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Abstract

Because the complexity of bipedalwalking robots doubleswhen increasing amodel’s dimensions from two to three,many pre-
viously established analytical techniques are computably impractical for three-dimensional models. If bipedal walkers can be
analyzed in threedimensions,we canmoreaccurately reproduce thehumanoidwalking thatweobserve inour three-dimensional
world. This paper offers a systematic approach to reducing a 3Dbipedmodel into two dimensions, onwhich 2Danalyticalmeth-
ods can be used, such as numerical analysis to find the limit cycles that result in asymptotically stablewalking. The hybrid reduc-
tionconsists offive stages: hybridizationof the robot’smotion,Lagrangian formulationof the continuousdynamics, formulation
of the discrete impact transition map, dependency simplification, and the Lagrangian reduction. We present the results of this
method’s application on a simple compass-gait biped using a fixed angle simplification and Routhian reduction. We show that
the reduced model is related to the analogous 2Dmodel by a computable augmented potential component. The model is easily
brought back into 3D using the Routhian relation and can be implemented in a simulation for analysis. Moreover, we provide
supporting evidence for periodicity in the reconstructed 3Dmodel given periodicity in the reduced 2Dmodel. The outcome of this
paper is a general framework bywhich previously established techniques can be applied to three-dimensional bipedmodels.

1 INTRODUCTION

1.1 Analysis of Planar Walkers

Bipedal walking robots have been an area of interest for the past few decades. The implications of under-
standing such locomotion are great due to its human application. The potential for improving prosthetic
limbs, navigating non-flat terrestrial surfaces, and creating efficient locomotive mechanisms are among the
many incentives that drive research in this field.
A simple bipedal walker is very similar to the dynamical system of a double-pendulum (a fixed-pivot in-

verted pendulum and a moving-pivot pendulum). However, bipeds are non-trivial because of the impulse-
effects upon foot impact. The motion of the biped during the single-support phase is continuous and easily
modeled, but at the instantaneous double-support phase (foot impact) the leg velocities are discontinuous.
The non-smooth hybrid dynamics can be described by continuous ordinary differential equations, which are
reset by a discrete event. The field of hybrid systems is one with many open problems, and analysis on bipedal
walking is a fantastic example.
Most studies to date have focused on planar bipeds, which are models fixed in two dimensions (within the

sagittal plane). One class of planar bipeds consist of those with actuation. These robots have been shown
to walk on level surfaces and inclines, and even various forms of jumping have been achieved [5]. In order to
guarantee steady walking for these feedback controlled systems, asymptotic stability for an under actuated
biped is proven in [10, 11].
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Figure 1. Structure of Two-Dimensional Bipedal Walker

Moreover,many have studied the passivity paradigmof bipedal robot control. Passive bipeds are unactuated
and walk down slight slopes, harnessing the natural forces of gravity to power its dynamics. Many forms of
passivity-based control produce bipedal walking with periodic gaits, also known as limit cycles [21, 8]. One
such technique for finding limit cycles is trajectory sensitivity analysis, which we will later use in this paper
[12]. Steady gaits are made slope invariant using potential energy shaping control, a generalization of the very
sensitive slope parameter [22]. A passive walker with telescopic legs is shown in [18], and one with revolute
knees is shown in [7]. In this paper, we are interested in analysis of the passive class of bipeds.
It is important to note that although many analytical methods have been demonstrated on different forms

of bipeds, most have been restricted to planar models. If we are to increase our understanding of human-like
walking, we must study three-dimensional models that more accurately reproduce what we see in our three-
dimensional world. Kuo shows passive limit cycles in three dimensions by using a feedback controller to sta-
bilize the lateral motion [14]. Furthermore, in [23] a general case of ann degrees-of-freedom 3D biped is shown
to achieve slope-invariant passive limit cycles using controlled symmetry of a closed-loop system. We examine
a bipedalmodel with an open-loop system. Michael Coleman examines a straight-legged, point-foot 3Dwalker,
buthe onlyfinds almost-stablewalking gaits due to the complexity of the analysis [6]. Apassive 3Dmodelwith
two legs, knees, and specially shaped feet is implemented in [7], but little insight is offered into systematically
analyzing such a complicatedmodel. The next sectionswill explore the problemof 3D analysis andpropose our
solution.

1.2 Scaling Complexity from 2D to 3D

1.2.1 Two-Dimensional CompassGait Biped

In order to explain the problem of scaling complexity when going from 2D to 3D, we first introduce our appli-
cation’s model. Many different bipedal robot structures have been used in previous work, the most prevalent
being the compass-gait biped. A very simple compass-gait biped with leg masses at the feet is presented in
[8], whereas a more general compass-gait biped with a torso is presented in [10]. We use the structure from
[9], which is a simple compass-gait bipedwith generalized legmass positions. The two-dimensional version is
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Figure 2. Structure of Three-Dimensional Bipedal Walker

shown in Fig. 1.2.1. The robot’s motion is described by four state variables, the angular positions of the stance
and non-stance/swing legs and their time-derivatives. The parameters and their descriptions are:

• M is the point-mass at the hip

• m is the point-mass of each leg (usually smaller than the hipmass)

• a is the distance between the foot and point-mass for each leg

• b is the distance between the point-mass and hip for each leg

• l is the total length of each leg (l = a + b)

• γ is the slope angle (small,< 5◦)

• α is the half-angle between the legs in the sagittal plane (equation 3)

• θns is the clockwise angle of the non-stance/swing leg from the z-axis in the sagittal plane

• θs is the clockwise angle of the stance/pivot leg from the z-axis in the sagittal plane

1.2.2 Three-Dimensional CompassGait Biped

The same robot structure in three dimensions is shown in Fig. 1.2.2. In order to describe the robot’s motion,
each leg needs an angular position state relative to both the x-y plane (φ) and y-z plane (θ). This results in an
eight-dimensional phase space: four position variables along with the four corresponding velocities. The 3D
model uses all the 2D parameters, plus the following:
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Figure 3. Hybridization of Bipedal Robot Motion

• φns is the counter-clockwise angle of the non-stance/swing leg from the y-axis in the lateral plane

• φs is the counter-clockwise angle of the stance/pivot leg from the y-axis in the lateral plane

Numerical analysis and searches on a four-dimensional phase space (S2 × <2) already takes hours of compu-
tation time. The samemethods on an eight-dimensional phase space (S4 ×<4) would be computably imprac-
tical.
In this paper, we present a process of hybrid reduction to simplify the model. We exploit symmetries in

the model’s dynamics in order to reduce the system into two dimensions. This allows previously established
techniques tobe applied to a familiar four-dimensional phase space. The reduced2Dmodel is uniquely brought
back into three dimensions, and we present supporting evidence that characteristics of the reduced 2Dmodel
also apply to the reconstructed 3Dmodel.

2 HYBRIDREDUCTIONFROM3DTO2D

2.1 Hybridization of Robot Motion

A hybrid system is described by a directed graph of continuous dynamical systems that are switched at dis-
crete events. Our hybrid bipedal walker will be defined by a discrete state, edge, domain, guard, transition
map, and flow [1]. The discrete state describes the continuous dynamics of the single-support phase. The edge
is a reset transition for the state. The domainD is the phase space of the robot’s configuration (S4<4 for the
full-ordermodel), and the guardG ∈ D at foot impact, i.e.:

θns(t) + θs(t) = −2γ and θns(t) > 0 (1)

The reset mapT at collision is discussed in the next section. Finally, the flow

Φt(x0), with x0 ∈ D

is the solution to the ordinary differential equations that describe the state. This is found using numerical
analysis.
Given a hybrid system, it is important to define a solution. First, the flow is needed for the continuous

dynamical system. A solution to the ODE:
ẋ = f(x)
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is

Φt(x0) s.t.
d

dt
(Φt(x0)) = f(Φt(x0))

Now, the solution to our hybrid system is:

S = (τ, χ, Φ) (2)

where
τ = {t0, t1, ..., tk, ...} = {ti}i∈N

χ = {x0, x1, ..., xk, ...} = {xi}i∈N

and the solutionΦt(xi) to the continuous dynamics with initial conditions (xi, ti) satisfy:

1. Φti+1−ti(xi) ∈ G

2. xi+1 = T (Φti+1−ti(xi))

Moreover, a periodic solution to the hybrid system is:

Sp = {χ, τ, Υ} s.t. xi = x0,∀i

which implies that
ti − ti−1 = t1 − t0,∀i

2.2 Discrete Foot Impact

When the swing foot hits the slope, the system enacts a reset transition. The angular positions undergo a
change of coordinates: the former swing leg becomes the new pivot leg, and the former stance leg becomes the
new swing leg. The transition of the angular positions in the sagittal plane is described by:

θ+ = Pθ−

with:

P =

(
0 1
1 0

)
The angularpositions of the lateral plane are reset by adifferentmap, butbecause this 3Dmodel is tobe reduced
into 2D, wewill present theφ reset mapwhenwe discuss 3D reconstruction. The samewill be donewith φ̇.
At foot impact, angular momentum is conserved, so the normal motion of the swing foot is transferred to

the tangential motion of the pivot foot. This transfer of mechanical energy is guided by the system’s resetmap,
which is composed of impact equations. Various techniques exist for modeling impulsive impacts. In [10], the
equations are derived with generalized coordinates using the rigid body collision methods of Hurmuzlu and
Marghitu [13]. We use the impact equations of [9] in order to be consistent with the robotmodel:

θ̇+ = H(α)θ̇−

where
θs(t)− θns(t) = 2α, ∀t (3)
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andH(α) is given in Appendix (19).
Combining these two transitionmaps, the reducedmodel’s reset map is described by:

x+ = Tr(α)x− (4)

where x = (θns, θs, θ̇ns, θ̇s)
T , and

Tr(α) =

(
P 0
0 H(α)

)
(5)

2.3 Lagrangian Continuous Dynamics

The dynamics of the single-support phase are described by ordinary differential equations. In order to derive
these ODEs, we model the continuous system using the Lagrangian formulation. The Lagrangian L accounts
for all energy of a given system, and by definition satisfies [19, 4]:

d

dt

∂L

∂q̇i

− ∂L

∂qi

= 0,∀i ∈ {indices of all position states} (6)

For example, the following equation describing the energy of a free-falling ball of massm is a Lagrangian:

L(y(t), ẏ(t)) = K − V =
1

2
mẏ(t)2 −mgy(t)

Taking the partials and derivative,
∂L

∂y(t)
= −mg

d

dt

∂L

∂ẏ(t)
= mÿ(t)

and using the definition of Lagrangian (6), we get the simplified expression−g = ÿ(t). Since this is a free-
falling ball, we know that the downward acceleration is indeed g = 9.8m

s2 . This, albeit a trivial example, is the
derivation of the falling ball’s equation of motion.
The Lagrangian formulation of our full-order walker’s dynamics is significantly more complicated, and is

given in Appendix (24). From this Lagrangian, the equations of motion are derived using the same technique
as above. In general form, the system of equations is [8, 9, 10]:

M(q)q̈ + F (q, q̇)q̇ + g(q) = 0 (7)

where q = (θns, θs, φns, φs)
T . The 4 × 4matrixM(q) contains the kinematic terms, and the 4 × 4matrix

F (q) contains the centrifugal andCoriolis terms. The 4×1 vector g(q) holds the gravitational torques, which
are dependent only on the θ variables.
In order to simplify the equations, the system can be described in normalized form:

ma2(M(q)q̈ + F (q, q̇)q̇ +
1

a
g(q)) = 0 (8)

At this point, we introduce the ratio terms β = b
a
and µ = M

m
. The normalized components are given in

Appendix (28, 29, 30). The rest of this paper will use normalized formwhenever appropriate.
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2.4 Dependency Simplification

Themodel derived in the previous section, composed of four lengthy equations, is very complicated. Clearly,
numerical searches on this system would be impractical. Moreover, we do not have the three-dimensional im-
pact equations to reset the hybrid system. All this demonstrates the need for a system reduction, such as
Routhian reduction. However, in order to do Routhian reduction, the system’s Lagrangian must have cyclic
variable(s). A cyclic variable qi is a position state that is independent of the Lagrangian:

∂L

∂qi

= 0 (9)

Once cyclic variables are found, the corresponding velocity states are replaced in terms of the remaining vari-
ables and the conserved quantities.
The Lagrangian from the previous section, given in Appendix (24), has no cyclic variables. Therefore, we

performadependency simplification on the systemby constraining certain variables. Various constraintswere
attempted.

2.4.1 Limit as leg-mass ratioµ goes to infinity

This simplified model is equivalent to an inverted pendulum with a massless, moving-pivot pendulum. By
dividing rows two and four of (8) by µ, the dynamics equations that are influenced by the mass ratio become
dependent on the inverse of µ. Taking the limit as µ goes to infinity, we get a greatly simplified system. How-
ever, the resultingmatrixM(q), which is used to build the Lagrangian, has no independent angular positions.

2.4.2 Limit as leg-length ratio β goes to infinity

This simplified model is equivalent to a robot with leg masses at the foot, similar to the 2D biped of [8]. By
dividing the entire system of (8) by β2, the dynamics equations become dependent on the inverse of β. Taking
the limit as β goes to infinity, we get a marginally simplified system. Once again, the resulting matrixM(q)
has no independent angular positions.

2.4.3 Fix half-angleα as a constant

This simplification results in a bipedmodel that walks like a true rotating compass. The constraint and equa-
tion (3) result in a sagittal angle being expressed in terms of the other. We set

θs(t) = θns(t) + 2α

for some constant 2α. It then follows that:

θ̇s(t) = θ̇ns(t)

Obviously, with this substitution the Lagrangian is independent of one position state, but because the corre-
sponding velocity state is also independent, the simplification is not useful for Routhian reduction. It does,
however, eliminate a dimension from the system of equations (now three) and two dimensions from the phase
space (now six). This specificmodel may be the subject of future studies.
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2.4.4 Fixφns(t) = φs(t)

This simplification results in bipedal walking like that of a rotating divider (or scissors). This style of walking
is not human-like, as can be seen in the step progression of Fig. 4. The constraint φns(t) = φs(t) also implies
that φ̇ns(t) = φ̇s(t), and applying these two relations to the Lagrangian, we find two cyclic variables: φns and
φs. The simplified Lagrangian is found in Appendix (31). Moreover, the simplifiedmatrixM(θ) is symmetric:

Ms(θ) =

(
M1(θ) 0

0 M2(θ)

)
(10)

where θ =
(

θns θs

)T
and the symmetric submatricesM1(θ) andM2(θ) are given in Appendix (32, 33).

In the next section, we will use these properties to eliminate the φ time-derivatives and thus reduce the
system into two dimensions (the sagittal plane).

2.5 Routhian Reduction

Now that we have a simplified Lagrangian with cyclic variables, we use Routhian reduction to exploit sym-
metries in the system. It shouldbenoted that the cause of systemsymmetry is not the symmetric trait ofmatrix
Ms(θ), but rather the absence of anyφ angular positions within thematrix.
The Routhian is obtained by conserving certain quantities in the Lagrangian [16]. Specifically, we set

r =
∂Ls(θ, θ̇, φ̇)

∂φ̇
= M2(θ)φ̇ (11)

where r is a vector of constants; these are values that are assigned to the conserved quantities. Solving for φ̇ in
terms of r, we obtain the Routhian given by

R(θ, θ̇) = Ls(θ, θ̇, M2(θ)
−1r)− rT M2(θ)

−1r (12)

In this case, because φns = φs (thus we have only one unique variable φ̇), the matrixM2(θ) simplifies to a
scalar function,m2(θ), and the Routhian vector is replaced by a single constant, c. Therefore, the single φ̇ term
is represented by the one-dimensional relation:

φ̇ =
c

m2(θ)
(13)

where

m2(θ) = b2m sin(θns)
2 − 2b(a + b)m sin(θns) sin(θs) + ((2a2 + 2ab + b2)m + (a + b)2M) sin(θs)

2

Using the expressions of (12),(23), and (31), the Routhian in terms of (13), (22), and (32) is

R(θ, θ̇) =
1

2
θ̇T M1(θ)θ̇ − V (θ)− c2

2m2(θ)
(14)

Now that we have the Routhian in terms of known components, the reduced system of equations is derived
using the definition of Lagrange (6). The proof that a Routhian holds as a Lagrangian is in Appendix B.1.
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3 REDUCEDMODEL

3.1 Equations of Motion

The reduced system of equations, now two-dimensional, is

ma2(Mr(θ)θ̈ + Fr(θ, θ̇)θ̇ +
1

a
gr(θ) +

1

m2a4
aug(θ)) = 0 (15)

with the normalized components given in A.4. MatricesMr(θ) and Fr(θ) are 2 × 2 and vectors gr(θ) and
aug(θ) are 2× 1. The first three components describe the same terms asmentioned before, and in fact they are
identical to the components of the original 2D model introduced in 1.2.1 [9]. The new vector aug(θ) contains
the augmented terms of the Routhian reduction. An interesting observation is that the reduced system loses
its leg-mass generalitybecause of the augmented component. This vector is onlydependent onθ, so the reduced
2D system can be thought of as the original 2D systemwith an augmented gravitational torque component.
The reduced system also has an additional parameter, the Routhian constant c. This constant describes

the degree of influence of the conserved quantity. That is, a small c results in small arcs in the lateral plane,
whereas a large c creates kicking swings. Moreover, when c is set to zero (no lateral motion), the augmented
term disappears as expected, and we are left with the original 2D model. Therefore, the reduced model is a
generalization of the original 2D model. This is significant because the reduced model is uniquely brought
back into three dimensions in the next section. We have found a generalized two-dimensional system that
describes both the 3D and 2Dwalker.

3.2 Three-Dimensional Reconstruction

Using the Routhian relation from (11), we can reconstruct the angular velocity ofφ in terms of θ:

φ̇(t) =
c

m2(θ)
(16)

From this, the angular position of the conserved quantity is easily calculated:

φ(t) = φt0 +

∫ t

t0

φ̇(τ)dτ (17)

whereφt0 is the starting angular position at time t0.
Sincewe are dealingwith a third dimension, the reduced transitionmap is no longer sufficient. The original

map Tr (5) is still used to reset the θ variables, but additional transition rules are needed for φ. The angular
velocity φ̇ holds through impact because it is dependent on θ, which is reset. When the legs switch at collision,
the angular positions of φ are not simply flipped as with the θ variables. This would do nothing considering
that they are constrained to be equal. Instead,φ is bound by the following transition rule:

φ+ = φ− − π (18)

This transition is shown in Fig. 4(f).
The reconstructed 3D model is unique because of its dependence on a model that we already know to be

unique. As noted beforehand, the reduced model is the original 2D model with an augmented component. If
the original 2D model is unique (by definition, it is derived uniquely), then that part of the reduced model
is unique. Furthermore, the augmented component and the lateral plane expressions are dependent on the
variables of θ from the 2Dmodel. If θ is guided by a uniquemodel, then the 3D parts are unique as well.
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3.3 Limit Cycles in Three Dimensions

Limit cycles are periodic solutions for the hybrid system of a bipedal walker. The goal of this reduction
from 3D to 2D is to facilitate previously established analytical techniques, such as searching the phase space for
limit cycles. Now that we have a reduced model reconstructed into 3D, we can find hybrid solutions that also
correspond to solutions for the higher-order (simplified) 3D model. The proof of this direct mapping is given
in Appendix B.2. However, proving that there exists a hybrid solution that is periodic for both the reduced and
higher-ordermodels is not straight-forward, so we support this claim in the next section.

4 SIMULATIONANDRESULTS

With the help of Simon Ng and Haiyang Zheng, we implemented our reconstructed hybrid system in HyVi-
sual (hybrid dynamics) and parent platform Ptolemy II with GR domain (animation) [20, 2, 3]. Using this
continuous-time and discrete-eventmodeler with custom actors [15], we implemented an algorithm to iterate
over the discretized feasible state space to find initial conditions that correspond to stable limit cycles.
First, we established the parameters of the robot:

• γ = π
45

= 4◦

• µ = 2.0

• β = 1.0

• a = 0.5

• g = 9.8

The selection of leg mass m and Routhian constant c required more thought. After testing the reduced
model withm = 5 and non-zero c, we discovered that the limit cycle’s basin of attraction is far thinner for
small m. In other words, the robot is more sensitive to perturbations and prone to fall over. The motion-
dampening inertial forces in the lateral plane are minimal, so the trajectory of the φ variables must be exact.
For this reason, we chosem to be around 90, which significantly increased the walker’s stability.
We kept c very small in order to generate human-like arcs in the lateral plane. Natural humanwalking has a
slight rotation in the lateral in order to avoid scuffing against the stance leg and the ground. This is similar to
the scuffing compensation of McGeer’s passive straight-leggedmodel [17]. In our simulations, c ≈ 0.01.
In order to validate whether each configuration is a fixed-point on the Poincaré return map, we use the

method proposed in [9]. For each set of initial conditions, the algorithm fires the HyVisual simulator over two
steps (a complete cycle) and records the initial conditions at the beginning of the next cycle. The initial con-
ditions are then perturbed and simulated, one at a time, and the results after a complete cycle are subtracted
from the unperturbed cycle’s results to make a difference matrix. The difference matrix is multiplied by the
diagonal matrix of inverted perturbation values. The eigenvalues are calculated from the resultingmatrix, and
if themagnitudes are all strictly less than one, the initial configuration is on a limit cycle.
The initial conditions and parameters are simultaneously tuned to find periodicity in both planes. This is

because a periodic cycle in the sagittal does not necessarily correspond to a periodic cycle in the lateral. The
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(a) Periodicity in the Sagittal Plane: θ(t) vs. θ̇(t) (b) Periodicity in the Lateral Plane: φ(t) vs. φ̇(t)

Figure 5. Limit cycle (m=89, c=0.01) in both planes

Figure 6. Periodic Evolution in the Lateral Plane (m=89, c=0.01): Time vs. φ(t)

best configurationwe found is with c = 0.01 andm = 89:
θns(t0)
θs(t0)

θ̇ns(t0)

θ̇s(t0)
φ(t0)

 =


−0.3771
0.2061
0.15897
−1.0667
−π/2


This configuration resulted in a limit cycle in the sagittal plane (Fig. 5(a)) matching those found in [9] and
[22]. Also, we indeed found periodicity in the φ variables, shown in Fig. 5(b). The timed evolution of angular
position φ appears to be two-step periodic in Fig. 6, but we believe this to either be a discretization error or a
sign that our c andm parameters are very close to one-step periodic values.

5 CONCLUSIONANDFUTUREWORK

Even though the plots of this limit cycle are promising,we have not yet achievednaturalwalking behavior in
a visualization. Currently, a 3DanimationbyHaiyangZheng shows the swing leg rotatingbehind the x-zplane.
That is, the swing leg never reaches stages (d)-(f) of Fig. 4, and instead goes back into the negative y region.
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There are many subtleties about the reduced model that we do not yet understand. For example, because we
do not have the full-order impact equations, we are unsure whether the θ variables can really carry φ over an
impact. If our assumption is correct, there are symmetries in the impact equations just like the dynamics, but
we cannot be positive until we visually confirm 3Dwalking.
Despite the remaining problems, we have successfully applied numerical analysis to the reduced model of

a passive 3D biped. We have provided evidence of periodic 3D limit cycles, showing that 2D analytical tech-
niques can be applied to 3Dmodels through reduction. This research has demonstrated the promise of hybrid
reduction, andmuch future work is necessary.
We still need to visuallymapperiodic cycles for the reducedmodel into naturalwalking. Also, an application

to powered robots is a next step that will test models of the form:

M(q)q̈ + F (q, q̇)q̇ + g(q) + aug(q) = B(q)

where B(q) is the matrix of actuation torques. We can more elegantly exploit the symmetries of dynamical
systems. A generalization of hybrid reduction will allow analysis of different models and reduction without
simplification constraints. We could potentially reduce a bipedmodel with human-like strides, instead of the
rotating divider motion of this paper’s application. With all these topics to explore, we are certainly walking
towards a greater understanding of three-dimensional bipeds.
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A APPENDIXOFDYNAMICS EQUATIONS

A.1 Impact Equations

The following relationship exists between pre-impact and post-impact angular velocities in the sagittal
plane [9]:

Q−(α)θ̇− = Q+(α)θ̇+

with the normalized forms ofQ−(α) andQ+(α) being:

Q−
n (α) = ma2

(
−β −β + (µ(1 + β)2 + 2(1 + β)) cos(2α)
0 −β

)

Q+
n (α) = ma2

(
β(β − (1 + β) cos(2α)) (1 + β)((1 + β)− β cos(2α)) + 1 + µ(1 + β)2

β2 −β(1 + β) cos(2α)

)
which describe the y-z plane’s angular velocity transitionmapH(α):

H(α) = Q+−1
n (α)Q−

n (α) (19)
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A.2 Original Full-Order Continuous Dynamics

The Lagrangian derivation begins with the position vectors of each point-mass on the robot. The time-
derivatives of these yield the velocity vectors, which are used to determine the kinetic energy of the system:

K(q, q̇) =
1

2
M || ~vM ||2 +

1

2
m|| ~vns||2 +

1

2
m||~vs||2 (20)

The kinetic energy expressed in terms of matrixM(q) (25) is

K(q, q̇) =
1

2
q̇T M(q)q̇ (21)

Similarly, the potential energy is:

V (q) = V (θ) = Mgl cos(θs) + mga cos(θs) + mg(l cos(θs)− b cos(θns)) (22)

Finally, the Lagrangian is the difference:

L(q, q̇) = K(q, q̇)− V (q) =
1

2
q̇T M(q)q̇ − V (q) (23)

L(q, q̇) =
1

2
(a2m(sin(θs)

2φ̇2
s + θ̇2

s) + l2M(sin(θs)
2φ̇2

s + θ̇2
s)

+m((b sin(φns) sin(θns)φ̇ns − l sin(φs) sin(θs)φ̇s

−b cos(φns) cos(θns)θ̇ns + l cos(φs) cos(θs)θ̇s)
2

+(b cos(φns) sin(θns)φ̇ns − l cos(φs) sin(θs)φ̇s + b cos(θns) sin(φns)θ̇ns

−l cos(θs) sin(φs)θ̇s)
2 + (b sin(θns)θ̇ns − l sin(θs)θ̇s)

2))

+bgm cos(θns)− agm cos(θs)− lg(M + m) cos(θs) (24)

Using the definition of Lagrange (6) to derive the equations of motion, we get the generalized system of (7),
which has the following components (in terms of the normalized components):

M(q) = ma2Mn(q) (25)

F (q, q̇) = ma2Fn(q, q̇) (26)

g(q) = ma2gn(q) (27)

The normalized components are:

Mn(q) =


M11

n M12
n M13

n M14
n

M21
n M22

n M23
n M24

n

M31
n M32

n M33
n M34

n

M41
n M42

n M43
n M44

n

 (28)

wherematrixMn has entries

M11
n = β2

M12
n = −(β + 1)β(cos(φns − φs) cos(θns) cos(θs) + sin(θns) sin(θs))

14



M13
n = 0 M14

n = −(β + 1)β cos(θns) sin(φns − φs) sin(θs)
M21

n = M12
n M22

n = ((1 + β)2(µ + 1) + 1)
M23

n = (β + 1)β cos(θs) sin(φns − φs) sin(θns) M24
n = 0

M31
n = 0 M32

n = M23
n

M33
n = β2 sin(θns)

2 M34
n = −(β + 1)β cos(φns − φs) sin(θns) sin(θs)

M41
n = M14

n M42
n = 0

M43
n = M34

n M44
n = ((1 + β)2(µ + 1) + 1) sin(θs)

2

Fn(q, q̇) =


F 11

n F 12
n F 13

n F 14
n

F 21
n F 22

n F 23
n F 24

n

F 31
n F 32

n F 33
n F 34

n

F 41
n F 42

n F 43
n F 44

n

 (29)

wherematrixFn has entries

F 11
n = 0

F 12
n = (β + 1)β(cos(φns − φs) cos(θns) sin(θs)θ̇s − cos(θs)(cos(θns) sin(φns − φs)φ̇s + sin(θns)θ̇s))

F 13
n = −1

2
β2 sin(2θns)φ̇ns

F 14
n = (β + 1)β cos(θns)(cos(φns − φs) sin(θs)φ̇s − cos(θs) sin(φns − φs)θ̇s)

F 21
n = ((β + 1)β(cos(θns) cos(θs) sin(φns − φs)φ̇ns + (cos(φns − φs) cos(θs) sin(θns)− cos(θns) sin(θs))θ̇ns))

F 22
n = 0

F 23
n = (β + 1)β cos(θs)(cos(φns − φs) sin(θns)φ̇ns + cos(θns) sin(φns − φs)θ̇ns)

F 24
n = −1

2
((β + 1)2(µ + 1) + 1) sin(2θs)φ̇s

F 31
n = β2 cos(θns) sin(θns)φ̇ns

F 32
n = −(β + 1)β sin(θns)(cos(φns − φs) cos(θs)φ̇s + sin(θs) sin(φns − φs)θ̇s)

F 33
n = β2 cos(θns) sin(θns)θ̇ns

F 34
n = −(β + 1)β sin(θns)(sin(φns − φs) sin(θs)φ̇s + cos(θs) cos(φns − φs)θ̇s)

F 41
n = −(β + 1)β sin(θs)(cos(φns − φs) cos(θns)φ̇ns − sin(θns) sin(φns − φs)θ̇ns)

F 42
n = ((β + 1)2(µ + 1) + 1) cos(θs) sin(θs)φ̇s

F 43
n = (β + 1)β sin(θs)(sin(φns − φs) sin(θns)φ̇ns − cos(θns) cos(φns − φs)θ̇ns)

F 44
n = ((β + 1)2(µ + 1) + 1) cos(θs) sin(θs)θ̇s

gn(q) =


βg sin(θns)

−g((β + 1)(µ + 1) + 1) sin(θs)
0
0

 (30)

A.3 Simplified Higher-Order Continuous Dynamics

The Lagrangian of the simplified, full-order 3Dmodel is

Ls(θ, θ̇, φ̇) = bmg cos(θns)− g(b(m + M) + a(2m + M)) cos(θs)
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+
1

2
((b2m sin(θns)

2 − 2b(a + b)m sin(θns) sin(θs)

+((2a2 + 2ab + b2)m + (a + b)2M) sin(θs)
2)φ̇2

s

+b2mθ2
ns − 2b(a + b)m cos(θns − θs)θ̇nsθ̇s

+((2a2 + 2ab + b2)m + (a + b)2M)θ̇2
s) (31)

Using this Lagrangian, the simplified kinematics componentMs(θ) (10) is derivedwith submatrices:

M1(θ) = ma2

(
β2 −β(1 + β) cos(θns − θs)

−β(1 + β) cos(θns − θs) 1 + (1 + β)2(1 + µ)

)
(32)

M2(θ) = ma2

(
β2 sin(θns)

2 −β(1 + β) sin(θns) sin(θs)
−β(1 + β) sin(θns) sin(θs) (1 + (1 + β)2(1 + µ)) sin(θs)

2

)
(33)

A.4 Reduced Continuous Dynamics

The normalized components of the reduced system (15) are given by:

Mr(θ) =

(
β2 −β(1 + β) cos(θns − θs)

−β(1 + β) cos(θns − θs) 1 + (1 + β)2(1 + µ)

)
(34)

Fr(θ, θ̇) =

(
0 −β(1 + β) sin(θns − θs)θ̇s

β(1 + β) sin(θns − θs)θ̇ns 0

)
(35)

gr(θ) =

(
gβ sin(θns)

−g(1 + (1 + β)(1 + µ)) sin(θs)

)
(36)

aug(θ) =

(
c2β cos(θns)(−β sin(θns)+(1+β) sin(θs))

denom
c2 cos(θs)(β(1+β) sin(θns)−(1+(1+β)2(1+µ)) sin(θs))

denom

)
(37)

where denom is the normalized form squared ofm2(θ):

denom = (β2 sin(θns)
2 − 2β(1 + β) sin(θns) sin(θs) + (1 + (1 + β)2(1 + µ)) sin(θs)

2)2

B APPENDIXOFPROOFS

B.1 A Routhian holds as a Lagrangian

Lemma 1: If Ls(θ, θ̇, φ̇) is a Lagrangian by definition (6), then our Routhian R(θ, θ̇) from (14) is a
Lagrangian, i.e.:

d

dt

∂R(θ, θ̇)

∂θ̇i

− ∂R(θ, θ̇)

∂θi

= 0,∀i ∈ {ns, s} (38)
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Proof: First, let us inspect our simplified higher-order Lagrangian (31). BecausematrixMs(θ) is symmetric,
the Lagrangian can bewritten as

Ls(θ, θ̇, φ̇) =
1

2
q̇T Ms(θ)q̇ − V (θ)

=
1

2
θ̇T M1(θ)θ̇ +

1

2
φ̇T M2(θ)φ̇− V (θ) (39)

Although our simplified model has a scalar term forM2(θ), we will maintain the term’s generality for this
proof. Now, by applying the definition of Lagrangian toLs, we get

d

dt

∂Ls(θ, θ̇, φ̇)

∂θ̇i

− ∂Ls(θ, θ̇, φ̇)

∂θi

= 0,∀i ∈ {ns, s} (40)

If our assumption holds, then the left-hand sides of both (38) and (40) are equal (ignoring index i):

d

dt

∂Ls(θ, θ̇, φ̇)

∂θ̇
− ∂Ls(θ, θ̇, φ̇)

∂θ
=

d

dt

∂R(θ, θ̇)

∂θ̇
− ∂R(θ, θ̇)

∂θ

Differentiation is a linear operation, so theM1(θ) and V (θ) terms immediately cancel out. Multiplying both
sides by two produces

∂(φ̇T M2(θ)φ̇)

∂θ
=

∂(rT M−1
2 (θ)r)

∂θ

Because we are conserving certain quantities with the Routhian relation (11), we have the expression:

rT M−T
2 (θ)r = rT M−1

2 (θ)r

MatrixM2(θ) is symmetric, soMT
2 (θ) = M2(θ). Therefore, the expression is true, and the Routhian is a

Lagrangian.

B.2 Solutions to the reduced model are solutions to the higher-order (simplified) model

Lemma2: According to thedefinition of ahybrid systemsolution in (2), if (ΦR
t , τR, χR) is a solution

to the reduced hybrid system, then (ΨL
t , τL, χL) is a solution to the higher-order hybrid system.

Proof: In order to prove this directmapping, wemust show that the solutions hold for both the continuous
dynamics and the hybrid transition:

Lemma 2.1: IfΦR
t (x0), wherex = (θ, θ̇)T , is a solution for the reduced continuous dynamics, i.e.:

d

dt

∂R(ΦR
t (x0))

∂θ̇i

− ∂R(ΦR
t (x0))

∂θi

= 0,∀i ∈ {ns, s}

then

ΨL
t (x0) =

 ΦR
t (x0)

φt0 +
∫ t

t0
φ̇(τ)dτ

c
m2(θ)

 (41)
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is a solution to the higher-order continuous dynamics, i.e.:

d

dt

∂Ls(Ψ
L
t (x0))

∂q̇i

− ∂Ls(Ψ
L
t (x0))

∂qi

= 0,∀i ∈ {indices of all position states}

Proof: For qi = θns and qi = θs, the opposite direction of proof B.1 confirms that the definition of La-
grangian (6)holds. This cannotbeusedon qi = φbecauseφ is not adefinedvariable in theRouthian. However,
we know the following properties ofLs(θ, θ̇, φ̇) from 2.4:

∂Ls(Ψ
L
t (x0))

∂φ
= 0

From this, the definition of Lagrangian simplifies to

d

dt

∂Ls(Ψ
L
t (x0))

∂φ̇
= 0

Moreover, from the definition of the Routhian (11):

∂Ls(Ψ
L
t (x0))

∂φ̇
= m2(θ)φ̇ = c

Differentiation of a constant is zero, so the previous expression holds. Therefore, the solution to the reduced
continuous dynamics is a solution to the higher-order continuous dynamics.

Lemma 2.2: If τR is the set of collision times for the reduced system, then τL is the set of collision
times for the higher-order system.

Proof: Because the guard G from (1) is dependent only on θ, which by Lemma 2.1 holds through the higher-
order dynamics, the collisions in the reduced model happen at the same time as the collisions in the higher-
ordermodel. Therefore, τR = τL.

Lemma 2.3: Ifxi ∈ χR is
xi = TR(ΦR

ti
(xi−1))

whereTR(θ, θ̇)uses the resetmap given in (5), then yi ∈ χL, defined by

yi =

 xi

φi−1 +
∫ ti

ti−1
φ̇(τ)dτ − π

c
m2(θ)

 (42)

is
yi = TL(ΨL

ti
(yi−1))

where

TL(θ, θ̇, φ, φ̇) =

 TR(θ, θ̇)
φ− − π

m2(θ−)

m2(T R
θ (θ−))

φ̇−

 (43)
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Proof: Because of Lemma 2.1, we know that the flowΦR
t (xi)maps to the flowΨL

t (xi). Since xi is contained
in yi, the reduced flow also maps toΨL

t (yi). Also, because of Lemma 2.2, the impacts of both systems happen
simultaneously. Thus, the higher-order flow produces pre-impact coordinates:

q−(ti) = ΨL
ti
(yi)

where q(t) = (θ(t), θ̇(t), φ(t), φ̇(t))T

Clearly, the θ and θ̇ terms of q− hold through the higher-order transition since TL (43) uses the same map
on those terms as the reduced transition,TR.
According to (41), q− contains:

φ− = φi−1 +

∫ ti

ti−1

φ̇(τ)dτ

Applying this to the reset mapTL, we get the same termminus π, soφ holds through the transition.
Furthermore, q− also contains:

φ̇− =
c

m2(θ−)

When the system goes through the reset mapTL, the denominator of the φ̇ term cancels out, producing

c

m2(TR
θ (θ−))

=
c

m2(θ)

which is the φ̇ term of yi. Therefore, the higher-order coordinates hold through the transition.

Finally, because each part of a solution to the reduced system holds over the higher-order system’s continu-
ous dynamics and hybrid transitions, Lemma 2 is true.
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