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Because the complexity of bipedal walking robots doubles 
when increasing a model from 2D to 3D, many previously 
established analytical techniques are computably 
impractical for 3D models.  This project offers a systematic 
approach to reducing a 3D hybrid model into two 
dimensions, on which 2D analytical methods can be used, 
such as numerical analysis to find the limit cycles that 
result in asymptotically stable walking.
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The Scaling Complexity Problem: From 2D to 3D
• Increasing the model’s dimensions from two to 
three results in a two-fold increase of state 
dependency
• Thus, in three dimensions, numerical analysis 
requires a phase space search of eight dimensions
• Analysis is computably impractical!

Solution: Hybrid Reduction on the 3D Model

Hybridization Discrete Foot Impact

• The Lagrangian accounts for all energy in the system
Lagrangian = Kinetic Energy – Potential Energy
L(Θ) = ½ Θ’T M(Θ) Θ’ – ∫ g(Θ)

• Derive the continuous Equations of Motion (passive):
M(Θ) Θ’’ + F(Θ, Θ’) Θ’ + g(Θ) = 0

Lagrangian Continuous Dynamics

Dependency Simplification
• Find independence for Φ states
• Fixing Φs(t) = Φns(t) (x-y plane)

• Eliminate Φ` variables using reduction!
M2(Θ) Φ` = c   (Routhian constant)

• Solve:  Φ` = c/m(Θ)   (scalar term)
Routhian = [ L(Θ, Θ`, Φ`) – c Φ` ]Φ`=c/m(Θ)
R(Θ, Θ`) = ½ Θ`T M1(Θ) Θ` – ∫q(Θ) – ½ c2/m(Θ)

Routhian Reduction to 2D

• Continuous Equations of Motion (passive):
M(Θ) Θ’’ + F(Θ, Θ’) Θ’ + g(Θ) + augc(Θ) = 0

• The reduced model (now 2D) is equivalent to the 
original 2D model with an augmented term
• Generality: If c is zero => original 2D model
• Uniqueness: Bring back to unique 3D model

Φ` = M2
-1(Θ) c,

Φ = Φ0 + ∫ M2
-1(Θ) c

• Reconstruction: Solutions for the reduced model 
are also solutions for the higher-order 3D model
• Below is a periodic limit cycle for the 3D model

• Investigate natural 3D walking through animation
• Application to actuated robots:

M + F + g + a = B (actuation matrix)
• Generalization of reduction: Different models and 
reduction without simplification constraints
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Periodic 2D Walking: Reduced Model (M = 178kg, m = 89kg, a=b=0.5m, and c = 0.01)
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θns(t) + θs(t) = −2γθns(t) + θs(t) = −2γ


