
	
 	
	


1	


Modeling user interfaces	

with Cal and Ptolemy	


Hallvard Trætteberg, Associate Professor 
Dept. of Computer and Information Sciences 
Norwegian Univ. of Science and Technology 



	
 	
	


2	


Designers use���
informal���
representations...	


Engineers use���
models	




	
 	
	


3	


UsiXML [Vanderdonckt] – A family of 
XML-based notations for UI elements	




	
 	
	


4	


Pet shop [Palanque] – Modeling safety 
critical UIs with ICO PetriNets	




	
 	
	


5	


Lots of pragmatic approaches ���
(read: non-academic and useful)	

•  XML-based formats for describing user interface layout and style	


–  XHTML (W3C) , XAML (Microsoft), JavaFX (Oracle), XUL (Mozilla)	

–  template languages for web pages	


•  DSLs	

–  Ecore-based: Eclipse 4’s workbench model, Wazaabi	

–  Xtext-based: APPlause, MOBL, Agentry	


•  Application modeling	

–  Esito’s Genova – business applications for the desktop and web	

–  WebRatio - business applications for the web	


•  Standardization	

–  WebML	

–  IFML (in progress)	

–  Model-Based User Interfaces (MBUI) Working Group	




	
 	
	


6	


IFML – Interaction Flow Modeling Language	

•  OMG RFP	

•  Proposal by 

WebRatio++	

•  Abstract UI model	

•  Functional units and���

view containers	

•  Dataflow and���

control/activation 
signals	




	
 	
	


7	


Diamodl	


folder list mailbox content single message 



	
 	
	


8	


But what is	

•  the semantics of the model���

	
(runtime behavior)?	

•  the role of the model���

	
(scope/interoperability)?	




	
 	
	


9	


Example – web browser	




	
 	
	


10	


Three iterations	


•  Take 1 – hand-code Ptolemy actors and Java Swing toolkit	

–  showed the feasibility of using Ptolemy	

–  lot of work writing generic and configurable actors	

–  a specialized actor language would be nice, e.g. Cal	


•  Take 2 – Cal implementation for Ptolemy runtime library	

–  thin layer on top of atomic actors to support Cal implementation	

–  extra Cal constructs for event handling, as an actor can be 

triggered by data and widget events, in addition to input on ports	


•  Take 3 – moved to Javafx toolkit	

–  more Cal constructs for UI state update	

–  improved thread handling	




	
 	
	


11	


Take 1	

•  Event-driven, use���

DE Director	

•  Load UI with���

SwixmlResource	

•  Break cycles with���

TimeDelay	


•  Issues	

–  hand-coding actors is difficult and tedious	

–  Swing is being replaced by Javafx	




	
 	
	


12	


Application architecture	


•  The whole runtime state is captured as coordinated graphs of data	

•  The widget hierarchy is continuously rendered on a device	


Domain data Widgets 

events, bindings, actions & 
activation logic 

Controller 



	
 	
	


13	


Javafx widgets ���
with fxml	




	
 	
	


14	


Model of the controller	


Data	

Widgets	


Control	

logic	




	
 	
	


15	


Model of the controller	


Network of���
(instances of)���
reusable actors	




	
 	
	


16	


Generic actors, based on Diamodl	


Semantics!	




	
 	
	


17	


Cal – generic actors	




	
 	
	


18	


Widget actors, wrappers/abstractions	


What is the essential���
function of widget?	




	
 	
	


19	


Cal – widget actors	


Widgets	




	
 	
	


20	


Cal implementation	

•  Xtext and Xbase provide tight integration with Eclipse platform	


–  editor with syntax highlighting, code completion, navigation, ...	

–  can refer to and use Java APIs (standard, third-party, custom)	


•  Implementation liberties	

–  expressions – Java-like, closures, syntactic sugar, due to Xbase	

–  atomic actors – event specifications	

–  network – inline atomic actors, data transforming relations	


•  Runtime state	

–  referring to contextual data	

–  updating contextual data	

–  threads	




	
 	
	


21	


Summary	


•  Ptolemy as a platform for exploring and experimenting 
with semantics for domain-specific languages	


•  Utilize Ptolemy and Cal for developing apps	

–  language, architecture and tooling issues	



