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Hybrid Systems
Hybrid Sy:
Example:

What is a hybrid system?

A hybrid system consists of the following components:
e Continuous component: A collection of dynamical systems.

e Discrete component: A discrete event system (an oriented
graph).

—
() | J

'\_/
e Hybrid system: discrete component interacting with continuous

component.
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Hybrid Systems

Dynamical and Control systems

e An Ordinary Differential Equation (ODE) oR" given by
x = f(x)

e Thesolution or flow, of an ODE is denoted by (%), and
satisfies
e ¢do(X0) = Xo (identity)
o Pris(Xo) = ¢t 0 ¢s(Xo) (SEMigroup)
o ¢i(xo) = f(¢1(x0)) (ODE)
e A control system is a set of equations

x = f(xu)
y = g(xu
wherey € R" is a state of outputs) € U C R™Mis a state of

inputs.
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Continuous Component
Hybrid Systems Discrete Component

Hybrid Systems

Example: Gear Shifting

Oriented Graph

The discrete component of a hybrid system is given by an oriented
graphl’ = (Q, E) where

e Qis a set of vertices,

e E is a set of oriented edges between these vertices; each edge
e € E has a source(e) € Q and a target(e) € Q.

® Q
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Continuous Component
Hybrid Systems screte Component

Hyi Systems

Example: Gear Shifting

Definition

A hybrid system is a tuple
H=(Q,E,D,GRF)

where

e Q={1,..,m} C Zis a set ofdiscrete stateshich is a finite
subset of the integers.
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Continuous Component
Hybrid Systems screte Component

Hyi Systems

Example: Gear Shifting

Definition

A hybrid system is a tuple
H=(Q,E,D,GRF)

where

e E C Q x Qis a set oledgeswhich define relations between the
domains. Foe = (i,]) € E denote the source efby s(e) =i
and the target oé by t(e) = j.
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1s Component
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Example: Gear Shifting

Definition

A hybrid system is a tuple
H=(Q,E,D,GRF)

where
e D = {Di}icq is a set oidomainswvhereD; is a subset oR".

Aaron D. Ames An Introduction to Hybrid Systems



Hybrid Systems

0
Example: Gear Shifting

Definition

A hybrid system is a tuple
H=(Q,E,D,GRF)

where
o G = {Ge}eck is a set ofguards whereGe C D).
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Continuous Component
Hybrid Systems screte Component

Hyi Systems

Example: Gear Shifting

Definition

A hybrid system is a tuple
H=(Q,E,D,GRF)

where

o R= {R:}eck is a set offeset map®r transition mapsthese are
continuous maps fror@e C D) t0 Re(Ge) € Dy(e)-
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Definition

A hybrid system is a tuple
H=(Q,E,D,GRF)

where
e F = {fi}icq is a set oivector fieldsor ordinary differential
equationg ODES), such thdt is Lipschitz onR". The solution
to the ODEf; with initial conditionxg € D; is denoted by
#i(t,%0), we assume this solution is defined for all time.

Aaron D. Ames An Introduction to Hybrid Systems



Continuous Component
Hybrid Systems Discrete Component

Hybrid Systems

Example: Gear Shifting

Main Components of the Definition

A hybrid system is a tuple
H=(Q,E,D,GRF)

where

e Continuous Component: A collectidd, F) of dynamical
systems; for eache Q, (Dj, fi) is a dynamical system.

e Discrete Component: An oriented graph= (Q, E).

e The interaction between the discrete and continuous components
is given by the paifG, R); the guards and resets.
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Hybrid Systems
Hybrid Sy
Example: Gear Shifting

Problem Statement
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Hybrid Systems

Basic Properties of the Gearbox

e Shifting gears allows higher speeds before damaging engine

(a.k.a. redlining)
e However, not all gears function well at low RPM, requiring a

certain speed before their use

13 Gears (0-0)
Y, W >
? I’ " 4 "'
o 7 7
2
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P
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|
© Speed [mph] 2
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Hybrid Systems

Constrained Gearbox

e Safe zones for each gear

e Limited shifting, due to safe zones

e Requires a smart controller for automatic transmissions: because
of switching (gear changing) a hybrid system model is needed.

13 Gears (0-6)

RPM [x1000]

210

O Speed [mph]
slope = mgeqr
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Component
Hybrid Systems S| S ent

Discrete Component: Given by the oriented grépk (Q, E) defined
by the diagram

where
e Q=1{1,23,4,5,6} is the set of gears
e E are edges defining the transitions that can occur between gears

Gears (0-6)

/

RPM [x1000]

-
~~__ Speed [mph]
Slope = Migear
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Hybrid Systems

Hybrid System Model of Gearbox

Continuous Component: Given by paii3q, fg) for g € Q, where
X = fg(x, u)

onDy. Herex = (RPM, mph) andu € [Umin, Umay iS an external
control (given by the driver). The domaiidg, are given by the safety
characteristics of the gear box:
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Continuous Component
Hybrid Systems Discrete Ci ent
Hybrid Systems
Example: Gear Shifting

Hybrid System Model of Gearbox

Discrete and Continuous Interaction: Given by péis, Re) for
e € E, where

e Ge = overlap ofD,e andDy) in the mph coordinate.
@ Re = translation fromD, g to Dy, in the RPM coordinate.

Gears (0-6) G,

/
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Executions describe the behavior of a hybrid system, e.g., for the
Gearbox example an execution describes a way of getting to 200mph.

RPM [x1000]

210

© Speed [mph]
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4
o
UX(0)
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Executions

Behavior nvariant Sets

Executions

An execution is a tuple

X = (A'7 T? 5? /r])

where
e A={0,1,...} C Nis anindexing set. Let* = A\{0}.
@ 7= {7}ieaWithp=0<7 <--- <73 <--- isahybrid time
sequencer a sequence awitching times

@ £ ={&tieaWith & € UieQ D; is asequence of initial conditions
e 1 = {ni}ica+ With n; € E is ahybrid edge sequence
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Executions

Behavior asic Invariant Sets
Stability

Executions

An execution is a tuple

X = (A'7 T? 5? /r])

where
e A={0,1,...} C Nis anindexing set. Let* = A\{0}.
@ 7= {7}ieaWithp=0<7 <--- <73 <--- isahybrid time
sequencer a sequence awitching times
@ £ ={&tieaWith & € UieQ D; is asequence of initial conditions
e 1 = {ni}ica+ With n; € E is ahybrid edge sequence
Let £(H) be the set of executions bf and&’ (H, xg) C &(H) such /&
that for everyy € &(H,xo), o = Xo.
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Executions

Behavior nvariant Sets

Conditions on Executions

An execution
x=(A,7,8n)
must satisfy the conditions:
e IfO<i<|Al—1and 1< < AT,
Titr = Min{t > 7 @) (t—7,8&) € Gy}
s(ni+1) = t(m)
§ivai = Ry 1 (Ps(m)(Tits —71,&0))

Ds G, [Ds G, [D
@2 (t< 50) m 72
50./_\ G3(t = 7m1.&1) & 1t = 72,82)
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Executions
Zeno

Behavior Basic Invariant Sets
Stability

Conditions on Executions

An execution
X = (A7 T, 5’ 77)
must satisfy the conditions:
e If |[A| = N + 1 for finite N, then define an additional element
mn+1 as follows: if ¢y, ) (t — 7, EN) € Dy, for some finite
t > 7n define

TN+1 = mln{t >IN ¢t(77N)(t — TN,&N) S 8Dt(77N)}
otherwise sety;1 = co.

Di Di
nN , NN 5 (+ — : I
—»gb,i(f = TN-,EN) — (’Ol( TN é\)
En \ — S
7.1 = finite TN+1 = OO
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Executions

Behavior nvariant Sets

Notation

Define the followingopen-closednterval for an executiory as
follows

(7, Tipa] i 0<i<|Al
[, Tit1) = ¢ [N, TNga] |A| =N+ 1 for finite N and 741
(7N, TN41) if Tngr = oo and |A| = N+ 1 for finite N

The time domain of an executioncan be defined as

7% = (I, nisa)-

ieA
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Executions

Zeno
Behavior nvariant Sets

Hybrid Flows

Thediscrete evolutiomf an executiony € &(H) is given by

p:AX — Q

_— {5(171) if i=0
ty) if i>0

AX = {0,1,2}

An Introduction to Hybrid Systems
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Executions

Behavior nvariant Sets

Hybrid Flows

Thecontinuous evolutioor hybrid flowis given by

XX — 2(| Dy, t— X(t)
i€Q
where
YX(t) = {@pa)(t — 71, &) : t € [7,7i11)}
If x € &(H,Xo) can define)X(t, Xo) analogously.

lex ()] J /

| l |
T T T t

T To=T3 =Ty
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Behavior Basic Invariant Sets
Siellllig

Historic Motivation: The Dichotomy

Zeno's Paradox (the Dichotomy)

There is no motion because that which is moved must arrive at th
middle of its course before it arrives at the end, and s@dn
infinitum.

Figure:Znvwr o HAewos
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Bouncing Ball simulation in Matlab
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-) Simulation Parameters: bounce (@=L - Scope (=)
Wukavacel/Dl Dlagnvs\ms‘ Advam:edl Hea\T\M?WwKShW‘ = p Q 2 “ E

Solver

Sohver oft

Tupe: [Varisble-step »|  [od=23 (BogackiShampine) =
Max step size: ol Relative tolerance: | Te-3
Minstepsice: | aute Absalite toerance: | 16

Iniial step size: | auto

Output options
Fiefine output | Rfine factor. | 1

Running the

simulation with

Stop time =20
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Zooming in:

The bouncing ball
has not stopped
bouncing.
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Behavior

Siellllig

An Real "Example” of Zeno’s Paradox

-) Simulation Parameters: bounce BExX ) Scope

Solver

WwKSDace\/D‘ D\agnusl\csl Advanced‘ Hea\T\mekasth‘

Type: [Varisble-step v| [ode23 BogackiS hampine] =l

Max step size: | 01 Relative tolerance: [ 123
Minstep size: | auta Absolute tolerance: [ 126
Iriilstep sie: [ auto

Output options:
Refine cutput - Refine factor. [ 1

Running the
simulation with

Stop time =25

Aaron D. Ames
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IRunning 100%: BEREEN [T=20.358

Ele Edi Yiew Smulstion Formet Iooks telp

DEd& I = [Nomal M= =

The program
will

NEVER

stop running!

Running 100% BEENEE 7=20.35% |odeZ:

o (=] =
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Executions

Behavior asic Invariant Sets
Siellllig

Definition
H is Zenoif there exists an executiop such thatAX| = oo and there
exists a finite constant,, such that

lim 7= (n11-7) = 70

|—00 "
ieEA

The executiory is called aZeno execution
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Executions
Zeno

Behavior Basic Invariant Sets
Siellllig

Types of Zeno Behavior

There are two qualitatively different types of Zeno behaviog i§
Zeno, theny is
e Chattering Zeno: If there exists a finit& such that
Tis1 — 7 = Oforalli > C.

e Chattering Zeno executions result from the existence of a
switching surface in which the vector fields "oppose” each other;
for this reason they are easy to detect.

e Genuine Zeno:If 1i;1 — 7 > Oforalli € N.

e There currently is no way to detect the existence of genuinely
Zeno executions, and very little has been done in the area of
eliminating these executions.
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Executions

Behavior

Example
Genuine Zeno
X ()|l
7o 1 Ty T3 T4Ts 1
Chattering Zeno
X ()]
To m=f= == 1
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Executions
Zeno

Behavior Basic Invariant Sets
Siellllig

Zeno Detection

LetI’ = (Q, E) be an oriented graph. L& = {ey,...,eg}. The
incidence matrix of’, Kr, is a|Q| x |E| matrix given by

KF = ( )\t(el) — )\5(91) e )\t(E|E‘) _ )\s(e\El) )

where)\; is thei" standard basis vector f&?!.

Proposition
LetT" be the underlying graph of the hybrid systemThen

dim(N(Kr)) =0 = H is not Zeno

Aaron D. Ames An Introduction to Hybrid Systems
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Executions
Zeno

Behavior Basic Invariant Sets
Stability

Invariant Sets

e For a dynamical systeitX, f), for A C X,
Inv(A) = {x € A: ¢(x) € A for all t € R>o}

A setSis (positive) invariant if InyS) = S
e For a hybrid systeril and a sefA C UieQ D;

Inv(A) = {xe A: ¢X(t,x) C Aforallt e TXandx € &(H,x)}

A setSis ahybrid invariant sebr just aninvariant setif
Inv(S) =S

Aaron D. Ames An Introduction to Hybrid Systems



Executions

Behavior Basic Invariant Sets
Stability

Basic Invariant Sets for Dynamical Systems

For a dynamical systeitX, f) there are two basic types of invariant
sets:

e EP = Equilibrium point A pointx* € X such thaf (x*) = 0.
e PO = Periodic orbit A sety (not equal to a point) such that for
allxp € v
Pt41(X0) = Pt(Xo)

for some constant > 0.

Aaron D. Ames An Introduction to Hybrid Systems
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Basic Invariant Sets for Hybrid Systems

For a hybrid systeri there are four basic types of invariant sets:

e CSEP = Continuous State Equilibrium pot&n equilibrium
point of (Dj, f;) for somei € Q.

H H
D5 by
e [ ™
N
| -
\ = |
NI /
/
. /
€D C ) €4
€3
H H
D3 Dy
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Basic Invariant Sets for Hybrid Systems

For a hybrid systeri there are four basic types of invariant sets:

e CSPO = Continuous State Periodic OrbiA periodic orbit of
(Dy, f;) for somei € Q.

H
DY Dy

4.0

e2< ) es

€3

H H
D3 Dy
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Basic Invariant Sets for Hybrid Systems

For a hybrid systeri there are four basic types of invariant sets:
e DSPO = Discrete State Periodic OrhitA set of points
X* = {x],..., %} such that)X(t, x) = X* for x € X*,
X € &(H,x) and
p(i) = pli + pKX)

for some integeKX > 0 (dependent o) and allp € Z*.

DX DY
)
="y D=
N
N
€3
D} DY
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Basic Invariant Sets for Hybrid Systems

For a hybrid systeri there are four basic types of invariant sets:

e MSPO = Mixed State Periodic OrhitA set~ (not equal to a
point) such that ify € &(H, x) for x € ~, then

PX6X) = P+ TNx),  p(i) = p(i + pKY)

for some integeKX > 0 and constantX (dependent oty) and
allpe z~.

DYl DY

U

Aaron D. Ames An Introduction to Hybrid Systems
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Behavior
Stability

Equilibrium Points and Closed Orbits

Definition
Let

oH CSEPs, DSPOs , CSPOs
- andMSPO's of H :
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Different Forms of Stability: Lyapunov

Let Bs (1) be a neighborhood of € 6" given by

)={x¢€ Di: d(X,u) =min|x—y| < d}.
{ L% ) = minx—y|| < 6}

and letd(¢x(x), 1) be the distance between sets, i.e.,

d(et(x), p) = Xerpﬁl(n : ryglp X = yl|.

Foré& € Bs(u), u € oM is

(LYP = Stable in the sense of Lyapunov)
If for all x € &(H, &) there exists arm > 0 such that for all te T

d(vX(t, o), ) < €




Executions
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Behavior Basic Invariant Sets
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Different Forms of Stability: Asymptotic

Let Bs (1) be a neighborhood of € 6" given by
={xe| |Di: d(X,u) =min|x—vy| < d}.
= (e o doow) = qinlie—yl <)

and letd(¢x(x), 1) be the distance between sets, i.e.,

d(¥t(x), 1) = xerE'(” ; ryglg X =yl

Foré&o € Bs(p), u € 0Mis

(ASY = Asymptotically stable)
If forall x € &(H, &), pisLYP and

Hlslggm d(yX(t, &), ) — 0

Aaron D. Ames An Introduction to Hybrid Systems
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Different Forms of Stability: Exponential

Let Bs (1) be a neighborhood of € 6" given by

)={x¢€ Di: d(X,u) =min|x—y| < d}.
{ L% ) = minx—y|| < 6}

and letd(¢x(x), 1) be the distance between sets, i.e.,

d(et(x), p) = Xerpﬁl(n : ryglp X = yl|.

Foré& € Bs(u), u € oM is

(EXP = Exponentially stable)
If for all x € &(H, &) there exists and, M > 0 such that

—at
d(/'va(t:fO)au) < Me ™ d(§07ﬂ)




Executions

Behavior

Z-Stability Equivalence

A stability property is denoted by? = LYP, ASY, or EXP.
Definition

Two hybrid systems$i andG are &7-stability equivalentf there exist
a bijectionY : ¢ — ¢© such that

wis Z-stable & 7Y(u)is &-stable
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Behavior Basic Invariant Sets
Stability

Blowing Up Hybrid Systems

Theorem

LetH be an affine hybrid system with identity reset maps. There exists
a hybrid systemBL (H), such thaH andBL (H) are &7-stability
equivalent andL (H) is not Zeno.

\ (E0T]
\ : et
| — RN
\

\\ A
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The Initial Value Problem

Event Detection

Ordering Events
Simulation Simulating Hybrid Systems

Difficulties in Simulating Hybrid Systems

e Event Detection: The problem of finding the time when the next

discrete event occurs without knowledge of the actual solutions
of the ODE'’s.

Aaron D. Ames An Introduction to Hybrid Systems



The Initial Value Problem

Event Detection

Ordering Events
Simulation Simulating Hybrid Systems

Difficulties in Simulating Hybrid Systems

e Event Detection: The problem of finding the time when the next
discrete event occurs without knowledge of the actual solutions
of the ODE'’s.

e Ordering Events: The problem of determining which event
occurs first, and whether events occur simultaneously
(nondeterminism)—again, without knowledge of the solutions of
the ODE'’s.

Aaron D. Ames An Introduction to Hybrid Systems



The Initial Value Problem

Event Detection

Ordering Events
Simulation Simulating Hybrid Systems

Difficulties in Simulating Hybrid Systems

e Event Detection: The problem of finding the time when the next
discrete event occurs without knowledge of the actual solutions
of the ODE'’s.

e Ordering Events: The problem of determining which event
occurs first, and whether events occur simultaneously
(nondeterminism)—again, without knowledge of the solutions of
the ODE'’s.

Both of these problems are unsolved; it currently cannot be gauged
how well-posed or ill-posed either of these problems are given a
specific hybrid system.

Aaron D. Ames An Introduction to Hybrid Systems
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The Initial Value Problem

Event Detection

Ordering Events
Simulation Simulating Hybrid Systems

The Initial Value Problem (IVP)

Initial Value Problem (IVP)
The problem of finding the solutiaf{t — to, Xp) to the ODE

x = f(X)

on some intervalto, tf] subject to an initial conditiom(0, Xg) = Xo;
we denote such an IVP by

J = (f, [to, tr], X0)-

Aaron D. Ames An Introduction to Hybrid Systems



The Initial Value Problem

Event Detection

Ordering Events
Simulation Simulating Hybrid Systems

Approximate solutions

It is possible to solve the IVP by using numerical integration
techniques that guarantee accuracy.

e A numerical integration technique is an integration technique
that associates to the IVIP= (f, [to, tr], X0), an approximate
solutiong(t — to, Xg) on [to, tf] such that(0, xg) = Xo.

e In some cases the numerical integration method produces a
solution that is accurate of ord®f(h, t), whereM(t, h) is a
function such thad (0, h) = 0 andM(t, h) — 0 ash — O (here
his related to the integration step size).

e In other words, for the IVP there exists a consta@y such that

[6(t — to, %) — H(t — to, %) || < CyM(t — to, h).

Aaron D. Ames An Introduction to Hybrid Systems
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The Initial Value Problem

Event Detection

Ordering Events
Simulation Simulating Hybrid Systems

The Event Detection Problem (EDP)

Let G = {x: g(x) = 0} be a switching surface (a guard) determined
by some smootkvent function g R" — R.

Event Detection Problem (EDP)

The problem of finding, for an IVP= (f, [to, te], Xo), the first time t

such that
g(o(t" —to,%0)) = 0.

Aaron D. Ames An Introduction to Hybrid Systems



The Initial Value Problem

Event Detection

Ordering Events
Simulation Simulating Hybrid Systems

The EDP and Approximate Solutions

@ One can attempt to solve the EDP for the I¥By using an
approximate solution, i.e., solving for the fitst such that

A~

g(o(t™ —to, %)) =0

and hope that* — t**| ~ 0.

e This is not guaranteed. There is currently no way to verify if
|t — t**| = 0.

e What is needed is a condition number, i.e., a number dependent
on the IVPJ, cond#(J), such that

|t* — t| < cond# ()

This should be as tight a bound as possible.

Aaron D. Ames An Introduction to Hybrid Systems



The Initial Value Problem
Event Detection
Ordering Evi

Simulation Simulating Hy SIS EINS

lll-posed Event Detection

It may happen that* — t**| does not exist. There may exist*d but
not*, or vice versa.

Aaron D. Ames An Introduction to Hybrid Systems
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Matlab’s Advice

"If you suspect this is happening, tighten the error tolerances to
ensure that the solver takes small enough steps.”

Aaron D. Ames An Introduction to Hybrid Systems
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The Initial Value Problem

Event Detection

Ordering Events
Simulation Simulating Hybrid Systems

The Event Ordering Problem (EOP)

Consider a collectiofg; }ic| of event functiong);(x) such that
gi (o) > 0 for the IVPJ = (f, [to, te], Xo).

Event Ordering Problem (EOP)

The problem of finding a functicorder: | — N such thatif t is the
minimum time such that

Gi(o(t —to,X0)) =0
then
orderi) < orderj) & <t

ordefi) = orderj) &  t =t

Aaron D. Ames An Introduction to Hybrid Systems



The Initial Value Problem

Event Detection

Ordering Events
Simulation Simulating Hybrid Systems

The EOP and Approximate Solutions

e One can attempt to solve the EOP for the I¥/&nd the
collection{g; }ic| of event functions by using an approximate
solution, i.e., solving for the firgf* such that

gi(A(t™ —to,%0)) = 0

and then definerder by requiring that
orderi) < orderj) &  t* <t”
orderi) = orderj) &  t*=t"

1

e There is currently no way to verify trder= order. This will
only hold if the event functions are sufficiently separated.

Aaron D. Ames An Introduction to Hybrid Systems
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lll-posed Event Ordering

It may happen thaarder and order give the opposite ordering ,of
i.e.,order(1) < order(2) while orde(1) > order(2).

d(t—10,X0)

- (E)(T*Hh Xp)

Aaron D. Ames An Introduction to Hybrid Systems
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Simulating Hybrid Systems

e To simulate the executions of a hybrid system, approximate
executions must be solved for by using the approximate solutions
to the ODE’s on each domain.

e For an approximate executigh= (A, T, § ,7) of an execution
x = (A, 7,&,n) the EDP and the EOP must be solved: Need

-7 ~ O
JcEr(ﬁ) = ordefn)

e Currently, no solution to the EDP and the EOP, so it is not
possible to verify if a simulated execution is a valid
approximation of an actual execution.

Aaron D. Ames An Introduction to Hybrid Systems
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Challenges

Open Problem

Determine conditions on a hybrid system so that it can be guaranteed
that a simulation of that hybrid system is correct.

Open Problem

Find bounds on the error between an actual execution and its
approximation.

Aaron D. Ames An Introduction to Hybrid Systems
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Conclusion

e Hybrid Systems model the interaction of discrete and continuous
systems.

e This interaction results in the ability to model very complicated
behavior. The cost is a complicated (or at least notation heavy)
theory.

e Simulating hybrid systems is both challenging and subtle.

e There is currently no way to verify whether a simulation is
correct—this is an IMPORTANT and OVERLOOKED area of
hybrid systems.

Aaron D. Ames An Introduction to Hybrid Systems
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