Specification Mining:
New Formalisms, Algorithms
and Applications

Wenchao LI

Dissertation Talk
EECS Department, UC Berkeley

Thesis Committee: Sanjit A. Seshia (Advisor),
Andreas Kuehlmann, Francesco Borrelli

Acknowledgement

Prof. Sanjit A. Seshia

Prof. Andreas Kuehlmann, Prof. Francesco Borrelli

Dr. Alessandro Forin (MSR, Redmond)

Dr. Natarajan Shankar, Dr. Shalini Ghosh (SRI International, Menlo
Park)

GigaScale Research Center

TerraSwarm Research Center

Daniel Holcomb, Bryan Brady, Susmit Jha, Alexandre Donze,
Ruediger Ehlers, Indranil Saha, Jonathan Kotker, Rohit Sinha, Dorsa
Sadigh, Zach Wasson, Wei Yang Tan, Garvit Juniwal, Ankush Desal,
Nishant Totla, Daniel Fremont

Colleagues in the DOP center

Friends

Nuo Zhang

Tiny bugs can have
catastrophic cohnsequences

Ubiquitous computing
results in ubiquitous bugs

Formalization of requirement helps
finding bugs, but is hard

Cost of Bugs

 Human loss: Pacemakers, * Financial Loss: 1994
Aircraft, Nuclear reactor Pentium FDIV costs $475
controllers, Car engine million, Mars Rover, North
management system, etc. America Blackout, etc.

Much of the challenge in bug finding lies in finding the
specification that mechanized tools can use to find bugs

Reality Check:
o Writing assertion is a time-consuming manual process and Is

perceived as “difficult”.

o “During the first formal verification runs of a new hardware
design, typically 209% of the formulas are found to be
trivially valid.” [IBM Haifa]

Verification and Synthesis

Model M Specification y
‘.‘ An execution should
never reach an error

@ state.
| %

Check M = FInd Mst M = ¢

Specification is arguably the most important step for
formal verification and correct-by-construction synthesis

Verification Is as Good as Specification

Specification:

1. Every request should be Need More

eventually granted. .
2. Never reach an error Specifications

state. 2

2

Assertion-based

Cex .]
Verification

Poor

No Good Done

Debug |«

Verification Is as Bad as Specification

Missing .-~ .=~~~ 77 %,

1 |Specification:
4 | 1. Every request should be
1 |eventually granted.

2. Never reach an error
state.

Assertion-based
Verification

Poor

No

Need More
Specifications
D

2

Good Done

Temporal specifications can be mined systematically both
from observed and counteracting behaviors, and are useful
for automating difficult tasks in verification and synthesis
such as localizing bugs and finding missing assumptions.

Formalisms

Basis Subtrace Version-Space Learning

Algorithms

Automata-Based Sparse Coding Counterstrategy-Guided

Applications

Bug Localization LTL Synthesis Human-in-the-Loop Controller

Crowdsourced
Game

Requirement fc
Verification

Error
Localization

Specification

Mining

Synthesis from
Temporal Logic

Human-in-the-
Loop Controller

Mapping from
Natural Language

Formal specification: behavior description
supported by logic-based languages

Linear Temporal Logic

pu=plY (Y Ve[XYy Uy

Gp (p—=lp—=lp—=p)/—=lp—lp—{p—{p)...

Fp —> —> P —> —>
GFp —> p —> P —> p —>
G(P—->Fq) (p—{qg— p —{ g >

G (req — F grant):
Every request must be followed by a grant.

11

Specification Mining with Templates

Example specification ¢(a, b) :

(1) every a is followed by a b within 3 cycles;

(2) every two as are separated by at least 7 cycles.
Y, = {a, b} Y)" = {req, grant, reset }

Find (all) mapping p: 3 — >/, s.t.
Y(p(a), p(b)) is true w.r.t.some evidence.

req reset grant req grant grant
3 cycles){ 2 cycles){
€ €
- rcycles J| p(a) = req, p(b) = grant

Part |

Requirement Generation and Error Localization

Requirement Generation

13

Common behaviors as

T

- .

-
\ﬁ——’

Static

Static: Infer specification directly from the description of
the design, e.g. synthesis of interface specification for Java

classes [Alur et. al., 2005]

Dynamic: Infer likely specification from simulation
[execution traces, e.g. DAIKON [Ernst et. al., 2000]

Automata-based pac’io Sparse Coding [rv’12]

Specification Mining:

An Automata-based Monitoring Approach

15

Mining Temporal Properties

With a focus on hardware traces

Traces

-_
—-—
-
—

|
: User Event 1
: Definitions :

[Lietal., Scalable Specification Mining for Verification and Diagnosis. DAC 2010]

Library of
Temporal
Patterns

J

Specification
Mining
Engine

| Ranking

f Module

Mined

Assertions ﬂ

Most Relevant
Assertions

All possible mappings

Challenges:

— Y can be very large.
— Dim(Table) ~ |X.

Evaluate 4(v) over traces

Solutions:
— Design 1) s.t. evaluating transitions are sufficient.

— Small > but use inference rules to merge .
16

Requirement Generation:
eMIPS - 278 modules and more than 20,000 signals

il B I I I s

eMIPS 5 mil 5408 2079 1028
Router 0.23 mil 12420 28 120 74 13
12C 1.6 mil 20904 33 389 308 9
CAN 26 mil 36100 175 3272 1356 71
Summary:

* Industrial-size designs;
 Traces of millions of cycles;
« Mine relevant temporal properties efficiently.

17

Can we use the many simple mined
specifications to localize complex bugs?

Research Question

v
¢ Bt

4 a° CER Iy S T
Sf*euuuum.o &
' [« r

Post-Si Challenges:

 Limited observability

 Long error detection latency
Where? ¢ Transient and hard-to-reproduce bugs

Expensive: $1 million to redesign the masks [Ying et al., 2005];
3:1 headcount for design vs. post-Si validation [Patra et al., 2007]; post-Si validation

consumes 35% of chip development time on average [Abramovici et al., 2006]
19

Proposed Solution

Mine distinguishing patterns between good
and bad traces over module interfaces

Normal
Traces

=

Error
Trace

J=

20

{fla”'

Assertion /]

Miner —

Diagnosis

Assertion |

Miner o UVod—=

{p1,..., 0k}
Candidate
Candidate
& .

Jry - Fault Ranking

_ocations

Error Localization:
CMP router; localize to within 15 cycles for transient faults

Type of Fault Fault Coverage % | Time Localization % Module
Localization %
100

21

Stuck-at

Erroneous 100 - 100
Transition

Erroneous 100 - 57
Assignment

Transient 100 81 56

Summary:

« eMIPS: effectively localize different design bugs.

« CMP router: effectively localize transient bugs also.

« Mining simple distinguishing patterns can help to
localize complex bugs.

Research Question

Can we learn specifications w/o assuming forms?

Sparse Coding:
Sparsity helps to uncover latent structure
e.g. finding edge detectors in an unsupervised setting

+ 0.5 * ..-"'ll

Specification formalism: Express each subtrace as a
Boolean combination of a few “basis subtraces”— a
(sparsity-constrained) Boolean matrix factorization problem.

29 [Li and Seshia. Sparse Coding for Specification Mining and Error Localization. RV 2012]

Specification Mining:

A Sparse Coding Approach

24

Problem Formulation

Subtrace

basls

columns are Sparse

,/
,/
U4

k

coefficient

Multiplication as “AND”
Addition as “OR”

Sparsity-Constrained Boolean Factorization

Given a data matrix X € B™*™ and a positive integer C, the
sparsity-constrained Boolean factorization problem is to find k,
B = B™¥ and S = B**™ such that

X =BoS
and |[s.;||, < €V,

(and X;; 2; S;; Is maximized).

1017 [0l
101 10 101

011 — |01 lo11| ©7°
011] |o1]

X B S

Algorithm ldea

* Observe that the data matrix X can be viewed as the adjacency
matrix for a bipartite graph.

26

Vi
U
V2
V Uz
L0 <
101 : Uy
p)
Ulgia]| ¥
[y U V
(a) Matrix form (b) Bipartite graph

Uj

Idea: factorization — biclique cover (biclique < basis subtrace)

10
°lo1

1
1
U
Vq V2
U Uz
e

(¢) Biclique edge cover

30

Error Localization

 Error localization and explanation based on reconstruction:
A subtrace has an error if it cannot be
reconstructed from the basis subtraces

0 1 o
1 0 O
0 1 o
1 0 O
\ I
Y
X1

A subtrace 1s error-free if

1
1
0
1
\

(o T S N

0
1
0
1
)

Y
X,

|X.:®@B 5., =0

Minimize || X.;®(B o S.))||,

-,l

Subjectto ||S.;|| < ¢

/ Error

Space

Correct spanned by
subtraces the learned
basis

Experimental Results -
A CMP /
Router <€ -
inaNoC

e Chip Multiprocessor Router:
— Observe 14 control signals
— Subtrace width: 2 cycles

— Learn the basis from a single error-free
trace of 1000 cycles: 0.243 seconds to
obtain 189 basis subtraces from 93
distinct subtraces

« Error Localization:
— Inject a single bit flip at a random cycle for each of 99 error traces
— Localize the error to the subtrace (out of 999) where it was injected
« Comparisons:

— Baseline approach (1): hash all distinct subtraces — report error even
before an error is injected for the 99 traces

— Baseline approach (2): use unit basis — 0% localization
— Sparse Coding: 55.6% localization

[Source: Daniel Holcomb]

31

32

Part |: Contributions

Automata-based: [Lietal., 2010]

 An efficient algorithm for mining temporal properties from
traces of digital designs.

« Effective algorithm for localizing bugs in hardware using
distinguishing patterns.

Sparse Coding: [Lietal. 2012]

« Anovel formalism of specification based on the notion of
basis subtraces.

« An unsupervised algorithm for learning basis subtraces.

 An effective way of using basis subtraces to localize bugs.

33

Crowdsourced
Game

Requirement fc
Verification

Error
Localization

Specification

Mining

Synthesis from
Temporal Logic

Human-in-the-
Loop Controller

Mapping from
Natural Language

Part I

Assumption Mining for LTL Synthesis

35

Temporal Logic Synthesis

Automatically construct an implementation that is
guaranteed to satisfy its behavioral description.

w - Synthesis

Behavioral Description

|Church, 1957 [Rabin, 1972]

— 2EXPTIME Complexity

[Biichi and Landweber, 1969] [Pnueli and Rosner, 1989

— Need Complete Spec.

M

Implementation

[Piterman and Pnueli, 2006]

[Pnueli, 1977]

>

Assumption
Mining

I
|
£

[Kress-Gazit, 2008] [Cheng et al., 2012]

[Wongpiromsarn et al., 2011]
\

[Bloem et al., 2007]

Main advantage:
Correct-by-construction

.

Caveat: Complete specification!

“Writing a complete formal specification for the arbiter was not trivial. Many

B aspects of the arbiter are not defined in ARM’s standard.” [Bloem et al., 2007]

Assumption Mining:

A Counterstrategy-Guided Approach

GR(1) Specifications

P —

Require 1! for [€ {e, s} to be conjunctions in the following forms:

!: a Boolean formula that characterizes the initial states.

!: a LTL formula that describes the transition, in the form G f,
where f is a Boolean combination of variables in X UY and
expressions X u whereu € X if l=eandue X UY if [= s.

@Dgﬂ: a LTL formula that describes fairness, in the form G F f,
where f is a Boolean formula over variables in X UY".

Advantage: Can find an implementation in O((2/XI+1Y13) time.
[Piterman and Pnueli, 2006]

38

39

Given ¢ = ¢ — 1 with
input = and output y

s =G (F (—x));

i =G ((-z) = (-y));
b =G (F (y));

z: 010101 ...
vy Q@@ ,,, ol

z: 000000 ... oo
y: 000000 ... = eosape

Decide if d M s.t. M = ¢: Game Solving

40

A game structure G is a tuple U;n Jf U:L Jis
(X,Y,Q,0,p°, p°, Win), where
— X: a set of input variables controlled by e.
—Y: a set of output variables controlled by s.
— Q C 2% x 2Y: state space.
— 0. a Boolean formula over X U Y that defines the initial states.
— p¢ C Q x 2%: environment transition relation.

— p® C Q x 2% x 2Y: system transition relation.
— Win: winning condition of the game.

Uit e Ui s

Given GR(1) specifications ¢, ¥7, ¥f, 7, %, 93,

=g A
— p¢ = ¢ replacing (X u) by o/

— p® =1} replacing (X u) by o’

— Win is given by ¢ — * Remark: The mapping also
/\ e . — /\ b works for specifications given
v T fhe (R Y as deterministic Biichi automata.

41

GR(1) Synthesis ~ Games

Compute winning regions W?* C () using a nested fixpoint formula.

extract

Ws ——— strategy §® = (I'*, 7§,

[Piterman and Pnueli, 2006]

compute

n®) ——— circuit consistent with S*
(if Qo C W?¥)

Dually, compute winning regions W€ = @ \ W* using fixpoint formula.

extract

We¢ ———— counterstrateqy S¢ =

(Fe, Y6 5 776) [Konighofer et al., 2009]

Problem: 1) not realizable if Qo N W€ # ()

[[“=7IxJ
S¢= 15¢el*
L °CQxT'x2%X xT

Key idea: Mine additional
assumption ¢ to prohibit &€

42

43

Given ¢ = ¢° — °® with
input x and output y

Vs =G (F (—x));

by =G ((mz) = (=y));
5 =G (F (y));

Unrealizable

Counterstrategy = F (G (—x))

Candidate assumption:
¢ =—(F (G (-2))) =G (F (2))

Realizable

A counterstrategy graph G¢ is a discrete transition
system (V, Vo CV,T CV x V), where

~V C Q xI'°: state space, ¢ contains all game states where
env. e adheres to §¢ = (I'°, 7§, n°)

— Vo = Qo X 7§ initial states

— T =n° A p®: transition relation

General Solution:

Given a candidate assumption ¢ and a counterstrategy graph G¢,
€ o = O NP if ¢ ANp° £ false and G¢ = —¢ (model checking).

(a) Consistency: ¢ A ¢ # false
(b) Done if ¥¢ . — 1 is realizable;

new

C

(¢) Otherwise, iterate with new candidate ¢,,.,, and new G¢_, .

[Question: How to pick gb?}

44

45

Mining with Templates

What kind of assumptions?

— Efficient: In GR(1) to take advantage of O(|Q|?) algorithm.

— User-friendly: Simple formulas are easier to understand.
— Representative: Cover ¢;, ¢, ¢.

Assumption Templates:
— ¢o: GFuor GF (uVv) where u and v are literals over X.
— ¢p: Guor G (u V), where u and v are literals over X.

— ¢o.: G (u — (X)), where u and v are literals over X.

Related: Assumptions for LTL synthesis as
a monolithic Buchi automaton. [Chatterjee et al., 2008]

49

[Probleml: Redundant ChecksJ

Iterative Search

[Problem2: Restricted by TemplatesJ
Idea:

— Check one type of assumption in GR(1) at a time.
— Use a random determinization of G¢.

b = e —s b X GR(1) Realizable> Mw
Synthesis

Vnew = ¢ N Y — qps/ meizable

Mine mput
Templates — < compute

Assumption ¢ Counterstrategy (3¢

L

50

Search Optimizations

Cbl = _I(F ’LL)

Terminal State: Safety Violation

coso SCC: Fairness Violation

(ngf;\ X u)) ¢2 = 2(F (G u))

Boolean formula v over X and v over X UY

Compute @1, @2, ¢3 given symbolic representation
of the counterstrategy graph G° = (V, Vp, T)).

Lemmal: ¢; A ¢5 is a minimal assumption in GR(1)
syntax that removes the counterstrategy.

Lemma2: The optimized algorithm produces a nontrivial ¢, i.e.

O N\ Y°® # false.

52

Theorem: Given a satisfiable GR(1) specification ¢ = ¢ — *
and a G¢ that represents all moves by the environment to force
a violation of 1), the optimized algorithm computes a nontrivial

and minimal environment assumption ¢ in GR(1) such that
O N\ Y® — YP® is realizable.

53

Experimental Evaluation

Benchmarks:

— IBM Gen. Buffer, AMBA AHB Bus. [Bloem et al., 2007]

— Simple robotic controller.

Setup:

— Remove a single assumption from a realizable specification.
— Mine ¢ s.t. 1) is realizable.

Result Highlight:

— Recover the missing assumption in most cases.

— Reasonable replacement?
HLOCK]0]: locked access

AMBA AHB Example: HBUSREQ[0]: bus request
Goriginal = G (HLOCK|0] - HBUSREQ|0])

quined =G (F _'HBUSREQ[O]))

[Li et al., Mining Assumptions for Synthesis. MEMOCODE 2011]

Summary of Contributions

* First counterstrategy-guided synthesis framework

b = P — 1 : GR(1) Realizable‘ qu

Synthesis

>

Wy = (@) /A Q= = ¢S/ Dwalizable

Mine
Assumption ¢

Compute

 An efficient algorithm wit

P
-

Counterstrategy (7€

n theoretical guarantees for

assumption generation — a key problem in correct-by-
construction synthesis from temporal logic.

54

58

Assumption Mining:

Synthesizing Human-in-the-Loop Controllers

Many safety-critical systems interact with humans. The correctness
of such systems depend on both the correctness of autonomous
controller, actions of the human and their interaction.

59

60

“Vehicles at this level of automation enable the driver to cede
full control of all safety-critical functions under certain traffic
or environmental conditions and in those conditions to rely
heavily on the vehicle to monitor for changes in those
conditions requiring transition back to driver control. The
driver is expected to be available for occasional control, but
with sufficiently comfortable transition time.”

3—\ Level 0: No Automation: Driver is in complete control

N\ : - :
—s— Level 1: Function Specific Automation Pre-charged Brakes

N\
Cruise Control

*N*i:i\'fSA — Level 2: Combined Function Automation | ane keeping
N\
ot —— 1 |evel 3: Limited Self Driving Automation
www.nhtsa.gov \
AN
\ﬁf Level 4: Full Self Driving Automation

Source: National Highway Traffic Safety Administration. Preliminary
statement of policy concerning automated vehicles, May 2013.

61

Research Question

When autonomous controller fails,
can human safely take over control?

Human-in-the-Loop Controllers

Temporal CI‘iteI‘ia:
@ 7 — Monitoring

Determine control switch

Synthesis @ 1 .
Output based on monitored
R | T e T o o
! : information
|
; | . . .
put | T S— ' | — Minimally Intervening
| HHOT-ONHOTE Operator : Low probability of human
! | control needed
|
1 "
t Monitor Advisory pomtor Notify danger ahead of time
i Input Controller LLCgTE : Condit; v C
S . Y. — Conditionally Correct
_gmEa e Safe until human takes over
E <

Composition of Auto-Controller, Human Operator
and Advisory Controller

62 [Li et al., Synthesis of Human-in-the-Loop Controllers. UCB Tech. Report 2013]

Controller Synthesis

System
Specification

wS

P — ¢

™~

_/

Environment

Temporal Logic
Synthesis

Assumption
_/—

we

Unrealizable?l

Compute
Counterstrategy

Realizable
= Autonomous
Controller
Human-in-
> the-Loop
Controller

Approach:

L> Advisory Controller

— Mine transition assumptions ¢3 to monitor
— Modify G°¢ to account for human response time

— Assign probability and early intervention penalty to G°¢

63

— Find s-t cut in the weighted G¢

Theoretical Guarantees

Theorem: Given a GR(1) specification ¢, and a response

time parameter 1T', the algorithm is guaranteed to either
produce a fully autonomous controller satifying), or a HulL
controller, modeled as a composition of an auto-controller,

a human operator and an advisory controller that is monitoring,
prescient (with parameter 7T'), minimally intervening

and conditionally correct.

64

Assumptions: System cannot fail within 7' steps.

Remark: The human operator can be replaced by
a controller that maintains critical functionalities.

[Li et al., Synthesis of Human-in-the-Loop Controllers. UCB Tech. Report 2013]

65

A Car Following Example

Autonomous car: A
Environment cars: B & C

Objective: A follows B, and
when this 1s not achievable,
switches control to the human
driver with sufficient time for
her to respond.

Follow := move to a square
where A can still sense B

Glven specs encoding
movement rulesand T = 1.

10

CarB

CarA

CarC

66

Sening Regions:

7 8 7 8 7 8
3 4 3 4 3 4

Assume given a finite-state abstraction.
[Kloetzer and Belta, 2008] [Bhatia, 2011] [Wolff et al., 2013]

67

Failure Scenario:

—_
o

o

)

CarA

N

CarC

N

Step 1

—_
o

o

I%HII
5

(o)}

N

N

Step 2

68

A Car Following Example

Mined Assumptions:

Lenv = G (((pa =4) A (pB =6) A (pe = 1)) =
X ((pB # 8) A (pc #5))) N\
G ((pa=4)N(pB=6)A(pe=1)) =
X ((pg #6) A (pc #3))) \
G ((pa=4)N(pB=6)A(pe=1)) =

X ((pg #6) A (pc #5))) \

10

CarA

Q)
5 & o
= = =
@) w

1

2 I

[Li et al., Synthesis of Human-in-the-Loop Controllers. UCB Tech. Report 2013]

69

Part 2: Contributions

Assumption Mining: [Lietal., 2011]

 First counterstrategy-guided approach for synthesis from
temporal logic.

 An efficient algorithm with theoretical guarantees for
mining assumptions for GR(1) synthesis.

Human-in-the-Loop Controllers: [Lietal. 2013]

* Anovel formalism of human-in-the-loop controllers.

« ldentify criteria with application to driving automation.

 An algorithm for synthesizing human-in-the-loop controllers
that automatically satisfy these criteria, from temporal logic
specifications.

70

Crowdsourced
Game

Requirement fc
Verification

Error
Localization

Specification

Mining

Synthesis from
Temporal Logic

Human-in-the-
Loop Controller

Mapping from
Natural Language

71

Human Inputs:

CrowdMine: Gamification and Crowdsourcing

CrowdMine

Traces iz
Web-based (Game Prototype &

s

Spec. Found

Two Sampled Subtraces @ Counterexample ﬁ

Selected Patterns — LTL Formulas — Model Checker

[URL: http://verifun.eecs.berkeley.edu/crowdmine2/]
72

73

Preliminary Results

 Circuit: 1/O traces from a 2-input 2-output arbiter.

r() . —> gO
Arbiter
r — 0

« Top ranked patterns:

J;
Jo
Iy
Io

“When r, Is high
and there is no
competing ry, 0,
IS high at the
same cycle.

Discussion | Remark: w/o model checker in the loop.

« What are humans good at?
— Visual recognition?

Most frequently identified common patterns correspond to
desired behaviors of the circuit.

— Randomness?

165 different patterns out of 283 hits (mostly EECS students)
Top rank patterns have counts 31, 16 and 7.

« What problems do we crowdsource?

Problems that require human input and insight, or ones that are
hard to formally define.

» E.g. specification, diagnosis, repair.

» Not purely computationally intractable problems.
Related Work: FUNSAT/Human EDA [DeOrio and Bertacco, DAC 2009]

74

75

Human Inputs:

Mapping Natural Language to Temporal Logic

Natural Language — LTL Specification

:> Type Dependency
Parser (STDP)

Requirements

In NL :{> Formula
Generation

Result highlights:

:> Intermediate
Format
:{> w LTL
Formulas

* FAA-Isolette requirements from NL to LTL.
« Assumption mining discovered a missing assumption.

76

Source: D. L. Lempia and S. P. Miller. Requirements engineering management handbook.
Final Report DOT/FAA/AR-08/32, Federal Aviation Administration, June 2009.

Conclusion

Formal specifications can be mined In a systematic way to
Improve the effectiveness of verification and synthesis.

77

[Basis Subtrace

\

Formalisms
| Version-Space Learning

[Automata-Based

Algorithms - Sparse Coding
| Counterstrategy-Guided

[Bug Localization
APP“C&’UOI’IS = LTL Synthesis

| Human-in-the-Loop Controller

Future Work

Combine automata-based and sparse coding-based approaches
for mining specifications.

Improve the scalability of the sparse coding-based approach.
Mining assumptions in contract-based synthesis.

Evaluate human-in-the-loop controller synthesis in real setting.
Human studies of CrowdMine for large designs.

More robust NL—LTL techniques.

/8

Thank you!

