Challenges for Model-Based

System

Engineering

Past, Present and Future

Background

Professional

- Studied Engineering, paid for school doing Software
- » B.M.E., M.S. and Ph.D. all in Mechanical Engineering
- » Lifelong fascination with modeling and simulation
- » Worked in Powertrain Research at Ford for 10 years.
- » V.P. at Emmeskay (acquired by LMS)
- WW Director of Marketing for PLM: Systems (Dassault Systèmes)
- » Founder and President of Xogeny

Modelica

- » Author of the first book on Modelica, "Introduction to Physical Modeling with Modelica"
- » Secretary of the Modelica Association
- » Co-author of the Modelica specification
- President of the North American Modelica Users' Group (NA-MUG)
- Working on a second book on Modelica (crowdfunded through Kickstarter) titled "Modelica By Example"

www.xogeny.com

The Past

In the beginning....

» What were computers invented for?

ENIAC (circa 1947-1955)

"The Giant Brain"

Artillery Firing Tables

» Simulation is as old as computing itself.

15

How did that work out?

» More computing power allowed greater and greater geometric detail.

Numerical Solvers

- » At some point, people starting thinking about software architecture.
- » Clever developers built solvers with a clean interface to "plug-in" different types of problems.
- » "I give you a number, you give me a number"
- » Most problems ended up in the general form:

Software Pulls Ahead

» When I was an undergraduate:

- > I already knew C and C++
- > Engineering homework had to be done in Fortran
- Engineering faculty were much more focused on the engineering side, not the software side
- > Where were engineering students going to learn about software?
- » Engineering is an inherently conservative field.
- » Strong emphasis is given to making sure you get the correct answer.
 - > As it should be
 - > But it doesn't need to be at the exclusion of everything else

DAE Algorithms

- » 1978: H. Elmqvist, "A Structured Model Language for Large Continuous Systems"
- » 1998: C.Pantelides, "The Consistent Initialization of Differential-Algebraic Systems"
- » 1993: S.E. Mattson and G. Söderlind, "Index Reduction in Differential-Algebraic Equations Using Dummy Derivatives"

» CPU and memory were major constraints

The Present

Declarative

- » In many aspects of computing, there is a shift away from "imperative" approaches toward declarative ones.
 - > Imperative approaches obscure the underlying intent
- » Focus on problem statement, less on solution methods.
- » Declarative problems transcend solution methods.
- » Focus is on relationships, not computations.

Modelica

» From the software world:

- > Object-Oriented (inheritance, encapsulation, interfaces)
- > Declarative

» From the engineering side

- > Mathematical representation
- > Causal and acausal relationships

» General Form: Hybrid DAE

- > Far more natural way to describe physical behavior
- > Continuous behavior
- > Discrete behavior (clock based as of Modelica 3.3)

Learning vs. Doing

Block Diagrams

- » Textbook equations have to be constantly reformulated depending on context.
- » Different "blocks" with different combinations of inputs and outputs.
- » Tedious, timeconsuming and error prone.
- » Long-division

 $\begin{array}{r}
 0.1428 \\
 7 \overline{\smash{\big)}1.000000} \\
 1x7=7 & -7 \\
 30 \\
 4x7=28 & -28 \\
 20 \\
 2x7=14 & -14 \\
 60 \\
 8x7=56 & -56 \\
\end{array}$

Acausal Modeling

- Textbook equations are captured in reusable object-oriented component models.
- A single component for all causalities (e.g. planetary gear).
- » Fun, fast and automated (and
- efficient!) » Calculator

Modeling and "the V" $\!\!\!$

25

The Elephant

» The Six Blind Men and The Elephant

www.xogeny.com

29

The Modeling Elephant

I gilve ive you want he rabels, voin give erreter erret moberers.

Symbolic Manipulation

» Umbrella topic for:

- > Equation sorting
- > Index reduction
- > State selection Requires structural information
- > Substitutions
- > Tearing

» Goal is not a symbolic/analytical solution

» Reduces the DAEs down to ODEs

- > More natural way to express behavior
- > Reuse established numerical solvers
- > Heavily optimize evaluation costs

» Opinion: it will be impossible for purely numerical tools to compete.

Component Models

connector ElectricalPin
 import Modelica.SIunits.*;
 Voltage v;
 flow Current i;
end ElectricalPin;

partial model TwoPin import Modelica.SIunits.*; ElectricalPin p, n; Voltage v = p.v-n.v; Current i = p.i; equation p.i + n.i = 0; end TwoPin;

model Capacitor
 extends TwoPin;
 import Modelica.SIunits.*;
 parameter Capacitance C;
equation
 i = C*der(v);
end Capacitor;

model Resistor
 extends TwoPin;
 import Modelica.SIunits.*;
 parameter Resistance R;
equation
 i*R = v;
end Resistor;

model Inductor
 extends TwoPin;
 import Modelica.SIunits.*;
 parameter Inductance L;
equation
 der(i)*L = v;
end Inductor;

Generating Equations

Lyuau		UNG			
step.n.v = resistor.n.v					
inductor n v = inductor n v					
$\frac{naacior .n.v}{capacitor n v} = \frac{capacitor .n.v}{around n v}$					
step.n.i + resistor.n.i + inductor	n.i + capacitor.n.i + ground	u.n.i = 0 c+	aucturo of	Fauatic	206
step.p.v = resistor.p.v				Equation	112
resistor.p.v = inductor.p.v		-1 1			
inductor.p.v = capacitor.p.v		-1 1	-1 1		
step.p.i + resistor.p.i + inductor	r.p.i + capacitor.p.i = 0		-1 1 1		
step.p.i + step.n.i = 0			1	1	1
step.p.i = f(t)			1	-1.1	
resistor.p.i + resistor.n.i = 0		-1	1	-1 1 R	
resistor.p.i * resistor.R = resist	or.p.v–resistor.n.v	1	-1	L	1 1
\mathbf{E} inductor. $p.i + inductor.n.i = 0$				-	-1 1 1/C 1
$0 \leq der(inductor.p.i)^* inductor.L =$	= inductor .p.v – industor .n.v	1		1 1	1 1
$\begin{bmatrix} \overline{b} \\ \overline{b} \end{bmatrix}$ capacitor.p.i + capacitor.n.i = ()				

www.xogeny.com

>

ground.n.v 🕶 0

Sorted Structure

ground.n.v	0	Γ1	
capacitor .n.v	ground.n.v	-1 1	
inductor .n.v	capacitor .n.v	-1 1	
resistor.n.v	inductor .n.v	-1 1	
step.n.v	resistor.n.v	1	
step.p.i	f(t)	1 1	
step.n.i	- step.p.i	1	
inductor.p.v	capacitor.p.v	-1 1	
resistor.p.v	inductor.p.v	-1 1	
step.p.v	resistor.p.v	-1-1	t
der(inductor.p.i)	(inductor.p.i – inductor.n.v) / inductor.L	$\frac{1}{L}$	1
inductor .n.i	- inductor .p.i		1 1
resistor.p.i	(resistor.p.v – resistor.n.v) / resistor.R	$\frac{1}{R}$ $-\frac{1}{R}$	1
resistor.n.i	– resistor.p.i	1	
capacitor . p.i	- step.p.i - resistor.p.i - inductor.p.i	1	
capacitor .n.i	- capacitor . p.i		1 1
der(capacitor.p.v)	capacitor.p.i/capacitor.C		$\frac{\overline{c}}{1}$ 1 1 1
ground.n.i] [- step.n.i – resistor.n.i – inductor.n.i – capacitor.n.i]		

www.xogeny.com

10/23/2013

>9

Simple Inertia

(two states)

Two Inertias

(four states)

 $z = \{\dot{\theta}_1, \dot{\omega}_1, \dot{\theta}_2, \dot{\omega}_2\}$

 $\frac{\partial f}{\partial z} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & J_1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & J_1 \end{bmatrix}$ 0 0

 $\dot{\theta}_1 = \omega_1$ $b_1 = \omega_1$ $J_1 \dot{\omega}_1 = 0$ $\dot{\theta}_2 = \omega_2$ $J_2 \dot{\omega}_2 = 0$

Compliant Coupling

(four states)

 $z = \{\dot{\theta}_1, \dot{\omega}_1, \dot{\theta}_2, \dot{\omega}_2\}$

 $\frac{\partial f}{\partial z} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & J_1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & J_2 \end{bmatrix}$

 $\dot{\theta}_1 = \omega_1$ $J_1\dot{\omega}_1 = c(\theta_2 - \theta_1)$ $\dot{\theta}_2 = \omega_2$

 $J_2 \dot{\omega}_2 = c(\theta_1 - \theta_2)$

Kinematic Coupling

(two states)

Index-Reduction

Models Are Software

- » High quality IDEs
- » Version Control
- » Testing Frameworks
- » Automatic Updates, Build Systems
- » Open Source
- » Purchasing Content/Tools Online

The Future

Fluid System Modeling

» Fluid systems are hard

- > Different fluid representations
 - + Compressible vs. incompressible
 - + Choice of states (pressure, density, mass, temperature, enthalpy)
- > Different property models and equations of state
- > Multi-phase
- > Extremely non-linear
- > No analogies to other domains

» Fluid is a "component" by itself (that flows through other components!)

- > Where is it defined?
- > How is it "connected"?
- > How to define modular boundaries?

Fluid System

- » High pressure or high temperature channels might require more detailed models.
- » Heat exchanger paths may or may not be the same fluid.
- » Where (in a diagram) should these decisions be made?

VAPOUR INJECTED COMPRESSORS

Fluid System

www.xogeny.com

29

Variable Structure

- » Modelica currently requires the number of equations and unknowns to be static.
- Sexample:
- » Need to handle:
 - > Discontinuities (that generate impulses, e.g. collisions)
 - > Actors that enter and leave system

Model Reduction

- » Biggest need in getting to the ideal iterative "V" process.
- » Declarative approach helps here:
 - > Exposes underlying structure of the problem
 - > Avoids brute force numerical methods
 - > Allows optimizations to be applied automatically and reliably
- » Linear: Not so bad
- » Non-linear: Quite challenging

Dynamic Programming

$V(x) = \max_{a \in \Gamma(x)} \{F(x, a) + \beta V(T(x, a))\}$

- » Bellman's Principle applied to control systems
- » Suffers from the "Curse of Dimensionality"

> Cost goes up as x^n

» Previously impractical, but armed with "The Elephant", increasingly within reach

Scalability

» Try to imagine what it was like in 1990.

- > No "search engines"
- > No Wikipedia
- > Dial-up services (Compuserve, AOL, etc)

» What changed?

- > Internet: 1970s
- > TCP/IP: 1982
- > HTTP v0.9: 1991
- » In order to develop a scalable eco-system you need standards to promote the development of tools and content.
 - > Stability
 - > Level playing field

www.xogeny.com

Engineering 2.0

» Web 2.0

- > Where is that for engineering?
- > How has the web really changed the way industry designs products?
- > Still focused on monolithic eco-systems

» Collaboration

> Facilitated by open, client-server architected systems

» Model deployment

- > Lack of vision and technology to help "deploy" models for greater impact
- » Elastic Computing
 - > FMI → FMQ & PyFMQ
- » Resources and Talent

www.xogeny.com

 \diamond

GitHub

- Fort me on Cithus » Releasing lots of stuff under Creative Commons license on GitHub
 - > LotkaVolterra (Modelica package)
 - + Companion models for Equations to Components blog post
 - <u>Kinematics</u> (Modelica package)
 - + Companion models for <u>Kinematic Transmissions blog posts</u>
 - > <u>XogenyTest</u> (Modelica package)
 - + Companion models for future blog post on model testing
 - > <u>pyfmq</u> (Python package)
 - + Client module for forthcoming cloud simulation service
 - + Looking for testers ;-)

4

Web-Based Simulation

Xogeny Interactive Robot Demo

Conclusion

- » In the beginning, engineering was ahead of software, now software is ahead of engineering.
- » Models are software
- » Symbolic manipulation will be a requirement in the future and, therefore, so will a declarative approach to modeling.
- » More emphasis on the model development process
- » Product development will be a fusion of CAD, lumped models, CFD/FEM, control laws and embedded systems.

> What technologies are going to get us there in a scalable way?

Thanks for your Attention