
10th Biennial Ptolemy
Miniconference

Berkeley, CA
November 7, 2013

Web Service Architecture for
Composable, Interdisciplinary

Applications
Elizabeth Latronico
beth@berkeley.edu

Lee, Berkeley 2 Ptolemy Miniconference, November 7, 2013 Latronico,

Outline

  Ptolemy has a web server!

  Motivation
  Web service building blocks
  Example
  Limitations (“Future Work”)

Lee, Berkeley 3 Ptolemy Miniconference, November 7, 2013 Latronico,

The research accessibility challenge

  Great Ph.D. student with excellent results
  Then, the inevitable: Graduation

  Artifacts (in addition to publications)
  Pile of code for a highly specialized purpose,

 with a lifespan equal to Ph.D. student’s enrollment
  Extension points? Maintenance? Install help?

  Disadvantages
  Good results might have low impact due to low accessibility
  Interesting research at intersection of fields passed up

Lee, Berkeley 4 Ptolemy Miniconference, November 7, 2013 Latronico,

Can a web service paradigm help?

  Frame results as web services for composability
  Use web API for accessibility with low coordination overhead

  Tap into data sources
  Wrap web API around software
  Snap together new applications

Lee, Berkeley 5 Ptolemy Miniconference, November 7, 2013 Latronico,

Anatomy of a web service API

  RESTful approach – REpresentational State Transfer
  Organize system into a set of resources (can be objects or services)
  Client-server; Server prohibited from storing client state

  Offer URL for each resource (Scaife Hall example)
  http://server:8078/scaife, http://server:8078/scaife/room208

  Uniform set of operations (“verbs”)
  GET, POST, PUT, DELETE, more…
  An individual resource may allow only some operations
  Info may be appended to a request (e.g. form input, cookies)

Lee, Berkeley 6 Ptolemy Miniconference, November 7, 2013 Latronico,

Ptolemy building blocks

  Documentation! http://ptolemy.eecs.berkeley.edu/books/Systems/

  Director – Discrete Event Director

  Attributes – WebServer, XMPPGateway (Sensor Andrew)

  Request handling – HttpActor

  Data sources – HttpGet, XMPPSource

  Software wrappers – Simulator, ModelReference

  UI – FileReader, HTMLPageAssembler

  Testing – HttpGet, HttpPost (Can test non-Ptolemy services)

Lee, Berkeley 7 Ptolemy Miniconference, November 7, 2013 Latronico,

Demos

  Three sample models, checked in to repository:
  Sensor Andrew live temperature map
  TuLiP controller synthesis
  Building Controls Virtual Testbed / EnergyPlus building simulation

  Can imagine interesting interactions in the future!

Sensor Andrew TuLiP

Lee, Berkeley 8 Ptolemy Miniconference, November 7, 2013 Latronico,

BCVTB/EnergyPlus example

  Building
temperature
simulation

  User specifies
cooling setpoint

  3 requests:
  GET main page
  POST setpoint
  GET chart data

GET main page
GET chart data

POST this setpoint

Lee, Berkeley 9 Ptolemy Miniconference, November 7, 2013 Latronico,

Ptolemy model

Execution

GET Request

POST Request

“Model loop”
for each request

Lee, Berkeley 10 Ptolemy Miniconference, November 7, 2013 Latronico,

Execution

  Discrete Event Director
  Timed model of computation
  Run indefinitely until manual stop

  WebServer
  Starts a Jetty web server when the model is run
  Specify locations of any files to host (images, scripts…)

stopWhenQueueIsEmpty: false

resourceLocation:
$PTII/org/ptolemy/ptango/demo
/TemperatureSimulation/pages

Lee, Berkeley 11 Ptolemy Miniconference, November 7, 2013 Latronico,

Handling an Http GET request

1) Http GET request arrives, e.g.
 GET http://server:8078/eplus Matching HttpActor fires.

2) Token is produced on “getRequestURI” port. FileReader fires.

3) FileReader outputs file contents (here, a web page).
 MicrostepDelay advances time, so response occurs after request.

4) HttpActor fires again, consuming token on “response” input port.

path: /eplus

3

1
2

4

Lee, Berkeley 12 Ptolemy Miniconference, November 7, 2013 Latronico,

Handling an Http POST request

1) Http POST request arrives, e.g.
 POST http://server:8078/eplus?setpoint=24 Matching HttpActor fires.

2) Record token with setpoint is produced on “postParameters” port.

3) ModelReference executes BCVTB/EnergyPlus model with setpoint.
 Saves results to file. Produces token on “done” output port.

4) HttpActor fires, consuming “response” input port
token.

(Not shown) Client issues GET request for data
GET http://server:8078/eplus/pages/temperatures.csv

1

2
3

4

Lee, Berkeley 13 Ptolemy Miniconference, November 7, 2013 Latronico,

Properties

  Modular:
 Can divide problem into a set of independent model loops

  Separation of concerns:
 Can separate execution control and data retrieval

  Quick assembly:
 Relatively fast to put together (not counting custom UI)

  Low coordination overhead:
Usually, integrated resource not modified much
(first instance setup can take effort on Ptolemy side)

Lee, Berkeley 14 Ptolemy Miniconference, November 7, 2013 Latronico,

Limitations (i.e. “Future Work”)

  Server
  Currently: Single machine
  Want: Something easy for everyone to share (Cloud?)

  Security
  Currently: Supports some basic access control
  Want: Everything from “Attack Modeling in Ptolemy” (thanks Armin!)

  Graceful fault handling
  Currently: A Ptolemy exception will crash whole server
  Want: Contain crashed services; retry; restart

Lee, Berkeley 15 Ptolemy Miniconference, November 7, 2013 Latronico,

Limitations (2)

  App management
  Currently: Stop, start apps through GUI/command line
  Want: App manager with web interface

  Many additional topics
  Multiple client support for publish-subscribe
  Support for other REST operations and content types
  Widget library for web page construction
  …

  Your request here!

Lee, Berkeley 16 Ptolemy Miniconference, November 7, 2013 Latronico,

Ideas?

  Nifty applications? Composing services?

  What are most important infrastructure features to
develop next?

