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Cyber-Physical Systems

...

Cyber-Physical System(CPS):
Orchestrating networked computational

resources with physical systems
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Motivation

▶ Programming CPS is flawed

▶ Timing affects behavior & correctness

▶ Insufficient software abstractions

▶ Lack of temporal semantics

▶ Thesis: time has to be a first-class citizen in
CPS programming
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If t2 > t1 + D then e3 misses its deadline
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PTIDES: Timestamp Order

..
D1

.. C..
Sensor S1

. Actuator A.

Sensor S2

..

e(t1 + D1)

▶ When should e be processed?

▶ After t1 + D1 any event that arrives at S2 will
have timestamp > t1 + D1

▶ Safe-to-process analysis
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Schedulability Problem

▶ Worst-case execution time per actor
▶ Models for sensor and network inputs

▶ Periodic, sporadic (min. inter-arrival time)

▶ Schedulability problem:
Does the program always meet its deadlines?

.. PTIDES.

Platform

.

Schedulability
Analysis

...
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Challenges

▶ Difficult to identify worst-case scenario
▶ Two dependent objectives:

▶ Processor demand
▶ Safe-to-process waiting

▶ Expressiveness of programming model

10 / 46



Our Approach

▶ Address infinite state space
▶ Real-time and timestamps
▶ Number of events

▶ Reduce schedulability to reachability in timed
automata

▶ Implement DE semantics
▶ Simulate EDF with preemption

11 / 46



Real-time & Timestamps

▶ Real-time and timestamps can grow without
bound

▶ Their absolute value is not necessary for
execution

▶ Difference between timestamp and real-time is
sufficient for PTIDES semantics

▶ Discrete-event semantics and safe-to-process
▶ EDF scheduling, i.e., compare deadlines
▶ Deadline misses
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Relative Timestamps

▶ Relative timestamp, timestamp - real-time:
τ−t

▶ Starts at 0

▶ Decreases continuously as real-time advances

▶ Makes discrete jumps when an event is
processed by delay actor

▶ Has to be ≥ 0 when an event reaches an
actuator
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Bounding relative timestamps

▶ Find L,U such that L ≤ τ−t ≤ U

▶ L ≤ τ−t

▶ Can real-time t grow unboundedly relative to a
timestamp τ?

▶ No: t ≤ τ + (delay to actuators)
or else deadline miss

▶ τ−t ≤ U

▶ Can a timestamp grow unboundedly relative to
real-time?

▶ No: τ ≤ t + (delay from sensors)
or else we could violate timestamp order

▶

.
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Queue-size bounds (1)

... Execution time: W
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.....
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Queue-size bounds (2)

....Sensors . Actuators. C1

. C2

... · · ·

▶ Absolute deadline of event with timestamp τ :

τ + (delay to actuators)

▶ Relative deadline associated with channel is:

τ − t + delay(C2, actuators)

▶ Upper bound on relative deadline

(delay from sensors) + (delay to actuators)
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Our Approach

▶ Address infinite state space
▶ Real-time and timestamps
▶ Number of events

▶ Reduce schedulability to reachability in timed
automata

▶ Implement DE semantics
▶ Simulate EDF with preemption
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Schedulability using Timed Automata

..
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Timed Automata

..

clock c1, c2

..

A

...

B

..

C

.

guard:
c1 ≥ 10

.

reset:
c2 := 0

.
guard:
c2 ≥ 5

.

invariant:
c2 ≤ 10

▶ Finite automata + finite set of real-valued
clocks

▶ Time elapses at locations

▶ Clocks can be reset on transitions

▶ Guards: clock constraints on transitions

▶ Invariants: clock constraints on locations
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TA example

..

Periodic Source
clock c ;

const period;

..

invariant: c ≤ period

..

guard: c = period
reset: c := 0
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TA example

..

Periodic Source
clock c ;

const period;

.

Sporadic

..

invariant: c ≤ period

..

guard: c = period
reset: c := 0

.

≥
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Timestamps with clocks (1)

▶ Associate a clock c and a discrete variable d
with each event

▶ Reset clock when event enters platform

▶ c measures the relative time in the platform:
t − c = time the event entered platform

▶ d accumulates the delay added to the event:
t − c + d = timestamp of event
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Timestamps with clocks (2)
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Schedulability using Timed Automata
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Scheduler automaton

..idle.

busy

.

error

.

input, output,
safe-to-process

.

finish

.

execute,
resume

. queue-overflow,
deadline-miss

.

preempt
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Schedulability using Timed Automata
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Our Approach

▶ Address infinite state space
▶ Real-time and timestamps
▶ Number of events

▶ Reduce schedulability to reachability in timed
automata

▶ Implement DE semantics
▶ Simulate EDF with preemption
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Hard Real-Time Theory

▶ Can we leverage traditional hard real-time
theory for more efficient and sufficient
schedulability tests?

▶ We described two dependent objectives:
▶ Processor demand
▶ Safe-to-process waiting

▶ We will try to factor the latter in the real-time
task system
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PTIDES as multiframe tasks

.. D. W.S . A
.. W ,D.

I

..

▶ Reduction to tasks is easy for parallel chains of
actors

▶ What about merging and splitting paths?
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Merging as multiframe tasks
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D1
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..

e(t+D1)

.

S1

.

S2

. A1

▶ Event e is safe to process at t ′ ≥ t+D1

▶ If it is not safe at t+D1,
W2 is executing an event with smaller deadline
than e

▶ Under EDF, “task” can be released at t+D1

.

.
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Schedulability as multiframe tasks

▶ Statically compute lower bounds for release
time of tasks

▶ Reduce to schedulability of multiframe tasks:
▶ EDF
▶ Sporadic input sources
▶ Input-agnostic safe-to-process analysis
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Timed transition system

▶ State (r , t)
▶ r is a map from channels to sets of timestampes
▶ t is global time

▶ Two types of transitions
▶ delay transitions: set global time equal to the

smallest timestamp in the map
▶ discrete transitions: fire actor with smallest

timestamp in its input channels

▶ Actors fire in timestamp order

▶ Execution is deterministic
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Boundedness of DE

..P.

a1

..

a2

.

c1

..

{0}

▶ Events in c1: {i · P | i ∈ N}
▶ Events in c2: {(i + 1) · P | i ∈ N}

▶ Is the number of events in any channel at a
state of the TTS bounded?

▶ Can we address the issue of timestamps and
time being infinite?
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Bounding number of events

▶ Let τmin(s) be the min. timestamp in state s

▶ if s → s ′ then τmin(s) ≤ τmin(s
′)

▶ for any event τ in a state s,1

τ ≤ τmin(s) + max{delay(a) | a ∈ A}

▶ Lower and upper bound for all events in a state

▶ Fractional part of every timestamp is
determined by fractional part of initial events

1initial events
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Bounding timestamps

▶ In TTS timestamps and global time can grow
unbounded

▶ Bounded timed transition system BTS(G , r0)

▶ Delay transitions: subtract minimum
timestamp from all events

▶ Discrete transitions: process event with
timestamp equal to 0

▶ BTS transitions:
▶ delay transition: r

δ−→b r
′ where δ = τmin(r),

r ′ = r − τmin(r)
▶ discrete transition: r

a−→b r
′ with

r ′ = f (a, r ,D(a)), τmin(a, r) = τmin(r) = 0
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Example BTS
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Bounded Transition System

▶ The set of reachable states of BTS(G , r0) is
finite

▶ Number of events bounded as in TTS
▶ Possible timestamps finite, despite initial events

∈ R
▶ A bisimulation exists between TTS and BTS

▶ R contains all pairs ((r , t), r − t)
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Verification - Queries

▶ Signal queries
▶ A channel signal denotes the set of all events that

occur in a channel along an execution
▶ “an event occurs in c”, ϕ := ∃τ : τ ≥ 0
▶ “two events occur in c separated by at most 1

time unit”, ∃τ1, τ2 : |τ1 − τ2| ≤ 1.

▶ State queries
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Verification - Algorithms for DE

▶ Construct lasso from BTS
▶ Merge all enabled transitions in one
▶ Finite and deterministic transition system

▶ Compute for every channel c , an affine
expression that describes channel signal of c

▶ Reduce the problem of checking whether
σc ⊨ ϕ to an SMT problem

▶ Affine expression: i · P + j · D
▶ τ1, τ2 such that τ1 − τ2 = 5
▶ τ1 = i1P + j1D ∧ τ2 = i2P + j2D ∧ τ1 − τ2 = 5

▶ Similarly for state queries

44 / 46



Verification - Algorithms for DE

▶ Construct lasso from BTS
▶ Merge all enabled transitions in one
▶ Finite and deterministic transition system

▶ Compute for every channel c , an affine
expression that describes channel signal of c

▶ Reduce the problem of checking whether
σc ⊨ ϕ to an SMT problem

▶ Affine expression: i · P + j · D
▶ τ1, τ2 such that τ1 − τ2 = 5
▶ τ1 = i1P + j1D ∧ τ2 = i2P + j2D ∧ τ1 − τ2 = 5

▶ Similarly for state queries

44 / 46



Verification - Algorithms for DE

▶ Construct lasso from BTS
▶ Merge all enabled transitions in one
▶ Finite and deterministic transition system

▶ Compute for every channel c , an affine
expression that describes channel signal of c

▶ Reduce the problem of checking whether
σc ⊨ ϕ to an SMT problem

▶ Affine expression: i · P + j · D
▶ τ1, τ2 such that τ1 − τ2 = 5
▶ τ1 = i1P + j1D ∧ τ2 = i2P + j2D ∧ τ1 − τ2 = 5

▶ Similarly for state queries

44 / 46



Verification - Algorithms for DE

▶ Construct lasso from BTS
▶ Merge all enabled transitions in one
▶ Finite and deterministic transition system

▶ Compute for every channel c , an affine
expression that describes channel signal of c

▶ Reduce the problem of checking whether
σc ⊨ ϕ to an SMT problem

▶ Affine expression: i · P + j · D
▶ τ1, τ2 such that τ1 − τ2 = 5
▶ τ1 = i1P + j1D ∧ τ2 = i2P + j2D ∧ τ1 − τ2 = 5

▶ Similarly for state queries

44 / 46



Conclusions

..

Discrete-Event
Systems

.

Verification

.

PTIDES

.

Platform

.

Schedulability
Analysis

.....

45 / 46



Thank you

Questions?
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