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Analysis of 2D WalkersAnalysis of 2D Walkers

Many techniques have already been established for analyzing Many techniques have already been established for analyzing 
two dimensional bipedal walkerstwo dimensional bipedal walkers
Finding stable walking cyclesFinding stable walking cycles
oo Dynamics described by nonDynamics described by non--linear linear ODEsODEs
oo No straightforward No straightforward backsolvingbacksolving method to find initial statesmethod to find initial states
oo Solution: Numerical analysis using methods of Solution: Numerical analysis using methods of PoincarPoincaréé

Search feasible phase space for initial states that result Search feasible phase space for initial states that result 
in asymptotically stable cyclesin asymptotically stable cycles
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CompassCompass--Gait Bipedal Walker (2D)Gait Bipedal Walker (2D)
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Four state dependencies: Four state dependencies: Θnon-stance, Θstance, and time-derivatives
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CompassCompass--Gait Bipedal Walker (3D)Gait Bipedal Walker (3D)
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Eight state dependencies: Eight state dependencies: Θnon-stance, Θstance, , Φnon-stance, Φstance,
and time-derivatives 



Scaling ComplexityScaling Complexity

Increasing the modelIncreasing the model’’s dimensions from two to three s dimensions from two to three 
results in a tworesults in a two--fold increase of state dependencyfold increase of state dependency
Thus, in three dimensions, numerical analysis Thus, in three dimensions, numerical analysis 
requires a phase space search of requires a phase space search of eighteight dimensionsdimensions
Analysis is computably impractical!Analysis is computably impractical!

SolutionSolution: Hybrid Reduction on the 3D Model: Hybrid Reduction on the 3D Model
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Process of Reduction (General)Process of Reduction (General)
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HybridizationHybridization

System’s single-support 
phase guided by 
differential equations 
(continuous dynamics)

Swing leg’s impact with 
ground considered a reset 
transition for hybrid 
system (discrete event)

Single-Support
Phase Dynamics:

{ Foot Impact }

Transition
Map T

q̇(t) = f(q(t))



Discrete Foot ImpactDiscrete Foot Impact

Impact Equations (swing leg impact on ground):Impact Equations (swing leg impact on ground):
Angle positions preservedAngle positions preserved
Discontinuity in angle velocity (different ways of modeling, Discontinuity in angle velocity (different ways of modeling, 
Grizzle v Grizzle v GoswamiGoswami))

Transition Map (hybrid system reset)Transition Map (hybrid system reset)
Swing leg becomes stance leg: angle positions swapSwing leg becomes stance leg: angle positions swap
Angle velocities: Angle velocities: Θ`+ = H(γ) Θ`––

Swing Leg 
Impact

γ



LagrangianLagrangian FormulationFormulation

The The LagrangianLagrangian formulation accounts for all energy in formulation accounts for all energy in 
the systemthe system
LagrangianLagrangian = Kinetic Energy = Kinetic Energy –– Potential EnergyPotential Energy

L = K L = K –– VV
L = L = ½½ Θ’T M(Θ) Θ’ –– ∫ q(Θ)

Derive the continuous Equations of Motion (passive):Derive the continuous Equations of Motion (passive):
M(Θ) Θ’’ + F+ F(Θ, Θ’) Θ’ + q(Θ) = 0

where Θ = [Θns, Θs, Φns, Φs]T

M and F are 4x4 matrices and q is a 4x1 vector
Pages and pages of matrix entries!



Dependency SimplificationDependency Simplification

Goal is to find cyclic variables in Goal is to find cyclic variables in LagrangianLagrangian

Strategies:Strategies:
Fixing inner angle 2Fixing inner angle 2γγ => No cyclic variables=> No cyclic variables
Limit as M/m approaches infinity => No cyclicLimit as M/m approaches infinity => No cyclic
Limit as b/a approaches infinity => No cyclicLimit as b/a approaches infinity => No cyclic
Fixing Fixing ΦΦs[ts[t] = ] = ΦΦns[tns[t] (] (xx--yy plane)plane)

TwoTwo cyclic variables: cyclic variables: Φns[t] and Φs[t]

M[Θ] = M1

M2



RouthianRouthian ReductionReduction

Φns[t] and Φs[t] independent
M2(Θ) Φ` = c (Routhian constant)
where Φ` = [ Φ`ns, Φ`s ]T,

Θ = [ Θns, Θs ]T,
c = [ c1, c2 ]T

and Φ`ns[t] = Φ`s[t]
Solve:  Φ` = c/m(Θ)
RouthianRouthian = [ L(= [ L(Θ, , Θ`, Φ`) –– c Φ` ]Φ`=c/m(Θ) 

R = R = ½½ Θ`T M1(Θ) Θ` –– ∫q(Θ) –– ½½ c2/m(Θ)

Augmented Term
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Reduced ModelReduced Model

Continous Equations of Motion (passive):
M(M(ΘΘ) ) ΘΘ’’’’ + F(+ F(ΘΘ, , ΘΘ’’) ) ΘΘ’’ + q(+ q(ΘΘ) + ) + augaugcc((ΘΘ) = ) = 00

where Θ = [ Θns, Θs ]T

Conclusions:
M and F are 2x2 matrices; q and aug are 2x1 vectors 
The reduced model (now 2D) is equivalent to the 
original 2D model with an augmented term
Matrices M and F and vector q remain the same; 
overall potential term is modified.
Additional constant c (if zero => original 2D model)
Uniqueness: Trivial to bring back to unique 3D model

Augmented Potential
Original 2D Model



Normalized Normalized EqnsEqns of Motion (2D)of Motion (2D)

-augc(Θ) =

q(Θ) =

M(Θ) =

F(Θ, Θ`) =



Hypothesis of 3D MotionHypothesis of 3D Motion

Current reduced model is in 2D, but can easily bring 
into 3D using the property of Routhian reduction

Φ` = M2
-1(Θ) c,

Φ = Φ0 + ∫ M2
-1(Θ) c

Hypothesis of Reduced 3D Motion: If stable limit 
cycles exist for the reduced model in two dimensions, 
then stable limit cycles also exist for the three 
dimensional version of the reduced model
We will be conducting tests with Simon Ng’s HyVisual
implementation to confirm this hypothesis



Final ThoughtsFinal Thoughts

A 3D biped model is related to its much simpler 2D A 3D biped model is related to its much simpler 2D 
model by a computable termmodel by a computable term
The 3D model is thus easily implemented in a visual The 3D model is thus easily implemented in a visual 
simulation, which is useful for confirming resultssimulation, which is useful for confirming results
The final outcome of this project is a general The final outcome of this project is a general 
framework by which previously established framework by which previously established 
techniques can be applied to three dimensional bipedstechniques can be applied to three dimensional bipeds


	Bipedal Walkers: From Three to Two Dimensions via Lagrangian Reduction
	Problem of 3D Walkers
	Analysis of 2D Walkers
	Compass-Gait Bipedal Walker (2D)
	Compass-Gait Bipedal Walker (3D)
	Scaling Complexity
	Hybrid Reduction from 3D to 2D
	Process of Reduction (General)
	Hybridization
	Discrete Foot Impact
	Lagrangian Formulation
	Dependency Simplification
	Routhian Reduction
	Results of Reduction
	Reduced Model
	Normalized Eqns of Motion (2D)
	Hypothesis of 3D Motion
	Final Thoughts

