analyze is when there is an event in the interval[a, b], but P 6= ∅. In this case the condition
number will be:

cond#(f) =
γ1(x̂(t∗))

Lf+g(x̂(t∗))Lf−g(x̂(t∗))

∏

tp∈P

γ2(x̂(tp))
g(x̂(tp))

∏

tp∈P
‖x̂(tp)− x̂(t∗)‖γ3(x̂(tp))



This last equation contains all of the previously indicated constants except fromγ3(x̂(tp)). In this case,γ3(x̂(tp))
has the objective of accounting for the step size selection in the condition number equation. As a result, it
was chosen to be equal toh. Additionally, the equation contains the term‖x̂(tp) − x̂(t∗)‖. This term has the
objective of taking into account how far the point where the event occurs,x(t∗), and the point tangential to the
surface,x(tp). This compensating for big stretches and compressions of the solution near the surface. Meaning
that the further apart these points are, the more stretched and ill-posed the solution becomes. Conversely, the
closest these points are, the more compressed and well-posed should become. Therefore, we can summarize
by saying that the proposed condition number is:

cond#(f) =
‖f+(x̂(t∗))‖‖f−(x̂(t∗))‖
Lf+g(x̂(t∗))Lf−g(x̂(t∗))

∏

tp∈P

sign(g(x̂(tp)))
g(x̂(tp))

∏

tp∈P
h‖x̂(tp)− x̂(t∗)‖ (7)

D. Examples

Following are two main examples that were simulated to calculate their respective condition numbers. The
first example has a linear ODE function inf+, while the second example has a non-linear/polynomial ODE.
Recall that the condition number was simulated with functions of the formg(x) = bx + α. Also, 4th order
Runge-Kotta was utilized to solve the function with a time step of 0.01.

1) Linear Function: The following IVP was implemented to find its condition number:

ẋ =





(
1 − 1
1 1

)(
x1

x2

)
if g(x) ≥ 0

(
0
−1

)
if g(x) < 0

with g(x) = x2 + α wereα varies fromα = 9 to 10 at 0.01 steps andx+(a) = (−2, 2)T . Fig. 5, shows the
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Fig. 4. Zoom-in of the ODE solution

plot of condition number as alpha changes. From this plot, it can be seen that the condition number increases
and the solution to the IVP becomes progressively ill-posed, i.e, asα −→ 9.62. Looking at Fig. 4, it can be
seen that the two approximate solutions have larger errors than what it should be expected. This number is
close to where it is supposed to happen exactly when the approximate solution is tangent to the surface, which
agrees with the large condition number acquired in Fig. 5.
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Fig. 5. Condition Number forα = 9 : 0.01 : 10

2) Non-Linear Function:The following IVP was also analyzed to find its condition number:

ẋ =





(
1

10(−5x4
1+β4)

β5

)
if g(x) ≥ 0

(
0
−1

)
if g(x) < 0

with g(x) = x2 + α wereα varies fromα = 4 to 8 at 0.01 steps andx+(a) = (2.5β, f+
2 (2.5β))T .
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Fig. 6. ODE solution

In this example, two different things were tested. First of all, the value of alpha was varied to see variations
of the condition number throughout the interval. Second of all, values ofβ in f+ were varied to see if the
condition number behaved as expected with changes inx(t∗) and x(tp). Fig. 6 shows that the event becomes
ill-pose at approximatelyx2 = −5.35. Also, Fig. 7, shows the plot for the condition number as alpha varies and
β remains constant at 1. In this case, the plot shows that the IVP becomes progressively ill-posed asα −→ 5.35.
Fig.8 shows the effect thatβ produces on the condition number. The graph shows that asβ increases, the value
of the condition number increases as well. This is due to the fact thatx(t∗) and x(tp) will be further apart.
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Fig. 7. Condition Number forα = 4 : 0.01 : 8
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Fig. 8. Condition number for multipleβ

This can also be seen in Fig. 9. This figure was scaled with the objective of making all of the magnitudes
equal and focusing on the behavior of the graph. As it can be seen, the slope of the bottom part of the surface
increments asβ increments. As a result, the value ofβ is taken into account as expected.
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Fig. 9. Relation betweenβ,γ, and condition number


