
Schedulability and Verification of
Real-Time Discrete-Event Systems

Christos Stergiou

University of California, Berkeley

September 16, 2013

1 / 46

Cyber-Physical Systems

...

Cyber-Physical System(CPS):
Orchestrating networked computational

resources with physical systems

2 / 46

Motivation

▶ Programming CPS is flawed

▶ Timing affects behavior & correctness

▶ Insufficient software abstractions

▶ Lack of temporal semantics

▶ Thesis: time has to be a first-class citizen in
CPS programming

3 / 46

PTIDES

..

Discrete-Event
Systems

.

PTIDES

.

Platform

.

Schedulability
Analysis

..

Real-time semantics

...

4 / 46

PTIDES

..

Discrete-Event
Systems

.

PTIDES

.

Platform

.

Schedulability
Analysis

..

Real-time semantics

....

Verification

.

4 / 46

PTIDES

..

Discrete-Event
Systems

.

PTIDES

.

Platform

.

Schedulability
Analysis

..

Real-time semantics

....

Verification

..

Schedulability
Analysis

4 / 46

Discrete-Event Systems

..

Clock

. D1

.

D2

.

C

.

Display

5 / 46

Discrete-Event Systems

..

Clock

. D1

..

(t0 + P, v)

.

D2

.

C

.

Display

5 / 46

Discrete-Event Systems

..

Clock

. D1

..

(t0 + 2P, v)

.

D2

.

C

.

Display

5 / 46

Discrete-Event Systems

..

Clock

. D1

..

(t0 + 3P, v)

.

D2

.

C

.

Display

5 / 46

Discrete-Event Systems

..

Clock

. D1

.

D2

.

C

..
e(t0, v)

.

Display

5 / 46

Discrete-Event Systems

..

Clock

. D1

.

D2

.

C

.. e(t1 = t0 + D1, v).

Display

5 / 46

Discrete-Event Systems

..

Clock

. D1

.

D2

.

C

.. e(t1 = t0 + D1, v)..

e′(t2, v ′)

.

Display

5 / 46

Discrete-Event Systems

..

Clock

. D1

.

D2

.

C

..

e′(t2, v ′)

.

Display

..
e(t1, v ′′)

5 / 46

PTIDES: Sensors and Actuators

... D. C..

Ptides Platform

.Sensor. Actuator...

real-time t

.

6 / 46

PTIDES: Sensors and Actuators

... D. C..

Ptides Platform

.Sensor. Actuator...

real-time t

.

t1
Sensor
fires

.

6 / 46

PTIDES: Sensors and Actuators

... D. C..

Ptides Platform

.Sensor. Actuator...
e1(t1)

..

real-time t

.

t1
Sensor
fires

.

6 / 46

PTIDES: Sensors and Actuators

... D. C..

Ptides Platform

.Sensor. Actuator...
e2(t1 + D)

..

real-time t

.

t1
Sensor
fires

.

6 / 46

PTIDES: Sensors and Actuators

... D. C..

Ptides Platform

.Sensor. Actuator...

real-time t

.

t1
Sensor
fires

..

6 / 46

PTIDES: Sensors and Actuators

... D. C..

Ptides Platform

.Sensor. Actuator...
e3(t1 + D)

..

real-time t

.

t1
Sensor
fires

..

t2

.

6 / 46

PTIDES: Sensors and Actuators

... D. C..

Ptides Platform

.Sensor. Actuator...
e3(t1 + D)

..

real-time t

.

t1
Sensor
fires

..

t2

.

t1 + D
Actuator
actuates

.

6 / 46

PTIDES: Sensors and Actuators

... D. C..

Ptides Platform

.Sensor. Actuator...
e3(t1 + D)

..

real-time t

.

t1
Sensor
fires

..

t2

.

t1 + D
Actuator
actuates

..

If t2 > t1 + D then e3 misses its deadline
6 / 46

PTIDES: Timestamp Order

..
D1

.. C..
Sensor S1

. Actuator A.

Sensor S2

..

e(t1 + D1)

▶ When should e be processed?

▶ After t1 + D1 any event that arrives at S2 will
have timestamp > t1 + D1

▶ Safe-to-process analysis

7 / 46

PTIDES: Scheduling

..

D1

. D2

.

C1

.

C2

.

C3

.

D3

..S2 ..

S1

..

A1

.. A2..

S3

...

A3

..

e1(t1)

..

e2(t2)

..

e3(t3)

▶ deadline(e2) = t2
▶ deadline(e3) = t3 + D3

▶ deadline(e) = t + (delay to actuators)
▶ EDF with preemption

8 / 46

PTIDES: Scheduling

..

D1

. D2

.

C1

.

C2

.

C3

.

D3

..S2 ..

S1

..

A1

.. A2..

S3

...

A3

..

e1(t1)

..

e2(t2)

..

e3(t3)

▶ deadline(e2) = t2
▶ deadline(e3) = t3 + D3

▶ deadline(e) = t + (delay to actuators)
▶ EDF with preemption

8 / 46

PTIDES: Scheduling

..

D1

. D2

.

C1

.

C2

.

C3

.

D3

..S2 ..

S1

..

A1

.. A2..

S3

...

A3

..

e1(t1)

..

e2(t2)

..

e3(t3)

▶ deadline(e2) = t2
▶ deadline(e3) = t3 + D3

▶ deadline(e) = t + (delay to actuators)

▶ EDF with preemption

8 / 46

PTIDES: Scheduling

..

D1

. D2

.

C1

.

C2

.

C3

.

D3

..S2 ..

S1

..

A1

.. A2..

S3

...

A3

..

e1(t1)

..

e2(t2)

..

e3(t3)

▶ deadline(e2) = t2
▶ deadline(e3) = t3 + D3

▶ deadline(e) = t + (delay to actuators)
▶ EDF with preemption

8 / 46

Schedulability Problem

▶ Worst-case execution time per actor
▶ Models for sensor and network inputs

▶ Periodic, sporadic (min. inter-arrival time)

▶ Schedulability problem:
Does the program always meet its deadlines?

.. PTIDES.

Platform

.

Schedulability
Analysis

...

9 / 46

Challenges

▶ Difficult to identify worst-case scenario
▶ Two dependent objectives:

▶ Processor demand
▶ Safe-to-process waiting

▶ Expressiveness of programming model

10 / 46

Our Approach

▶ Address infinite state space
▶ Real-time and timestamps
▶ Number of events

▶ Reduce schedulability to reachability in timed
automata

▶ Implement DE semantics
▶ Simulate EDF with preemption

11 / 46

Real-time & Timestamps

▶ Real-time and timestamps can grow without
bound

▶ Their absolute value is not necessary for
execution

▶ Difference between timestamp and real-time is
sufficient for PTIDES semantics

▶ Discrete-event semantics and safe-to-process
▶ EDF scheduling, i.e., compare deadlines
▶ Deadline misses

12 / 46

Relative Timestamps

▶ Relative timestamp, timestamp - real-time:
τ−t

▶ Starts at 0

▶ Decreases continuously as real-time advances

▶ Makes discrete jumps when an event is
processed by delay actor

▶ Has to be ≥ 0 when an event reaches an
actuator

13 / 46

Bounding relative timestamps

▶ Find L,U such that L ≤ τ−t ≤ U

▶ L ≤ τ−t

▶ Can real-time t grow unboundedly relative to a
timestamp τ?

▶ No: t ≤ τ + (delay to actuators)
or else deadline miss

▶ τ−t ≤ U

▶ Can a timestamp grow unboundedly relative to
real-time?

▶ No: τ ≤ t + (delay from sensors)
or else we could violate timestamp order

▶

.
14 / 46

Bounding relative timestamps

▶ Find L,U such that L ≤ τ−t ≤ U
▶ L ≤ τ−t

▶ Can real-time t grow unboundedly relative to a
timestamp τ?

▶ No: t ≤ τ + (delay to actuators)
or else deadline miss

▶ τ−t ≤ U

▶ Can a timestamp grow unboundedly relative to
real-time?

▶ No: τ ≤ t + (delay from sensors)
or else we could violate timestamp order

▶

.
14 / 46

Bounding relative timestamps

▶ Find L,U such that L ≤ τ−t ≤ U
▶ L ≤ τ−t

▶ Can real-time t grow unboundedly relative to a
timestamp τ?

▶ No: t ≤ τ + (delay to actuators)
or else deadline miss

▶ τ−t ≤ U

▶ Can a timestamp grow unboundedly relative to
real-time?

▶ No: τ ≤ t + (delay from sensors)
or else we could violate timestamp order

▶

.
14 / 46

Bounding relative timestamps

▶ Find L,U such that L ≤ τ−t ≤ U
▶ L ≤ τ−t

▶ Can real-time t grow unboundedly relative to a
timestamp τ?

▶ No: t ≤ τ + (delay to actuators)
or else deadline miss

▶ τ−t ≤ U
▶ Can a timestamp grow unboundedly relative to

real-time?

▶ No: τ ≤ t + (delay from sensors)
or else we could violate timestamp order

▶

.
14 / 46

Bounding relative timestamps

▶ Find L,U such that L ≤ τ−t ≤ U
▶ L ≤ τ−t

▶ Can real-time t grow unboundedly relative to a
timestamp τ?

▶ No: t ≤ τ + (delay to actuators)
or else deadline miss

▶ τ−t ≤ U
▶ Can a timestamp grow unboundedly relative to

real-time?
▶ No: τ ≤ t + (delay from sensors)

or else we could violate timestamp order

▶

.
14 / 46

Bounding relative timestamps

▶ Find L,U such that L ≤ τ−t ≤ U
▶ L ≤ τ−t

▶ Can real-time t grow unboundedly relative to a
timestamp τ?

▶ No: t ≤ τ + (delay to actuators)
or else deadline miss

▶ τ−t ≤ U
▶ Can a timestamp grow unboundedly relative to

real-time?
▶ No: τ ≤ t + (delay from sensors)

or else we could violate timestamp order

▶

..

−(delay to actuators)≤τ−t≤(delay from sensors)

14 / 46

Queue-size bounds (1)

... Execution time: W
Relative deadline: D

.....

N requests

▶ How big can N be?

▶ If a request arrives at t, its deadline is t + D

▶ Total execution time of N events is N ·W
▶ N ≤

⌈
D
W

⌉

..

D

.

C

.

Actuator

.

Sensor

.

Comp-time: W

.....

· · ·

.

N events

15 / 46

Queue-size bounds (1)

... Execution time: W
Relative deadline: D

.....

N requests

▶ How big can N be?

▶ If a request arrives at t, its deadline is t + D

▶ Total execution time of N events is N ·W
▶ N ≤

⌈
D
W

⌉
..

D

.

C

.

Actuator

.

Sensor

.

Comp-time: W

.....

· · ·

.

N events

15 / 46

Queue-size bounds (2)

....Sensors . Actuators. C1

. C2

... · · ·

▶ Absolute deadline of event with timestamp τ :

τ + (delay to actuators)

▶ Relative deadline associated with channel is:

τ − t + delay(C2, actuators)

▶ Upper bound on relative deadline

(delay from sensors) + (delay to actuators)

16 / 46

Queue-size bounds (2)

....Sensors . Actuators. C1

. C2

... · · ·

▶ Absolute deadline of event with timestamp τ :

τ + (delay to actuators)

▶ Relative deadline associated with channel is:

τ − t + delay(C2, actuators)

▶ Upper bound on relative deadline

(delay from sensors) + (delay to actuators)

16 / 46

Queue-size bounds (2)

....Sensors . Actuators. C1

. C2

... · · ·

▶ Absolute deadline of event with timestamp τ :

τ + (delay to actuators)

▶ Relative deadline associated with channel is:

τ − t + delay(C2, actuators)

▶ Upper bound on relative deadline

(delay from sensors) + (delay to actuators)

16 / 46

Our Approach

▶ Address infinite state space
▶ Real-time and timestamps
▶ Number of events

▶ Reduce schedulability to reachability in timed
automata

▶ Implement DE semantics
▶ Simulate EDF with preemption

17 / 46

Schedulability using Timed Automata

..

18 / 46

Timed Automata

..

clock c1, c2

..

A

...

B

..

C

.

guard:
c1 ≥ 10

.

reset:
c2 := 0

.
guard:
c2 ≥ 5

.

invariant:
c2 ≤ 10

▶ Finite automata + finite set of real-valued
clocks

▶ Time elapses at locations

▶ Clocks can be reset on transitions

▶ Guards: clock constraints on transitions

▶ Invariants: clock constraints on locations
19 / 46

TA example

..

Periodic Source
clock c ;

const period;

..

invariant: c ≤ period

..

guard: c = period
reset: c := 0

20 / 46

TA example

..

Periodic Source
clock c ;

const period;

.

Sporadic

..

invariant: c ≤ period

..

guard: c = period
reset: c := 0

.

≥

20 / 46

Timestamps with clocks (1)

▶ Associate a clock c and a discrete variable d
with each event

▶ Reset clock when event enters platform

▶ c measures the relative time in the platform:
t − c = time the event entered platform

▶ d accumulates the delay added to the event:
t − c + d = timestamp of event

21 / 46

Timestamps with clocks (2)

... D. C..

Ptides Platform

.Sensor. Actuator...

real-time t

22 / 46

Timestamps with clocks (2)

... D. C..

Ptides Platform

.Sensor. Actuator...

real-time t

.

t1
Sensor
fires

22 / 46

Timestamps with clocks (2)

... D. C..

Ptides Platform

.Sensor. Actuator...
e1(c , d)

..

real-time t

.

t1
Sensor
fires

.

c := 0, d := 0

22 / 46

Timestamps with clocks (2)

... D. C..

Ptides Platform

.Sensor. Actuator...
e2(c , d)

..

real-time t

.

t1
Sensor
fires

.

c := 0, d := 0

.

d := d + D
22 / 46

Timestamps with clocks (2)

... D. C..

Ptides Platform

.Sensor. Actuator...

real-time t

.

t1
Sensor
fires

.

c := 0, d := 0

.

d := d + D

.

22 / 46

Timestamps with clocks (2)

... D. C..

Ptides Platform

.Sensor. Actuator...
e3(c , d)

..

real-time t

.

t1
Sensor
fires

.

c := 0, d := 0

.

d := d + D

..

t2

22 / 46

Timestamps with clocks (2)

... D. C..

Ptides Platform

.Sensor. Actuator...
e3(c , d)

..

real-time t

.

t1
Sensor
fires

.

c := 0, d := 0

.

d := d + D

..

t2

.

t1 + D
Actuator
actuates
c = d

22 / 46

Schedulability using Timed Automata

..

23 / 46

Task Automaton

...idle ...

executing

.

clock := 0

.

clock ≤ W

.

clock = W

24 / 46

Task Automaton

...idle ...

executing

.

clock := 0

.

clock ≤ W

.

clock = W

..

preempted

.

pause clock?

24 / 46

Task Automaton

...idle ...

executing

.

clock := 0

.

clock ≤ W

.

clock = W

..

preempted

.

pause clock?

.

P(i)++

24 / 46

Task Automaton

...idle ...

executing

.

clock := 0

.

clock ≤ W

.

clock = W

..

preempted

.

pause clock?

.

P(i)++

.

+
∑

Wi · P(i)

.

+
∑

Wi · P(i)

24 / 46

Schedulability using Timed Automata

..

25 / 46

Scheduler automaton

..idle.

busy

.

error

.

input, output,
safe-to-process

.

finish

.

execute,
resume

. queue-overflow,
deadline-miss

.

preempt

26 / 46

Schedulability using Timed Automata

..

27 / 46

Our Approach

▶ Address infinite state space
▶ Real-time and timestamps
▶ Number of events

▶ Reduce schedulability to reachability in timed
automata

▶ Implement DE semantics
▶ Simulate EDF with preemption

28 / 46

Hard Real-Time Theory

▶ Can we leverage traditional hard real-time
theory for more efficient and sufficient
schedulability tests?

▶ We described two dependent objectives:
▶ Processor demand
▶ Safe-to-process waiting

▶ We will try to factor the latter in the real-time
task system

29 / 46

Hard Real-Time Theory

▶ Can we leverage traditional hard real-time
theory for more efficient and sufficient
schedulability tests?

▶ We described two dependent objectives:
▶ Processor demand
▶ Safe-to-process waiting

▶ We will try to factor the latter in the real-time
task system

29 / 46

Hard Real-Time Theory

▶ Can we leverage traditional hard real-time
theory for more efficient and sufficient
schedulability tests?

▶ We described two dependent objectives:
▶ Processor demand
▶ Safe-to-process waiting

▶ We will try to factor the latter in the real-time
task system

29 / 46

Periodic and Sporadic Task Systems
▶ Periodic Task

..W ,D.

P

..

..
0

.

execution
time

W

.

absolute
deadline

D

▶ Sporadic Task

..W ,D.

I

..

..
0

.

W

.

D

30 / 46

Periodic and Sporadic Task Systems
▶ Periodic Task

..W ,D.

P

..

..
0

.

execution
time

W

.

absolute
deadline

D

.
P

.

W

.

P+D

▶ Sporadic Task

..W ,D.

I

..

..
0

.

W

.

D

30 / 46

Periodic and Sporadic Task Systems
▶ Periodic Task

..W ,D.

P

..

..
0

.

execution
time

W

.

absolute
deadline

D

.
P

.

W

.

P+D

▶ Sporadic Task

..W ,D.

I

..

..
0

.

W

.

D

30 / 46

Periodic and Sporadic Task Systems
▶ Periodic Task

..W ,D.

P

..

..
0

.

execution
time

W

.

absolute
deadline

D

.
P

.

W

.

P+D

▶ Sporadic Task

..W ,D.

I

..

..
0

.

W

.

D

.
t ≥ I

.

W

.

t+D

30 / 46

Periodic and Sporadic Task Systems
▶ Periodic Task

..W ,D.

P

..

..
0

.

execution
time

W

.

absolute
deadline

D

.
P

.

W

.

P+D

▶ Sporadic Task

..W ,D.

I

..

..
0

.

W

.

D

.
t ≥ I

.

W

.

t+D

30 / 46

Multiframe Tasks

..W0,D0

. W1,D1

. WN−1

DN−1

. S1. S2. · · ·.
SN−1.

I

..

..
0

.

W0

.

D0

..
t ≥ I

.

W0

.

t+D0

.
t+S1

.

W1

.

t+S1+D1

.
· · ·

31 / 46

Multiframe Tasks

..W0,D0

. W1,D1

. WN−1

DN−1

. S1. S2. · · ·.
SN−1.

I

..

..
0

.

W0

.

D0

..
t ≥ I

.

W0

.

t+D0

.
t+S1

.

W1

.

t+S1+D1

.
· · ·

31 / 46

Multiframe Tasks

..W0,D0

. W1,D1

. WN−1

DN−1

. S1. S2. · · ·.
SN−1.

I

..

..
0

.

W0

.

D0

.
S1

.

W1

.

S1+D1

..
t ≥ I

.

W0

.

t+D0

.
t+S1

.

W1

.

t+S1+D1

.
· · ·

31 / 46

Multiframe Tasks

..W0,D0

. W1,D1

. WN−1

DN−1

. S1. S2. · · ·.
SN−1.

I

..

..
0

.

W0

.

D0

.
S1

.

W1

.

S1+D1

.
S1 + S2

.

W2

.

S1+S2+D2

.
· · ·

..
t ≥ I

.

W0

.

t+D0

.
t+S1

.

W1

.

t+S1+D1

.
· · ·

31 / 46

Multiframe Tasks

..W0,D0

. W1,D1

. WN−1

DN−1

. S1. S2. · · ·.
SN−1.

I

..

..
0

.

W0

.

D0

.
S1

.

W1

.

S1+D1

.
S1 + S2

.

W2

.

S1+S2+D2

.
· · ·

..
t ≥ I

.

W0

.

t+D0

.
t+S1

.

W1

.

t+S1+D1

.
· · ·

31 / 46

Multiframe Tasks

..W0,D0

. W1,D1

. WN−1

DN−1

. S1. S2. · · ·.
SN−1.

I

..

..
0

.

W0

.

D0

.
S1

.

W1

.

S1+D1

.
S1 + S2

.

W2

.

S1+S2+D2

.
· · ·

..
t ≥ I

.

W0

.

t+D0

.
t+S1

.

W1

.

t+S1+D1

.
· · ·

31 / 46

PTIDES as multiframe tasks

.. D. W.S . A
.. W ,D.

I

..

▶ Reduction to tasks is easy for parallel chains of
actors

▶ What about merging and splitting paths?

32 / 46

Merging as multiframe tasks

..

D1

.

W1

.

W2

. D3

. W3

..

e(t+D1)

.

S1

.

S2

. A1

▶ Event e is safe to process at t ′ ≥ t+D1

▶ If it is not safe at t+D1,
W2 is executing an event with smaller deadline
than e

▶ Under EDF, “task” can be released at t+D1

.

.
33 / 46

Merging as multiframe tasks

..

D1

.

W1

.

W2

. D3

. W3

..

e(t+D1)

.

S1

.

S2

. A1

▶ Event e is safe to process at t ′ ≥ t+D1

▶ If it is not safe at t+D1,
W2 is executing an event with smaller deadline
than e

▶ Under EDF, “task” can be released at t+D1

.

..

W1

D1+D3

.

W3

D3

.

D1

.

I1

..
33 / 46

Merging as multiframe tasks

..

D1

.

W1

.

W2

. D3

. W3

..

e(t+D1)

.

S1

.

S2

. A1

▶ Event e is safe to process at t ′ ≥ t+D1

▶ If it is not safe at t+D1,
W2 is executing an event with smaller deadline
than e

▶ Under EDF, “task” can be released at t+D1

.

..

W1

D1+D3

.

W3

D3

.

D1

.

I1

...

W2+W3

D3

.

I2

..
33 / 46

Schedulability as multiframe tasks

▶ Statically compute lower bounds for release
time of tasks

▶ Reduce to schedulability of multiframe tasks:
▶ EDF
▶ Sporadic input sources
▶ Input-agnostic safe-to-process analysis

34 / 46

PTIDES

..

Discrete-Event
Systems

.

Verification

.

PTIDES

.

Platform

.

Schedulability
Analysis

.....

35 / 46

Example DE

..1.

a1

. 3.

a2

.

2

.

a3

.
c1

.

c2

.

c4

.

c3

.

t:

.

0
36 / 46

Example DE

..1.

a1

. 3.

a2

.

2

.

a3

.
c1

.

c2

.

c4

.

c3

..

3

..

2

.

t:

.

0
36 / 46

Example DE

..1.

a1

. 3.

a2

.

2

.

a3

.
c1

.

c2

.

c4

.

c3

..

3

..

2

.

t:

.

0

.

→ 2
36 / 46

Example DE

..1.

a1

. 3.

a2

.

2

.

a3

.
c1

.

c2

.

c4

.

c3

..

3

..

4

.

t:

.

0

.

→ 2
36 / 46

Example DE

..1.

a1

. 3.

a2

.

2

.

a3

.
c1

.

c2

.

c4

.

c3

..

3

..

4

.

t:

.

0

.

→ 2
36 / 46

Example DE

..1.

a1

. 3.

a2

.

2

.

a3

.
c1

.

c2

.

c4

.

c3

..

4

..

3

.

t:

.

0

.

→ 2

.

→ 3
36 / 46

Example DE

..1.

a1

. 3.

a2

.

2

.

a3

.
c1

.

c2

.

c4

.

c3

..

4

..

6

.

t:

.

0

.

→ 2

.

→ 3
36 / 46

Example DE

..1.

a1

. 3.

a2

.

2

.

a3

.
c1

.

c2

.

c4

.

c3

..

4

..

6

.

t:

.

0

.

→ 2

.

→ 3

.

→ 4
36 / 46

Example DE

..1.

a1

. 3.

a2

.

2

.

a3

.
c1

.

c2

.

c4

.

c3

..

6

..

7

.

t:

.

0

.

→ 2

.

→ 3

.

→ 4
36 / 46

Example DE

..1.

a1

. 3.

a2

.

2

.

a3

.
c1

.

c2

.

c4

.

c3

..

7

..

7

..

7

.

t:

.

0

.

→ 2

.

→ 3

.

→ 4

.

→ 6
36 / 46

Timed transition system

▶ State (r , t)
▶ r is a map from channels to sets of timestampes
▶ t is global time

▶ Two types of transitions
▶ delay transitions: set global time equal to the

smallest timestamp in the map
▶ discrete transitions: fire actor with smallest

timestamp in its input channels

▶ Actors fire in timestamp order

▶ Execution is deterministic

37 / 46

Boundedness of DE

..P.

a1

..

a2

.

c1

..

{0}

▶ Events in c1: {i · P | i ∈ N}
▶ Events in c2: {(i + 1) · P | i ∈ N}

▶ Is the number of events in any channel at a
state of the TTS bounded?

▶ Can we address the issue of timestamps and
time being infinite?

38 / 46

Boundedness of DE

..P.

a1

..

a2

.

c1

..

{0}

▶ Events in c1: {i · P | i ∈ N}
▶ Events in c2: {(i + 1) · P | i ∈ N}
▶ Is the number of events in any channel at a
state of the TTS bounded?

▶ Can we address the issue of timestamps and
time being infinite?

38 / 46

Bounding number of events

▶ Let τmin(s) be the min. timestamp in state s

▶ if s → s ′ then τmin(s) ≤ τmin(s
′)

▶ for any event τ in a state s,1

τ ≤ τmin(s) + max{delay(a) | a ∈ A}

▶ Lower and upper bound for all events in a state

▶ Fractional part of every timestamp is
determined by fractional part of initial events

1initial events
39 / 46

Bounding number of events

▶ Let τmin(s) be the min. timestamp in state s

▶ if s → s ′ then τmin(s) ≤ τmin(s
′)

▶ for any event τ in a state s,1

τ ≤ τmin(s) + max{delay(a) | a ∈ A}

▶ Lower and upper bound for all events in a state

▶ Fractional part of every timestamp is
determined by fractional part of initial events

1initial events
39 / 46

Bounding number of events

▶ Let τmin(s) be the min. timestamp in state s

▶ if s → s ′ then τmin(s) ≤ τmin(s
′)

▶ for any event τ in a state s,1

τ ≤ τmin(s) + max{delay(a) | a ∈ A}

▶ Lower and upper bound for all events in a state

▶ Fractional part of every timestamp is
determined by fractional part of initial events

1initial events
39 / 46

Bounding number of events

▶ Let τmin(s) be the min. timestamp in state s

▶ if s → s ′ then τmin(s) ≤ τmin(s
′)

▶ for any event τ in a state s,1

τ ≤ τmin(s) + max{delay(a) | a ∈ A}

▶ Lower and upper bound for all events in a state

▶ Fractional part of every timestamp is
determined by fractional part of initial events

1initial events
39 / 46

Bounding timestamps

▶ In TTS timestamps and global time can grow
unbounded

▶ Bounded timed transition system BTS(G , r0)

▶ Delay transitions: subtract minimum
timestamp from all events

▶ Discrete transitions: process event with
timestamp equal to 0

▶ BTS transitions:
▶ delay transition: r

δ−→b r
′ where δ = τmin(r),

r ′ = r − τmin(r)
▶ discrete transition: r

a−→b r
′ with

r ′ = f (a, r ,D(a)), τmin(a, r) = τmin(r) = 0

40 / 46

Bounding timestamps

▶ In TTS timestamps and global time can grow
unbounded

▶ Bounded timed transition system BTS(G , r0)

▶ Delay transitions: subtract minimum
timestamp from all events

▶ Discrete transitions: process event with
timestamp equal to 0

▶ BTS transitions:
▶ delay transition: r

δ−→b r
′ where δ = τmin(r),

r ′ = r − τmin(r)
▶ discrete transition: r

a−→b r
′ with

r ′ = f (a, r ,D(a)), τmin(a, r) = τmin(r) = 0

40 / 46

Example BTS

..1. 3.

2

..

3

..

2

41 / 46

Example BTS

..1. 3.

2

..

3

..

2

41 / 46

Example BTS

..1. 3.

2

..

1

..

0

41 / 46

Example BTS

..1. 3.

2

..

1

..

0

41 / 46

Example BTS

..1. 3.

2

..

1

..

2

41 / 46

Example BTS

..1. 3.

2

..

1

..

2

41 / 46

Example BTS

..1. 3.

2

..

0

..

1

41 / 46

Bounded Transition System

▶ The set of reachable states of BTS(G , r0) is
finite

▶ Number of events bounded as in TTS
▶ Possible timestamps finite, despite initial events

∈ R
▶ A bisimulation exists between TTS and BTS

▶ R contains all pairs ((r , t), r − t)

42 / 46

Verification - Queries

▶ Signal queries
▶ A channel signal denotes the set of all events that

occur in a channel along an execution
▶ “an event occurs in c”, ϕ := ∃τ : τ ≥ 0
▶ “two events occur in c separated by at most 1

time unit”, ∃τ1, τ2 : |τ1 − τ2| ≤ 1.

▶ State queries

43 / 46

Verification - Queries

▶ Signal queries
▶ A channel signal denotes the set of all events that

occur in a channel along an execution
▶ “an event occurs in c”, ϕ := ∃τ : τ ≥ 0
▶ “two events occur in c separated by at most 1

time unit”, ∃τ1, τ2 : |τ1 − τ2| ≤ 1.

▶ State queries

43 / 46

Verification - Algorithms for DE

▶ Construct lasso from BTS
▶ Merge all enabled transitions in one
▶ Finite and deterministic transition system

▶ Compute for every channel c , an affine
expression that describes channel signal of c

▶ Reduce the problem of checking whether
σc ⊨ ϕ to an SMT problem

▶ Affine expression: i · P + j · D
▶ τ1, τ2 such that τ1 − τ2 = 5
▶ τ1 = i1P + j1D ∧ τ2 = i2P + j2D ∧ τ1 − τ2 = 5

▶ Similarly for state queries

44 / 46

Verification - Algorithms for DE

▶ Construct lasso from BTS
▶ Merge all enabled transitions in one
▶ Finite and deterministic transition system

▶ Compute for every channel c , an affine
expression that describes channel signal of c

▶ Reduce the problem of checking whether
σc ⊨ ϕ to an SMT problem

▶ Affine expression: i · P + j · D
▶ τ1, τ2 such that τ1 − τ2 = 5
▶ τ1 = i1P + j1D ∧ τ2 = i2P + j2D ∧ τ1 − τ2 = 5

▶ Similarly for state queries

44 / 46

Verification - Algorithms for DE

▶ Construct lasso from BTS
▶ Merge all enabled transitions in one
▶ Finite and deterministic transition system

▶ Compute for every channel c , an affine
expression that describes channel signal of c

▶ Reduce the problem of checking whether
σc ⊨ ϕ to an SMT problem

▶ Affine expression: i · P + j · D
▶ τ1, τ2 such that τ1 − τ2 = 5
▶ τ1 = i1P + j1D ∧ τ2 = i2P + j2D ∧ τ1 − τ2 = 5

▶ Similarly for state queries

44 / 46

Verification - Algorithms for DE

▶ Construct lasso from BTS
▶ Merge all enabled transitions in one
▶ Finite and deterministic transition system

▶ Compute for every channel c , an affine
expression that describes channel signal of c

▶ Reduce the problem of checking whether
σc ⊨ ϕ to an SMT problem

▶ Affine expression: i · P + j · D
▶ τ1, τ2 such that τ1 − τ2 = 5
▶ τ1 = i1P + j1D ∧ τ2 = i2P + j2D ∧ τ1 − τ2 = 5

▶ Similarly for state queries

44 / 46

Conclusions

..

Discrete-Event
Systems

.

Verification

.

PTIDES

.

Platform

.

Schedulability
Analysis

.....

45 / 46

Thank you

Questions?

46 / 46

