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Cost of Bugs  

• Human loss: Pacemakers, 

Aircraft, Nuclear reactor 

controllers, Car engine 

management system, etc. 

• Financial Loss: 1994 

Pentium FDIV costs $475 

million, Mars Rover, North 

America Blackout, etc. 

Reality Check: 

o Writing assertion is a time-consuming manual process and is 

perceived as “difficult”. 

o “During the first formal verification runs of a new hardware 

design, typically 20% of the formulas are found to be 

trivially valid.” [IBM Haifa] 
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Verification and Synthesis 

Model 𝑀 

An execution should 

never reach an error 

state. 

Specification 𝜓  

Check 𝑀 ⊨  𝜓 

Verification 

Find 𝑀 s.t. 𝑀 ⊨  𝜓 
 

Synthesis 

err 
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Specification: 

 1. Every request should be 

eventually granted. 

 2. Never reach an error 

state. 

 

Assertion-based 

Verification 

Pass? Debug 
No Yes Done 

Coverage 
Good 

Poor 

Need More 

Specifications 

Cex 

Verification is as Good as Specification 
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Specification: 

 1. Every request should be 

eventually granted. 

 2. Never reach an error 

state. 

 

Assertion-based 

Verification 

Pass? Debug 
No Yes Done 

Coverage 
Good 

Poor 

Need More 

Specifications 

Cex 

Verification is as Bad as Specification 

“Not a bug!” 

Missing 

Assumptions 
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Formalisms 

Temporal specifications can be mined systematically both 

from observed and counteracting behaviors, and are useful 

for automating difficult tasks in verification and synthesis 

such as localizing bugs and finding missing assumptions. 

Algorithms 

Applications 
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Linear Temporal Logic 
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p p p p p p p p …  

p …  

p p p …  

G p 

F p 

p q q p …  

G F p 

G (p  F q) 

Formal specification: behavior description 

supported by logic-based languages 
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Specification Mining with Templates 

Example specification              : 

 

 

req   reset grant req grant  grant  

3 cycles 2 cycles 

7 cycles 

(1) every a is followed by a b within 3 cycles; 
 (2) every two as are separated by at least 7 cycles.  

 



Part I 
Requirement Generation and Error Localization 
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M 

Static: Infer specification directly from the description of 

the design, e.g. synthesis of interface specification for Java 

classes [Alur et. al., 2005] 
 

Dynamic: Infer likely specification from simulation 

/execution traces, e.g. DAIKON [Ernst et. al., 2000] 

Requirement Generation 

Common behaviors as 

likely specifications 
Dynamic 

Static 

Automata-based [DAC’10]           Sparse Coding [RV’12] 



An Automata-based Monitoring Approach 

Specification Mining: 
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Traces 

Specification  

Mining 

Engine User Event 

Definitions 

Library of 

Temporal 

Patterns 

Ranking 

Module 
Mined  

Assertions 

Most Relevant 

Assertions 

Mining Temporal Properties  

[Li et al., Scalable Specification Mining for Verification and Diagnosis. DAC 2010] 
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All possible mappings 

0 1 

err Challenges: 

Solutions: 
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Design |Τ| |Τ∆
m| nm |S| |Smerged| Runtime (s) 

eMIPS 5 mil 5408 108 2079 1028 51 

Router 0.23 mil 12420 28 120 74 13 

I2C 1.6 mil 20904 33 389 308 9 

CAN 26 mil 36100 175 3272 1356 71 

Requirement Generation:  

 eMIPS - 278 modules and more than 20,000 signals 

Summary: 

• Industrial-size designs; 

• Traces of millions of cycles; 

• Mine relevant temporal properties efficiently.  
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010101010101

011011010101

010111111010

10101 

Where? 

Post-Si Challenges: 
• Limited observability 

• Long error detection latency 

• Transient and hard-to-reproduce bugs 

Expensive: $1 million to redesign the masks [Ying et al., 2005];  

3:1 headcount for design vs. post-Si validation [Patra et al., 2007]; post-Si validation 

consumes 35% of chip development time on average [Abramovici et al., 2006] 

Research Question 
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Proposed Solution 

Normal 

Traces 

Diagnosis 

Error 

Trace 

Candidate 

Ranking 

Candidate 

Fault 

Locations 

Assertion 

Miner 

Assertion 

Miner 
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Type of Fault Fault Coverage % Time Localization % Module 

Localization % 

Stuck-at 100 - 100 

Erroneous 

Transition 
100 - 100 

Erroneous 

Assignment 
100 - 57 

Transient 100 81 56 

   Error Localization:  

 CMP router; localize to within 15 cycles for transient faults 
 

 

Summary: 

• eMIPS: effectively localize different design bugs. 

• CMP router: effectively localize transient bugs also. 

• Mining simple distinguishing patterns can help to 

localize complex bugs.  
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Research Question 

 0.8 *                   + 0.3 *                     + 0.5 *  0.8 *                 + 0.3 *                 + 0.5 * 

Sparse Coding:  

Sparsity helps to uncover latent structure 

e.g. finding edge detectors in an unsupervised setting 

Specification formalism: Express each subtrace as a 

Boolean combination of a few “basis subtraces”– a 

(sparsity-constrained) Boolean matrix factorization problem.  
 

[Li and Seshia. Sparse Coding for Specification Mining and Error Localization. RV 2012] 



A Sparse Coding Approach  

Specification Mining: 
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Problem Formulation 

1 1 0 0 1 

0 0 1 0 1 

1 1 

1 0 

0 0 

0 1 

= ○ 

basis coefficient 

Multiplication as “AND” 

Addition as “OR” 

columns are sparse 

Subtrace 

t 
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Given a data matrix 𝑋 ∈ 𝑩𝒎×𝒏 and a positive integer 𝐶, the 

sparsity-constrained Boolean factorization problem is to find 𝑘, 

𝐵 = 𝑩𝒎×𝒌 and 𝑆 = 𝑩𝒌×𝒏 such that 

      𝑋 = 𝑩 ∘ 𝑺 

     and  𝑺∙,𝒊 𝟏
≤ 𝑪, ∀𝒊 

(and   𝑺𝒊,𝒋𝒋𝒊  is maximized). 

  

 

 

 

 

 

 𝑋 𝐵 
𝑆 

C = 2 

Sparsity-Constrained Boolean Factorization 



• Observe that the data matrix X  can be viewed as the adjacency 

matrix for a bipartite graph. 

• Idea: factorization → biclique cover (biclique ↔ basis subtrace) 
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v 

u 

Algorithm Idea 
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• Error localization and explanation based on reconstruction: 

 A subtrace has an error if it cannot be  

reconstructed from the basis subtraces 

 

 

 

 

 

 

 

• A subtrace is error-free if  

     𝑋∙,𝑖⨁(𝐵 ∘ 𝑆∙,𝑖) 1
= 0 

      

0 1 0 1 1 0 … … 

1 0 0 1 1 1 … … 

0 1 0 0 1 0 … … 

1 0 0 1 0 1 … … 

𝑋∙,1 

Minimize 𝑋∙,𝑖⨁(𝐵 ∘ 𝑆∙,𝑖) 1
   

 

Subject to   𝑆∙,𝑖  ≤  𝐶 
 

𝑋∙,2 

𝑆∙,𝑖 

Error Localization 

All subtraces 

Space 

spanned by 

the learned 

basis 

Correct 

subtraces 

Error 



• Chip Multiprocessor Router: 

– Observe 14 control signals  

– Subtrace width: 2 cycles 

– Learn the basis from a single error-free 

trace of 1000 cycles: 0.243 seconds to 

obtain 189 basis subtraces from 93 

distinct subtraces 
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• Error Localization: 

– Inject a single bit flip at a random cycle for each of 99 error traces 

– Localize the error to the subtrace (out of 999) where it was injected 

• Comparisons: 

– Baseline approach (1): hash all distinct subtraces – report error even 

before an error is injected for the 99 traces 

– Baseline approach (2): use unit basis – 0% localization 

– Sparse Coding: 55.6% localization 

A CMP 

Router  

in a NoC 

Experimental Results 

[Source: Daniel Holcomb] 
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Automata-based: [Li et al., 2010]  

• An efficient algorithm for mining temporal properties from 

traces of digital designs. 

• Effective algorithm for localizing bugs in hardware using 

distinguishing patterns.        
 

 Sparse Coding: [Li et al., 2012] 

• A novel formalism of specification based on the notion of 

basis subtraces. 

• An unsupervised algorithm for learning basis subtraces. 

• An effective way of using basis subtraces to localize bugs. 
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Part II 
Assumption Mining for LTL Synthesis 



Temporal Logic Synthesis 

35 

Automatically construct an implementation that is 

guaranteed to satisfy its behavioral description. 

Behavioral Description Implementation 

Synthesis 
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Digital Circuit 

PSL 

“Writing a complete formal specification for the arbiter was not trivial. Many 

aspects of the arbiter are not defined in ARM’s standard.” 



A Counterstrategy-Guided Approach 

Assumption Mining:  



GR(1) Specifications 
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40 



41 



42 

GR(1) Synthesis ~ Games 
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Mining with Templates 



49 

Iterative Search 

GR(1) 

Synthesis 

Realizable 

Unrealizable 

Templates 
Compute 

 

Mine 

 

 



Search Optimizations 

…  

…  
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Experimental Evaluation 

53 



Summary of Contributions 
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• First counterstrategy-guided synthesis framework 

 

 

 

 

 

 

 

• An efficient algorithm with theoretical guarantees for 

assumption generation – a key problem in correct-by-

construction synthesis from temporal logic. 
 



Synthesizing Human-in-the-Loop Controllers 

Assumption Mining:  

58 



Many safety-critical systems interact with humans. The correctness 

of such systems depend on both the correctness of autonomous 

controller, actions of the human and their interaction. 

59 



“Vehicles at this level of automation enable the driver to cede 

full control of all safety-critical functions under certain traffic 

or environmental conditions and in those conditions to rely 

heavily on the vehicle to monitor for changes in those 

conditions requiring transition back to driver control. The 

driver is expected to be available for occasional control, but 

with sufficiently comfortable transition time.” 

Level 0: No Automation: Driver is in complete control 

Level 1: Function Specific Automation Pre-charged Brakes 

Level 2: Combined Function Automation 
Cruise Control  

Lane Keeping 

Level 3: Limited Self Driving Automation 

Level 4: Full Self Driving Automation 

Source: National Highway Traffic Safety Administration. Preliminary 

statement of policy concerning automated vehicles, May 2013. 

60 
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Research Question 

MIT Cornell Crash during DARPA Urban Challenge, 2007 
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Human-in-the-Loop Controllers 

Low probability of human 

control needed 

Notify danger ahead of time 

Safe until human takes over 

control 

Determine control switch 

based on monitored 

information 

[Li et al., Synthesis of Human-in-the-Loop Controllers. UCB Tech. Report 2013] 
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Controller Synthesis 

Autonomous 

Controller 

Advisory Controller 

Human-in-

the-Loop 

Controller 

System 

Specification 

Environment 

Assumption 

Temporal Logic 

Synthesis 

Realizable 

Unrealizable? 

Compute 

Counterstrategy 
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Theoretical Guarantees 

[Li et al., Synthesis of Human-in-the-Loop Controllers. UCB Tech. Report 2013] 
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A Car Following Example 

Autonomous car: A 

Environment cars: B & C 
 

Objective: A follows B, and 

when this is not achievable, 

switches control to the human 

driver with sufficient time for 

her to respond.  
 

Follow := move to a square 

where A can still sense B 
 

Given specs encoding 

movement rules and T = 1. 
 

 

  

 

 



66 



67 



68 

A Car Following Example 

[Li et al., Synthesis of Human-in-the-Loop Controllers. UCB Tech. Report 2013] 
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Assumption Mining: [Li et al., 2011]  

• First counterstrategy-guided approach for synthesis from 

temporal logic. 

• An efficient algorithm with theoretical guarantees for 

mining assumptions for GR(1) synthesis.  
 

 Human-in-the-Loop Controllers: [Li et al., 2013] 

• A novel formalism of human-in-the-loop controllers. 

• Identify criteria with application to driving automation. 

• An algorithm for synthesizing human-in-the-loop controllers 

that automatically satisfy these criteria, from temporal logic 

specifications. 
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CrowdMine: Gamification and Crowdsourcing 

Human Inputs: 

71 
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Counterexample 

[URL: http://verifun.eecs.berkeley.edu/crowdmine2/] 

CrowdMine 

Two Sampled Subtraces 

Traces 

Selected Patterns → LTL Formulas → Model Checker  

Spec. Found  

No Cex 
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Preliminary Results 

• Circuit: I/O traces from a 2-input 2-output arbiter. 

 

 

 

• Top ranked patterns: 

 

 

 

 

 
 

1 

0 

0 

1 

“When r1 is high 

and there is no 

competing r0, g1 

is high at the 

same cycle. 

Arbiter 
r1 

g0 

g1 

r0 

g1 

g0 

r1 

r0 

0 

1 

1 

0 

0 

0 

0 

0 
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• What are humans good at? 

– Visual recognition? 

     Most frequently identified common patterns correspond to  
     desired behaviors of the circuit. 

– Randomness?  

     165 different patterns out of 283 hits (mostly EECS students) 
          Top rank patterns have counts 31, 16 and 7.     

 

• What problems do we crowdsource? 

Problems that require human input and insight, or ones that are 
hard to formally define. 

E.g. specification, diagnosis, repair. 

Not purely computationally intractable problems. 

Related Work: FunSAT/Human EDA [DeOrio and Bertacco, DAC 2009] 

 

 

 

 
 

Discussion 



Mapping Natural Language to Temporal Logic 

Human Inputs: 
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Natural Language → LTL Specification 

Intermediate  

Format 

Formula  

Generation 

Type Dependency  

Parser (STDP) 

Requirements  

in NL LTL 

Formulas 

Result highlights: 

• FAA-Isolette requirements from NL to LTL. 

• Assumption mining discovered a missing assumption.  

 

 

 

 

 
 

Source: D. L. Lempia and S. P. Miller. Requirements engineering management handbook. 

Final Report DOT/FAA/AR-08/32, Federal Aviation Administration, June 2009. 
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Conclusion 

Formal specifications can be mined in a systematic way to 

improve the effectiveness of verification and synthesis. 
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Future Work 

• Combine automata-based and sparse coding-based approaches 

for mining specifications. 

• Improve the scalability of the sparse coding-based approach. 

• Mining assumptions in contract-based synthesis. 

• Evaluate human-in-the-loop controller synthesis in real setting. 

• Human studies of CrowdMine for large designs. 

• More robust NL→LTL techniques. 

 


