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Cyber-Physical System(CPS):

Orchestrating networked computational

resources with physical systems
Building S ystemsr_“

Transportation
(Air traffic
control at
SFO)

Avionics

Telecommunications
Automotive = 5

Courtesy of Kuka Robotics Corp.
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Motivation

Programming CPS is flawed

Timing affects behavior & correctness
Insufficient software abstractions
Lack of temporal semantics

Thesis: time has to be a first-class citizen in
CPS programming

46



PTIDES

Discrete-Event
Systems

Real-time semantics

PTIDES

Schedulability
Analysis

Platform



PTIDES

Discrete-Event
Systems

Real-time semantics

PTIDES

Schedulability
Analysis

Platform



PTIDES

Discrete-Event
Systems

Real-time semantics

PTIDES

Platform

4/46



Discrete-Event Systems

Clock

L

1,
[

\ 4

Display

46



Discrete-Event Systems

Clock

(tO+PaV)

L

1,
[

\ 4

Display

46



Discrete-Event Systems

Clock

(to + 2P, v)

1

1,
[

\ 4

Display

46



Discrete-Event Systems

Clock

to + 3P, v)

1

1,
[

\ 4

Display

46



Discrete-Event Systems

Clock

-k

e(to, V)

1,
[

\ 4

Display

46



Discrete-Event Systems

Clock

L

e(t1 = to + D1, v)

.

T

C

\ 4

Display

46



Discrete-Event Systems

Clock

L

e(t1 = to + D1, v)

.

C

o

e/(i.“g7 vl)

\ 4

Display

46



Discrete-Event Systems

Clock

L

N
o

e(t1,v")

e/(i.“g7 vl)

Display

46



PTIDES: Sensors and Actuators

Ptides Platform

Sensor ———

\ 4
(@)

—— > Actuator

>
real-time t



PTIDES: Sensors and Actuators

Ptides Platform

Sensor——» D » C ——» Actuator
t real-time t

Sensor
fires



PTIDES: Sensors and Actuators

Ptides Platform

er(t1)
Sensor —@—» D » C ——» Actuator
t real-time t

Sensor
fires



PTIDES: Sensors and Actuators

Ptides Platform

eg(t1+D)
Sensor———» D ——@&—» C ——  Actuator

I

t real-time t
Sensor

fires




PTIDES: Sensors and Actuators

Ptides Platform

Sensor———»| D » C » Actuator
_ tm .
t real-time t

Sensor
fires



PTIDES: Sensors and Actuators

Ptides Platform

63(1.'1 + D)
Sensor——» D > C ®— Actuator
e .
t to real-time t

Sensor
fires

6/46



PTIDES: Sensors and Actuators

Ptides Platform

es(ty + D)
Sensor—» D » C ®—> Actuator
ty to ti+D real-time t
Sensor Actuator
actuates

fires

6/46



PTIDES: Sensors and Actuators

Ptides Platform

es(ty + D)
Sensor—» D » C ®—> Actuator
ty to ti+D real-time t
Sensor Actuator
actuates

fires

If to > t; + D then e3 misses its deadline



PTIDES: Timestamp Order

e(t1 + Dl)
Sensor S1 — D ﬁ*\_»

Sensor S2

C —> Actuator A

» When should e be processed?

» After t; + D; any event that arrives at S, will
have timestamp > t; + D,

» Safe-to-process analysis
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Schedulability Problem

» Worst-case execution time per actor
» Models for sensor and network inputs
» Periodic, sporadic (min. inter-arrival time)

» Schedulability problem:
Does the program always meet its deadlines?

Schedulability
Analysis

9 /46
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Challenges

» Difficult to identify worst-case scenario
» Two dependent objectives:

» Processor demand
» Safe-to-process waiting

» Expressiveness of programming model

10/ 46



Our Approach

» Address infinite state space
» Real-time and timestamps
» Number of events
» Reduce schedulability to reachability in timed
automata

» Implement DE semantics
» Simulate EDF with preemption
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Real-time & Timestamps

» Real-time and timestamps can grow without
bound
» Their absolute value is not necessary for

execution
» Difference between timestamp and real-time is
sufficient for PTIDES semantics
» Discrete-event semantics and safe-to-process
» EDF scheduling, i.e., compare deadlines
» Deadline misses
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Relative Timestamps

Relative timestamp, timestamp - real-time:
T—1t

Starts at 0

Decreases continuously as real-time advances

Makes discrete jumps when an event is
processed by delay actor

Has to be > 0 when an event reaches an
actuator
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Bounding relative timestamps

» Find L,U suchthat L< 77—t < U
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Bounding relative timestamps

Find L,U suchthat L< 77—t < U
L< 71—t
» Can real-time t grow unboundedly relative to a
timestamp 77
» No: t < 7+ (delay to actuators)
or else deadline miss
T—t<U
» Can a timestamp grow unboundedly relative to
real-time?
» No: 7 < t + (delay from sensors)
or else we could violate timestamp order

—(delay to actuators) <7—t <(delay from sensors)
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Queue-size bounds (1)

Execution time: W

][ O Relative deadline: D
N requests
How big can N be?
If a request arrives at t, its deadline is t + D
Total execution time of N eventsis N - W

D

N <[]
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Queue-size bounds (1)

Execution time: W
Relative deadline: D
How big can N be?
If a request arrives at t, its deadline is t + D

N requests

Total execution time of N eventsis N - W

W< D]

Sensor —>

> 0086

_

C

— Actuator

N events

Comp-time: W

15 /46



Queue-size bounds (2
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Sensors

Queue-size bounds (2

G

> @

G

Actuators

» Absolute deadline of event with timestamp 7:

7 + (delay to actuators)

» Relative deadline associated with channel is:

» Upper bound on relative deadline

T — t 4 delay( Gy, actuators)

(delay from sensors) + (delay to actuators)
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Our Approach

» Address infinite state space
» Real-time and timestamps
» Number of events
» Reduce schedulability to reachability in timed
automata

» Implement DE semantics
» Simulate EDF with preemption
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Schedulability using Timed Automata

[TFL

Input Automata

one per sensor §

Task Automata
one per actor in the model

|||
OO

Scheduler Automaton
one per platform

18 /46



Timed Automata

invariant:
clock ¢, o guard: o <10
c > 10 m
@ reset: \_ guard: Q
A Cr = 0 B (@) 2 5 C

Finite automata + finite set of real-valued
clocks

v

v

Time elapses at locations
Clocks can be reset on transitions

v

Guards: clock constraints on transitions

v

v

Invariants: clock constraints on locations
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TA example

Periodic Source guard: ¢ = period

clock c: reset: ¢ ;=0

const period;

invariant: ¢ < period
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TA example

Sporadic

Peykﬁic Source guard: C;éZperiod

clock ¢ reset: ¢ :=0

const period;
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Timestamps with clocks (1)

Associate a clock ¢ and a discrete variable d
with each event

Reset clock when event enters platform

¢ measures the relative time in the platform:
t — ¢ = time the event entered platform

d accumulates the delay added to the event:
t — c + d = timestamp of event
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Timestamps with clocks (2)
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Timestamps with clocks (2)

Ptides Platform

ei(c, d)
Sensor —@—| D

A 4
@)

——— Actuator

I

>
t real-time t
Sensor
fires

c:=0,d:=0

22 /46



Timestamps with clocks (2)

Ptides Platform

e(c, d)
Sensor——» D ——» C —» Actuator

I

t real-time t
Sensor
fires

c:=0,d:=0
d=d+D

22 /46



Timestamps with clocks (2)

Ptides Platform

Sensor——» D

v
O

» Actuator

s

>
t real-time t
Sensor
fires
c:=0,d:=0

d=d+ D

22 /46



Timestamps with clocks (2)

Ptides Platform

es(c, d)
®— Actuator

Sensor——» D

\ 4
@)

s

>
t1 (57} real-time t
Sensor
fires
c:=0,d:=0

d=d+ D

22 /46



Timestamps with clocks (2)

Ptides Platform

es(c, d)
Sensor——» D » C ®—> Actuator
ty 1) ti + D real-time t
Sensor Actuator
fires actuates
c=d

c:=0,d:=0
d=d+D
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Schedulability using Timed Automata

Input Automata v LIt

per sensor
§ ©

Scheduler Automaton

one per platform
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one per actor in the model
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Task Automaton

idle
clock :=0 clock =W

executing clock < W
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Task Automaton

clock := 0 clock = W + > W;- P(i)

clock <W + >~ W;- P(i)

pause clock?
P(i)++

preempted



Schedulability using Timed Automata

Input Automata v/ Ll

one per sensor
§ @

Scheduler Automaton
Task Automata v/ one per platform
one per actor in the model



Scheduler automaton

input, output,
[ )safe-to-process

deadline-miss

execute,
resume

preempt

queue-overflow,
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Schedulability using Timed Automata

Scheduler
Automaton v

Input Automata V(?

Task Automata v/
error state
E<> (Scheduler.deadline miss state)



Our Approach

» Address infinite state space
» Real-time and timestamps
» Number of events
» Reduce schedulability to reachability in timed
automata

» Implement DE semantics
» Simulate EDF with preemption
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Hard Real-Time Theory

» Can we leverage traditional hard real-time
theory for more efficient and sufficient
schedulability tests?
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Hard Real-Time Theory

» Can we leverage traditional hard real-time
theory for more efficient and sufficient
schedulability tests?

» We described two dependent objectives:

» Processor demand
» Safe-to-process waiting

» We will try to factor the latter in the real-time
task system
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Periodic and Sporadic Task Systems
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Periodic and Sporadic Task Systems
» Periodic Task

execution absolute

Tl p time deadline
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Multiframe Tasks
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PTIDES as multiframe tasks

» Reduction to tasks is easy for parallel chains of
actors

» What about merging and splitting paths?
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Merging as multiframe tasks

514 D1
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» Event e is safe to process at t' > t+ Dy
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Schedulability as multiframe tasks

» Statically compute lower bounds for release
time of tasks
» Reduce to schedulability of multiframe tasks:

» EDF
» Sporadic input sources
» Input-agnostic safe-to-process analysis
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Example DE
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Timed transition system

State (r, t)
» ris a map from channels to sets of timestampes
» tis global time

Two types of transitions

» delay transitions: set global time equal to the
smallest timestamp in the map

» discrete transitions: fire actor with smallest
timestamp in its input channels

Actors fire in timestamp order
Execution is deterministic
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Boundedness of DE

(5]

10}

a
ai 2

» Eventsin ¢;: {i-P|i €N}
» Eventsin ¢: {(i+1)-P|ieN}
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Boundedness of DE

(5]

{0}
O

di a2
Events in ¢;: {i- P |i € N}
Events in o: {(i+1)-P|ie N}
Is the number of events in any channel at a
state of the TTS bounded?

Can we address the issue of timestamps and
time being infinite?
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Bounding number of events

Let Tmin(s) be the min. timestamp in state s

if s — s’ then Tmin(s) < Tmin(s)
1

v

v

v

for any event 7 in a state s,
T < Tmin(s) + max{delay(a) | a € A}

Lower and upper bound for all events in a state

v

v

Fractional part of every timestamp is
determined by fractional part of initial events

Linitial events
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Bounding timestamps

» In TTS timestamps and global time can grow
unbounded
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Bounding timestamps

In TTS timestamps and global time can grow
unbounded

Bounded timed transition system BTS(G, rp)

Delay transitions: subtract minimum
timestamp from all events

Discrete transitions: process event with
timestamp equal to 0
BTS transitions:
» delay transition: r —5>b r' where § = Trin(r),
r''=r — Tmin(r)
» discrete transition: r —2, r’ with
r'=f(a,r,D(a)), Tmin(a,r) = Tmin(r) =0

40 /46



Example BTS

()



Example BTS

)



Example BTS

)



Example BTS

)



Example BTS

(1)



Example BTS

()



Example BTS

()



Bounded Transition System

» The set of reachable states of BTS(G, rp) is
finite
» Number of events bounded as in TTS

» Possible timestamps finite, despite initial events
eR

» A bisimulation exists between TTS and BTS
» R contains all pairs ((r,t),r —t)
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Verification - Queries

» Signal queries
» A channel signal denotes the set of all events that
occur in a channel along an execution
» “aneventoccursinc’, ¢p:=dr:7>0
» “two events occur in ¢ separated by at most 1
time unit”, 3r, 7 |1 — 1| < 1L
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Verification - Algorithms for DE

» Construct lasso from BTS
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Verification - Algorithms for DE

» Construct lasso from BTS

» Merge all enabled transitions in one
» Finite and deterministic transition system

» Compute for every channel ¢, an affine
expression that describes channel signal of ¢

» Reduce the problem of checking whether
oc E ¢ to an SMT problem
» Affine expression: i- P+ j-D
» 71, suchthat 4 — 7 =5
> 7'1:i1P+j1D/\TQ:i2P+j2D/\7'1—T2:5

» Similarly for state queries
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Conclusions
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Thank you

Questions?
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