
Wenchao Li

Dissertation Talk

EECS Department, UC Berkeley

Thesis Committee: Sanjit A. Seshia (Advisor),

Andreas Kuehlmann, Francesco Borrelli

2

Acknowledgement

• Prof. Sanjit A. Seshia

• Prof. Andreas Kuehlmann, Prof. Francesco Borrelli

• Dr. Alessandro Forin (MSR, Redmond)

• Dr. Natarajan Shankar, Dr. Shalini Ghosh (SRI International, Menlo

Park)

• GigaScale Research Center

• TerraSwarm Research Center

• Daniel Holcomb, Bryan Brady, Susmit Jha, Alexandre Donze,

Ruediger Ehlers, Indranil Saha, Jonathan Kotker, Rohit Sinha, Dorsa

Sadigh, Zach Wasson, Wei Yang Tan, Garvit Juniwal, Ankush Desai,

Nishant Totla, Daniel Fremont

• Colleagues in the DOP center

• Friends

• Nuo Zhang

4

Cost of Bugs

• Human loss: Pacemakers,

Aircraft, Nuclear reactor

controllers, Car engine

management system, etc.

• Financial Loss: 1994

Pentium FDIV costs $475

million, Mars Rover, North

America Blackout, etc.

Reality Check:

o Writing assertion is a time-consuming manual process and is

perceived as “difficult”.

o “During the first formal verification runs of a new hardware

design, typically 20% of the formulas are found to be

trivially valid.” [IBM Haifa]

5

Verification and Synthesis

Model 𝑀

An execution should

never reach an error

state.

Specification 𝜓

Check 𝑀 ⊨ 𝜓

Verification

Find 𝑀 s.t. 𝑀 ⊨ 𝜓

Synthesis

err

6

Specification:

 1. Every request should be

eventually granted.

 2. Never reach an error

state.

Assertion-based

Verification

Pass? Debug
No Yes Done

Coverage
Good

Poor

Need More

Specifications

Cex

Verification is as Good as Specification

7

Specification:

 1. Every request should be

eventually granted.

 2. Never reach an error

state.

Assertion-based

Verification

Pass? Debug
No Yes Done

Coverage
Good

Poor

Need More

Specifications

Cex

Verification is as Bad as Specification

“Not a bug!”

Missing

Assumptions

8

Formalisms

Temporal specifications can be mined systematically both

from observed and counteracting behaviors, and are useful

for automating difficult tasks in verification and synthesis

such as localizing bugs and finding missing assumptions.

Algorithms

Applications

9

Linear Temporal Logic

10

p p p p p p p p …

p …

p p p …

G p

F p

p q q p …

G F p

G (p F q)

Formal specification: behavior description

supported by logic-based languages

11

Specification Mining with Templates

Example specification :

req reset grant req grant grant

3 cycles 2 cycles

7 cycles

(1) every a is followed by a b within 3 cycles;
 (2) every two as are separated by at least 7 cycles.

Part I
Requirement Generation and Error Localization

13

M

Static: Infer specification directly from the description of

the design, e.g. synthesis of interface specification for Java

classes [Alur et. al., 2005]

Dynamic: Infer likely specification from simulation

/execution traces, e.g. DAIKON [Ernst et. al., 2000]

Requirement Generation

Common behaviors as

likely specifications
Dynamic

Static

Automata-based [DAC’10] Sparse Coding [RV’12]

An Automata-based Monitoring Approach

Specification Mining:

15

Traces

Specification

Mining

Engine User Event

Definitions

Library of

Temporal

Patterns

Ranking

Module
Mined

Assertions

Most Relevant

Assertions

Mining Temporal Properties

[Li et al., Scalable Specification Mining for Verification and Diagnosis. DAC 2010]

16

All possible mappings

0 1

err Challenges:

Solutions:

17

Design |Τ| |Τ∆
m| nm |S| |Smerged| Runtime (s)

eMIPS 5 mil 5408 108 2079 1028 51

Router 0.23 mil 12420 28 120 74 13

I2C 1.6 mil 20904 33 389 308 9

CAN 26 mil 36100 175 3272 1356 71

Requirement Generation:

 eMIPS - 278 modules and more than 20,000 signals

Summary:

• Industrial-size designs;

• Traces of millions of cycles;

• Mine relevant temporal properties efficiently.

19

010101010101

011011010101

010111111010

10101

Where?

Post-Si Challenges:
• Limited observability

• Long error detection latency

• Transient and hard-to-reproduce bugs

Expensive: $1 million to redesign the masks [Ying et al., 2005];

3:1 headcount for design vs. post-Si validation [Patra et al., 2007]; post-Si validation

consumes 35% of chip development time on average [Abramovici et al., 2006]

Research Question

20

Proposed Solution

Normal

Traces

Diagnosis

Error

Trace

Candidate

Ranking

Candidate

Fault

Locations

Assertion

Miner

Assertion

Miner

21

Type of Fault Fault Coverage % Time Localization % Module

Localization %

Stuck-at 100 - 100

Erroneous

Transition
100 - 100

Erroneous

Assignment
100 - 57

Transient 100 81 56

 Error Localization:

 CMP router; localize to within 15 cycles for transient faults

Summary:

• eMIPS: effectively localize different design bugs.

• CMP router: effectively localize transient bugs also.

• Mining simple distinguishing patterns can help to

localize complex bugs.

22

Research Question

 0.8 * + 0.3 * + 0.5 * 0.8 * + 0.3 * + 0.5 *

Sparse Coding:

Sparsity helps to uncover latent structure

e.g. finding edge detectors in an unsupervised setting

Specification formalism: Express each subtrace as a

Boolean combination of a few “basis subtraces”– a

(sparsity-constrained) Boolean matrix factorization problem.

[Li and Seshia. Sparse Coding for Specification Mining and Error Localization. RV 2012]

A Sparse Coding Approach

Specification Mining:

24

Problem Formulation

1 1 0 0 1

0 0 1 0 1

1 1

1 0

0 0

0 1

= ○

basis coefficient

Multiplication as “AND”

Addition as “OR”

columns are sparse

Subtrace

t

25

Given a data matrix 𝑋 ∈ 𝑩𝒎×𝒏 and a positive integer 𝐶, the

sparsity-constrained Boolean factorization problem is to find 𝑘,

𝐵 = 𝑩𝒎×𝒌 and 𝑆 = 𝑩𝒌×𝒏 such that

 𝑋 = 𝑩 ∘ 𝑺

 and 𝑺∙,𝒊 𝟏
≤ 𝑪, ∀𝒊

(and 𝑺𝒊,𝒋𝒋𝒊 is maximized).

 𝑋 𝐵
𝑆

C = 2

Sparsity-Constrained Boolean Factorization

• Observe that the data matrix X can be viewed as the adjacency

matrix for a bipartite graph.

• Idea: factorization → biclique cover (biclique ↔ basis subtrace)

26

v

u

Algorithm Idea

30

• Error localization and explanation based on reconstruction:

 A subtrace has an error if it cannot be

reconstructed from the basis subtraces

• A subtrace is error-free if

 𝑋∙,𝑖⨁(𝐵 ∘ 𝑆∙,𝑖) 1
= 0

0 1 0 1 1 0 … …

1 0 0 1 1 1 … …

0 1 0 0 1 0 … …

1 0 0 1 0 1 … …

𝑋∙,1

Minimize 𝑋∙,𝑖⨁(𝐵 ∘ 𝑆∙,𝑖) 1

Subject to 𝑆∙,𝑖 ≤ 𝐶

𝑋∙,2

𝑆∙,𝑖

Error Localization

All subtraces

Space

spanned by

the learned

basis

Correct

subtraces

Error

• Chip Multiprocessor Router:

– Observe 14 control signals

– Subtrace width: 2 cycles

– Learn the basis from a single error-free

trace of 1000 cycles: 0.243 seconds to

obtain 189 basis subtraces from 93

distinct subtraces

31

• Error Localization:

– Inject a single bit flip at a random cycle for each of 99 error traces

– Localize the error to the subtrace (out of 999) where it was injected

• Comparisons:

– Baseline approach (1): hash all distinct subtraces – report error even

before an error is injected for the 99 traces

– Baseline approach (2): use unit basis – 0% localization

– Sparse Coding: 55.6% localization

A CMP

Router

in a NoC

Experimental Results

[Source: Daniel Holcomb]

32

Automata-based: [Li et al., 2010]

• An efficient algorithm for mining temporal properties from

traces of digital designs.

• Effective algorithm for localizing bugs in hardware using

distinguishing patterns.

 Sparse Coding: [Li et al., 2012]

• A novel formalism of specification based on the notion of

basis subtraces.

• An unsupervised algorithm for learning basis subtraces.

• An effective way of using basis subtraces to localize bugs.

33

Part II
Assumption Mining for LTL Synthesis

Temporal Logic Synthesis

35

Automatically construct an implementation that is

guaranteed to satisfy its behavioral description.

Behavioral Description Implementation

Synthesis

36

Digital Circuit

PSL

“Writing a complete formal specification for the arbiter was not trivial. Many

aspects of the arbiter are not defined in ARM’s standard.”

A Counterstrategy-Guided Approach

Assumption Mining:

GR(1) Specifications

38

39

40

41

42

GR(1) Synthesis ~ Games

43

44

45

Mining with Templates

49

Iterative Search

GR(1)

Synthesis

Realizable

Unrealizable

Templates
Compute

Mine

Search Optimizations

…

…

50

52

Experimental Evaluation

53

Summary of Contributions

54

• First counterstrategy-guided synthesis framework

• An efficient algorithm with theoretical guarantees for

assumption generation – a key problem in correct-by-

construction synthesis from temporal logic.

Synthesizing Human-in-the-Loop Controllers

Assumption Mining:

58

Many safety-critical systems interact with humans. The correctness

of such systems depend on both the correctness of autonomous

controller, actions of the human and their interaction.

59

“Vehicles at this level of automation enable the driver to cede

full control of all safety-critical functions under certain traffic

or environmental conditions and in those conditions to rely

heavily on the vehicle to monitor for changes in those

conditions requiring transition back to driver control. The

driver is expected to be available for occasional control, but

with sufficiently comfortable transition time.”

Level 0: No Automation: Driver is in complete control

Level 1: Function Specific Automation Pre-charged Brakes

Level 2: Combined Function Automation
Cruise Control

Lane Keeping

Level 3: Limited Self Driving Automation

Level 4: Full Self Driving Automation

Source: National Highway Traffic Safety Administration. Preliminary

statement of policy concerning automated vehicles, May 2013.

60

61

Research Question

MIT Cornell Crash during DARPA Urban Challenge, 2007

62

Human-in-the-Loop Controllers

Low probability of human

control needed

Notify danger ahead of time

Safe until human takes over

control

Determine control switch

based on monitored

information

[Li et al., Synthesis of Human-in-the-Loop Controllers. UCB Tech. Report 2013]

63

Controller Synthesis

Autonomous

Controller

Advisory Controller

Human-in-

the-Loop

Controller

System

Specification

Environment

Assumption

Temporal Logic

Synthesis

Realizable

Unrealizable?

Compute

Counterstrategy

64

Theoretical Guarantees

[Li et al., Synthesis of Human-in-the-Loop Controllers. UCB Tech. Report 2013]

65

A Car Following Example

Autonomous car: A

Environment cars: B & C

Objective: A follows B, and

when this is not achievable,

switches control to the human

driver with sufficient time for

her to respond.

Follow := move to a square

where A can still sense B

Given specs encoding

movement rules and T = 1.

66

67

68

A Car Following Example

[Li et al., Synthesis of Human-in-the-Loop Controllers. UCB Tech. Report 2013]

69

Assumption Mining: [Li et al., 2011]

• First counterstrategy-guided approach for synthesis from

temporal logic.

• An efficient algorithm with theoretical guarantees for

mining assumptions for GR(1) synthesis.

 Human-in-the-Loop Controllers: [Li et al., 2013]

• A novel formalism of human-in-the-loop controllers.

• Identify criteria with application to driving automation.

• An algorithm for synthesizing human-in-the-loop controllers

that automatically satisfy these criteria, from temporal logic

specifications.

70

CrowdMine: Gamification and Crowdsourcing

Human Inputs:

71

72

Counterexample

[URL: http://verifun.eecs.berkeley.edu/crowdmine2/]

CrowdMine

Two Sampled Subtraces

Traces

Selected Patterns → LTL Formulas → Model Checker

Spec. Found

No Cex

73

Preliminary Results

• Circuit: I/O traces from a 2-input 2-output arbiter.

• Top ranked patterns:

1

0

0

1

“When r1 is high

and there is no

competing r0, g1

is high at the

same cycle.

Arbiter
r1

g0

g1

r0

g1

g0

r1

r0

0

1

1

0

0

0

0

0

74

• What are humans good at?

– Visual recognition?

 Most frequently identified common patterns correspond to
 desired behaviors of the circuit.

– Randomness?

 165 different patterns out of 283 hits (mostly EECS students)
 Top rank patterns have counts 31, 16 and 7.

• What problems do we crowdsource?

Problems that require human input and insight, or ones that are
hard to formally define.

E.g. specification, diagnosis, repair.

Not purely computationally intractable problems.

Related Work: FunSAT/Human EDA [DeOrio and Bertacco, DAC 2009]

Discussion

Mapping Natural Language to Temporal Logic

Human Inputs:

75

76

Natural Language → LTL Specification

Intermediate

Format

Formula

Generation

Type Dependency

Parser (STDP)

Requirements

in NL LTL

Formulas

Result highlights:

• FAA-Isolette requirements from NL to LTL.

• Assumption mining discovered a missing assumption.

Source: D. L. Lempia and S. P. Miller. Requirements engineering management handbook.

Final Report DOT/FAA/AR-08/32, Federal Aviation Administration, June 2009.

77

Conclusion

Formal specifications can be mined in a systematic way to

improve the effectiveness of verification and synthesis.

78

Future Work

• Combine automata-based and sparse coding-based approaches

for mining specifications.

• Improve the scalability of the sparse coding-based approach.

• Mining assumptions in contract-based synthesis.

• Evaluate human-in-the-loop controller synthesis in real setting.

• Human studies of CrowdMine for large designs.

• More robust NL→LTL techniques.

