
Emergent Middleware Facing the
Interoperability Challenge
Valérie Issarny, Inria
Joint work with colleagues of ARLES team
and EC CONNECT project
Special thanks to Amel Bennaceur

•  The interoperability challenge

•  Emergent middleware for on-the-fly interoperability

•  Some initial experiments

•  What’s next

Outline

The Interoperability Challenge

•  Same functionality, various applications

•  Heterogeneous interfaces & behaviours

HTTP/XML

SOAP/XML

REST/JSON

FTP/XML

REST/XML

The Interoperability Challenge

•  Same functionality, various applications, diverse middleware solutions

•  Heterogeneous interfaces & behaviours across the protocol stack

HTTP/XML

SOAP/XML

REST/JSON

FTP/XML

REST/XML

The Interoperability Challenge

•  Same functionality, various applications, diverse middleware solutions

•  Increasingly connected world

One speaker
talks the other’s

language

A chosen
shared

language

Auxiliary
Languages (e.g.

Esperanto)

One 3rd party
translator, e.g.,

English to
French

translator

Babel fish

Approaches to Interoperability

One speaker
talks the other’s

language

A chosen
shared

language

Auxiliary
Languages (e.g.

Esperanto)

One 3rd party
translator, e.g.,

English to
French
anslator

Babel fish

Approaches to Interoperability

No one-size-fits-all
standard

Significant
development

effort for bridging

Interoperability
up to common

ESB

Client-side only plugins
&

a priori knowledge
On-the-fly interoperability

through emergent middleware

FTP/XML

Mediator

Mediator

Mediator

Mediator

Achieving On-the-fly Interoperability

•  Can we observe, learn, synthesize and deploy a binding dynamically

•  Emergent middleware leveraging software engineering methods and

tools

Model of
WebDAV Client

Model of
Google Docs

Service

Domain ontology

Ressource

Document Folder

Thing

Nothing
SpreadSheet File

Download Upload Delete

Replace
Move

Mediator

 Model-based Emergent Middleware

Running-System
Level

Model Level

Model
Extraction

Model
Extraction

Synthesis

Deployment

  Background from Semantic Web
Services

  Ontology-based functional semantics
•  Capability

•  The high-level functionality of a system
•  Interface

•  A set of observable actions
  LTS-based behavioural semantics

•  The way the observable actions are
coordinated

•  At both application and middleware layers
•  Application → Business logic
•  Middleware → Communication
 & coordination protocol

Capability (CapWDAV)
Requires fileManagement

Interface signature (IWDAV)
<Authenticate, {Username, Password}, {Authorisation}>
<Lock, {SourceURI}, {Acknowledgment}>
<MoveFile, {SourceURI,DestinationURI}, {Acknowledgment}>
<ReadFile, {SourceURI}, {File}>
<Unlock, {SourceURI}, {Acknowledgment}>
 ...

Authenticate

Lock

MoveFile/ReadFile/WriteFile

Unlock

Logout

 Component Models

SendHTTPRequest[Authenticate]
 [Username, Password]

ReceiveHTTPResponse[Authenticate]
 [Authorisation]

Limited information in actual interfaces
•  Statistical learning for inferring capability
•  Automata learning for inferring behaviour

•  Passive vs Active?
•  Active learning based on L* algorithm

•  Start with the most general behaviour that allows any sequence of the
operations of the interface to be executed

•  Test and refine when an interaction error, aka a counterexample, is
discovered

•  Passive learning to refine the model

 Model Extraction

Interface Matching

Generating Correct-by-
Construction Mediators

Concretisation

Components’ interfaces

Components’ behaviours

Components’ communication
protocols

Overcoming the Heterogeneity of

Application
layer

Middleware
layer

à many-to-many

à under ambiguity

à different interaction
paradigms

 On-the-fly Mediator Synthesis

Interface Matching: An Example

Behaviour

<Authenticate, {Username, Password}, {Authorisation}>
<Lock, {SourceURI}, {Acknowledgment}>
<MoveFile, {SourceURI,DestinationURI}, {Acknowledgment}>
<ReadFile, {SourceURI}, {File}>
<Unlock, {SourceURI}, {Acknowledgment}>
 ...

(<Authenticate>, <Authenticate>) (<Authenticate>, <SetSharingProperties>) (<MoveFile>, <DownloadDocument>)

(<MoveFile>, <DownloadDocument,
 UploadDocument>)

(<MoveFile>, <DownloadDocument,
 Authenticate>)

(<MoveFile>, <DownloadDocument,
 DeleteDocument>)

(<MoveFile>, <DownloadDocument,
 UploadDocument
 DeleteDocument>)

(<MoveFile>, <DownloadDocument,
 DeleteDocument
 UploadDocument>)

(<MoveFile>, <DownloadDocument,
 UploadDocument
 SetSharingProperties>)

<Authenticate, {Username, Password}, {Authorisation}>
<SetSharingProperties, {SourceURI, SharingProperties},
 {Acknowledgment}>
<UploadDocument, {Metadata, Content, DestinationURI},
{Acknowledgment}>
<DownloadDocument, {SourceURI}, {Document}>
<DeleteDocument, {SourceURI}, {Acknowledgment}>
 ...

(<>, <>)

ü
×

~

~ ~

× ü ü

× ~

Interface Matching

Generating Mediators

Concretisation

Interface Matching: Computation
Matching interface to interface consists in finding all
pairs of actions

I1 I2
 such that a sequence of actions required by

the former can be safely performed using a sequence of
actions provided by the latter. In addition, all pairs are minimal.

But… NP-Complete
•  Use Constraint programming with adequate ontology encoding

Chapter 4. Automated Synthesis of Mediators

4.2 Specification of Interface Matching

To enable WDAV and GDocs to interoperate, the mediator must translate the ac-
tions required by the former into actions provided by the latter. This translation
is only possible if there is a semantic correspondence between the actions required
by WDAV and those provided by GDocs. Establishing the semantic correspondence
between the actions of the components’ interfaces is a crucial step towards the syn-
thesis of mediators. In this section, we specify the conditions under which such a
correspondence, i.e., interface matching, may be established.

Let us consider two components’ interfaces I1 and I2. Matching I1 with
I2, written Match (I1, I2), consists in finding all pairs (X1, X2) where X1 =

h↵1,↵2, . . . ,↵m

i ,↵
i=1..m 2 I1 and X2 =

⌦
�1, �2, . . . , �n

↵
, �

j=1..n 2 I2 such that X1

matches with X2, denoted X1 7! X2, if the required actions of X1 can be safely
performed by calling the provided actions of X2. In addition, this pair is minimal,
that is, any other pair of sequences of actions (X 0

1, X
0
2) such that X 0

1 matches with
X 0

2 would have either X1 as a subsequence of X 0
1 or X2 as a subsequence of X 0

2. The
interface matching is then specified as follows:

Match (I1, I2) =

{ (X1, X2)|
X1 = h↵1,↵2, . . . ,↵m

i ,↵
i=1..m 2 I1

^X2 =
⌦
�1, �2, . . . , �n

↵
, �

j=1..n 2 I2

^X1 7! X2

^ 6 9 (X 0
1, X

0
2) | X 0

1 = h↵1,↵2, . . . ,↵m

0i, ↵
i=1..m0 2 I1

^X 0
2 =

⌦
�1, �2, . . . , �n

0
↵
, �

j=1..n0 2 I2

^ (X 0
1 7! X 0

2)

^ (m0 < m) ^ (n0 < n)

}
Likewise, Match (I2, I1) represents the set of all pairs (X2, X1), where X2 is a se-
quence of required actions of I2 and X1 is a sequence of provided actions of I1, such
that X2 matches with X1 and this matching is minimal.

Let X1 = h↵1, . . . ,↵m

i be a sequence of required actions and X2 =

⌦
�1, . . . , �n

↵

be a sequence of provided actions. To facilitate the definition of a matching of X1

with X2, we consider the following cases:

72

Chapter 4. Automated Synthesis of Mediators

4.2 Specification of Interface Matching

To enable WDAV and GDocs to interoperate, the mediator must translate the ac-
tions required by the former into actions provided by the latter. This translation
is only possible if there is a semantic correspondence between the actions required
by WDAV and those provided by GDocs. Establishing the semantic correspondence
between the actions of the components’ interfaces is a crucial step towards the syn-
thesis of mediators. In this section, we specify the conditions under which such a
correspondence, i.e., interface matching, may be established.

Let us consider two components’ interfaces I1 and I2. Matching I1 with
I2, written Match (I1, I2), consists in finding all pairs (X1, X2) where X1 =

h↵1,↵2, . . . ,↵m

i ,↵
i=1..m 2 I1 and X2 =

⌦
�1, �2, . . . , �n

↵
, �

j=1..n 2 I2 such that X1

matches with X2, denoted X1 7! X2, if the required actions of X1 can be safely
performed by calling the provided actions of X2. In addition, this pair is minimal,
that is, any other pair of sequences of actions (X 0

1, X
0
2) such that X 0

1 matches with
X 0

2 would have either X1 as a subsequence of X 0
1 or X2 as a subsequence of X 0

2. The
interface matching is then specified as follows:

Match (I1, I2) =

{ (X1, X2)|
X1 = h↵1,↵2, . . . ,↵m

i ,↵
i=1..m 2 I1

^X2 =
⌦
�1, �2, . . . , �n

↵
, �

j=1..n 2 I2

^X1 7! X2

^ 6 9 (X 0
1, X

0
2) | X 0

1 = h↵1,↵2, . . . ,↵m

0i, ↵
i=1..m0 2 I1

^X 0
2 =

⌦
�1, �2, . . . , �n

0
↵
, �

j=1..n0 2 I2

^ (X 0
1 7! X 0

2)

^ (m0 < m) ^ (n0 < n)

}
Likewise, Match (I2, I1) represents the set of all pairs (X2, X1), where X2 is a se-
quence of required actions of I2 and X1 is a sequence of provided actions of I1, such
that X2 matches with X1 and this matching is minimal.

Let X1 = h↵1, . . . ,↵m

i be a sequence of required actions and X2 =

⌦
�1, . . . , �n

↵

be a sequence of provided actions. To facilitate the definition of a matching of X1

with X2, we consider the following cases:

72

Chapter 4. Automated Synthesis of Mediators

4.2 Specification of Interface Matching

To enable WDAV and GDocs to interoperate, the mediator must translate the ac-
tions required by the former into actions provided by the latter. This translation
is only possible if there is a semantic correspondence between the actions required
by WDAV and those provided by GDocs. Establishing the semantic correspondence
between the actions of the components’ interfaces is a crucial step towards the syn-
thesis of mediators. In this section, we specify the conditions under which such a
correspondence, i.e., interface matching, may be established.

Let us consider two components’ interfaces I1 and I2. Matching I1 with
I2, written Match (I1, I2), consists in finding all pairs (X1, X2) where X1 =

h↵1,↵2, . . . ,↵m

i ,↵
i=1..m 2 I1 and X2 =

⌦
�1, �2, . . . , �n

↵
, �

j=1..n 2 I2 such that X1

matches with X2, denoted X1 7! X2, if the required actions of X1 can be safely
performed by calling the provided actions of X2. In addition, this pair is minimal,
that is, any other pair of sequences of actions (X 0

1, X
0
2) such that X 0

1 matches with
X 0

2 would have either X1 as a subsequence of X 0
1 or X2 as a subsequence of X 0

2. The
interface matching is then specified as follows:

Match (I1, I2) =

{ (X1, X2)|
X1 = h↵1,↵2, . . . ,↵m

i ,↵
i=1..m 2 I1

^X2 =
⌦
�1, �2, . . . , �n

↵
, �

j=1..n 2 I2

^X1 7! X2

^ 6 9 (X 0
1, X

0
2) | X 0

1 = h↵1,↵2, . . . ,↵m

0i, ↵
i=1..m0 2 I1

^X 0
2 =

⌦
�1, �2, . . . , �n

0
↵
, �

j=1..n0 2 I2

^ (X 0
1 7! X 0

2)

^ (m0 < m) ^ (n0 < n)

}
Likewise, Match (I2, I1) represents the set of all pairs (X2, X1), where X2 is a se-
quence of required actions of I2 and X1 is a sequence of provided actions of I1, such
that X2 matches with X1 and this matching is minimal.

Let X1 = h↵1, . . . ,↵m

i be a sequence of required actions and X2 =

⌦
�1, . . . , �n

↵

be a sequence of provided actions. To facilitate the definition of a matching of X1

with X2, we consider the following cases:

72

Chapter 4. Automated Synthesis of Mediators

4.2 Specification of Interface Matching

To enable WDAV and GDocs to interoperate, the mediator must translate the ac-
tions required by the former into actions provided by the latter. This translation
is only possible if there is a semantic correspondence between the actions required
by WDAV and those provided by GDocs. Establishing the semantic correspondence
between the actions of the components’ interfaces is a crucial step towards the syn-
thesis of mediators. In this section, we specify the conditions under which such a
correspondence, i.e., interface matching, may be established.

Let us consider two components’ interfaces I1 and I2. Matching I1 with
I2, written Match (I1, I2), consists in finding all pairs (X1, X2) where X1 =

h↵1,↵2, . . . ,↵m

i ,↵
i=1..m 2 I1 and X2 =

⌦
�1, �2, . . . , �n

↵
, �

j=1..n 2 I2 such that X1

matches with X2, denoted X1 7! X2, if the required actions of X1 can be safely
performed by calling the provided actions of X2. In addition, this pair is minimal,
that is, any other pair of sequences of actions (X 0

1, X
0
2) such that X 0

1 matches with
X 0

2 would have either X1 as a subsequence of X 0
1 or X2 as a subsequence of X 0

2. The
interface matching is then specified as follows:

Match (I1, I2) =

{ (X1, X2)|
X1 = h↵1,↵2, . . . ,↵m

i ,↵
i=1..m 2 I1

^X2 =
⌦
�1, �2, . . . , �n

↵
, �

j=1..n 2 I2

^X1 7! X2

^ 6 9 (X 0
1, X

0
2) | X 0

1 = h↵1,↵2, . . . ,↵m

0i, ↵
i=1..m0 2 I1

^X 0
2 =

⌦
�1, �2, . . . , �n

0
↵
, �

j=1..n0 2 I2

^ (X 0
1 7! X 0

2)

^ (m0 < m) ^ (n0 < n)

}
Likewise, Match (I2, I1) represents the set of all pairs (X2, X1), where X2 is a se-
quence of required actions of I2 and X1 is a sequence of provided actions of I1, such
that X2 matches with X1 and this matching is minimal.

Let X1 = h↵1, . . . ,↵m

i be a sequence of required actions and X2 =

⌦
�1, . . . , �n

↵

be a sequence of provided actions. To facilitate the definition of a matching of X1

with X2, we consider the following cases:

72

Interface Matching

Generating Mediators

Concretisation

Mediator Synthesis: An Example

WebDAV Client Google Docs Service Matching Processes
Authenticate!!!!!!!!!!Authenticate
Lock!!!!!!!!!!SetSharingProperties
WriteFile UploadDocument
MoveFile!!!!!!!!<DownloadDocument,
 UploadDocument,
 DeleteDocument>
MoveFile!!!!!!!!!!!<DownloadDocument,
 DeleteDocument,
 UploadDocument>
Unlock!!!!!!!!!!SetSharingPropertiesMediator

UploadDocument
WriteFile

DownloadDocument

UploadDocument
DeleteDocument

MoveFile

Authenticate Authenticate

Lock

SetSharingPropertiesUnlock

SetSharingProperties

Logout Logout

Authenticate

Lock

MoveFile/
WriteFile

Unlock

Logout

Authenticate

SetSharingProperties/
UploadDocument/
DownloadDocument/
DeleteDocument

Logout

ü

Interface Matching

Generating Mediators

Concretisation

Generating Correct-by-Construction
Mediators

•  The mediator composes the mapping processes in order to

allow both components, whose behaviours are

 and , to coordinate and reach their final states

The basic case

Translation

END $END END

P1 P2

Interface Matching

Generating Mediators

Concretisation

if P1
X1) P 0

1 and 9 (X1, X2) 2 Match (I1, I2)
such that P2

X2) P 0
2 and P 0

1 $M 0 P 0
2

then P1 $M P2 where M = Mm�n(X1, X2);M 0

From Abstract to Concrete Mediator

•  Refine the synthesised mediator

•  Translating application data

•  Combining ontology relations with schema

matching techniques

•  Coordinating middleware protocols

•  Deploying the mediator

Interface Matching

Generating Mediators

Concretisation

Coordinating middleware Protocols:
An Example

ReceiveRequest[MoveFile][SourceURI,DestinationURI]

SendRequest [DownloadDocument][SourceURI]

SendReply[MoveFile][Acknowledgment]

ReceiveResponse [DownloadDocument][Document]
Concretise

DownloadDocument

UploadDocument

MoveFile

Compute Metadata and Content from Document DeleteDocument

SendRequest [UploadDocument][Metadata, Content,
DestinationURI] …

Interface Matching

Generating Mediators

Concretisation

Compute SourceURI

Interoperability across interaction
paradigms

Provided Action

Required Action

<op, i, a>

<op, i, a>

op = methodName

i = argument

a = returnV alue

Server

Client

ReceiveRequest[methodName][argument]

ReceiveResponse[methodName][returnV alue]

SendResponse[methodName][returnV alue]

SendRequest[methodName][argument]

op = dataChannel

i = data

a = data

Writer

Reader

Write[data]

Read[dataChannel][data]

op = eventType

i = eventType

a = event

Publisher

Subscriber

Publish[event]

Subscribe[eventType]

GetEvent[event]

Unsubscribe

RPC DSM Publish/Subscribe

Interface Matching

Generating Mediators

Concretisation

Deploying the Mediator

Translate req.lock into prov.setSharingPropertiers

Translate req.move into prov.downloadDoc followed by
prov.getUploadDoc followed by prov.getDeleteDoc
Translate req.unlock into prov.setSharingPropertiers

Control

HTTP Parser

HTTP Composer HTTP Parser

HTTP Composer

Mediator

Interface Matching

Generating Mediators

Concretisation

C2

Applicability - Case Studies

×
×

one-to-one interface matching

one-to-many interface matching

×

×
×
×

UAV

Positioning-B

Weather Station one-to-many interface matching
cross interaction patterns
mediation at runtime

one-to-many interface matching
cross middleware solutions

Instant Messaging

File Management

Event Management

Emergency Management

Conclusion - Contributions

•  Generating interface matching automatically
•  Dealing with one-to-many and many-to-many

correspondence
•  Synthesising correct-by-construction mediators

•  Dealing with ambiguity of interface matching
•  Dealing with differences at both application and

middleware layers

 Dynamic Mediator Synthesis:
From Theory to Practice

Conclusion – What’s next

•  Increasingly complex distributed systems
•  Interoperability remains a central concern

•  Emergent middleware as a promising solution
•  Central role of ontology and learning
•  Cross-layer messaging

➔  System properties that become highly dynamic

23

