Backward Type Inference

Marten Lohstroh, Edward A. Lee @ UC Berkeley

Background

The Ptolemy Il Type System is similar to HM(X):
Hindley-Milner over a constraint system.

Characteristics

Static typing, dynamic checking, type inference,
subtyping, automatic type conversion,
polymorphism, structured types

(Forward) Type Inference

Actors have typed ports

Types are inferred for ports that
are left typed unknown Figure 1: The PTII type lattice

Type inference is driven by type constraints that are imposed to
guarantee that tokens are (forward-)compatible with i.e., lossless
convertible to the types of their respective downstream destinations

Roughly, this means that between actors T,yput = Tinput, @and within
actors: Tinput = Toutput: Where all types are ordered in a lattice.

Prior to execution, all type constraints are harvested from the model,
and a linear time [Rehof and Mogensen1999] constraint solving
algorithm is run to find a least fixed point that satisfies all constraints

The solution is accepted if all constraints are satisfied and no types are
left unknown

Modifications

We leverage type inference to statically type dynamic
data and leverage dynamic type checking to invoke
error handling strategies that enhance robustness.

T T
’ Additional type constraints
@ Backward constraint between actors:
‘ LFP GLB(ToutputSinks) = Toutput
1 1

® Backward constraint within actors:

Figure 2: we find a solution GLB(Toutputs) = Tinput (Simplified)

in area S, slightly higher .

than the original least @ Sinks actors: |

fixed point. Input as general as possible
Implementation

@® Toggle backward type inference per composite actor
@® No impact on run-time of type resolution
@® Type errors trapped at the source

@® Suitable as activation mechanism for custom error handling

Problem

We want to build Ptolemy models that use online data, but

such data is typically unreliable, subject to change, and most
Importantly, untyped.

"What's the type?"

2a P

Figure 3: A Ptolemy model requires each port of every actor to be typed prior to
execution, or otherwise, a type error is thrown. When an actor parses untyped data,
the type of its output cannot be inferred.

SDF Director

HttpGet

cordDisassembler

trigger (unknown)% G et

{X = unknown, y

Exception

e Types resolved to unacceptable types in .plotAverage due to the following objects:
{port .plotAverage.AddSubtract.minus: unknown)

(port .plotAverage.AddSubtract.minus: unknown) &2 g € Se q uence P IOtte r

i a
(port .plotAverage.AddSubtract.output: unknown) LL
{port .plotAverage.AddSubtract.plus: unknown) unkno St BN TR /\/\
(port .plotAverage.AddSubtract.plus: unknown) .

(port .plotAverage.JSONToToken.output: unknown)
{port .plotAverag...

Display Stack Trace Dismiss

Example 1: The J[SONToToken actor, by nature of what it does, cannot provide any
specific information about its output.

] Configure Ctrl+E
S O 1 u t 10 n Documentation > Ports
Open Base Class Units Constraints
Enable backward type inference. UnitConstraints Solver
Edit Custom Icon
Th e types fo r Oth erw | se un d er- Remove Custom Icon Edit parameters for plotAverage
d ete 'm | N ed ou tp uts are ba C kwa rd Listen to plotAverage V enableBackwardTypelnference: &

inferred based on type constraints
imposed by downstream actors.

Defaults Remove Add Commit

Figure 4: Dialog after right-clicking on the
SDF Di background of the composite actor in Verqil.
Irector

JSONToToken

Htthet strin {x = double, y = double}
, _ RecordDisassembler AddSubtract
trigger (general)l> Get strin
{x = double,\y = double}m ﬁjoube

MovingAverage SequencePlotter
doub

(Bbuwns) |an

Example 2: The SequencePlotter accepts
anything less than or equal to double,
which through backward type constraints
determines the output type of [SONToToken.

€SS

N
’@Q TerraSwarm

Goals

Maximally Permissive Composition

Infer types that are specific enough not to limit composability yet
general enough not to impose unnecessary constraints.

HttpGet DE Director

trigger (unknown)D Get gtring -

cordDisassembler AddSubtract

eneral eneral +
eneral
eneral eneral
. . o ~ - .

ShowTypes

\kus) |JnDl>

stri

Exception

Type conflicts occurred in .plotAverage on the following inequalities:
{port .plotAverage.MovingAverage.output: general) <= (port .plotAverage.TimedPlotter.input: double)
(port .plotAverage.RecordDisassembler.input: general) <= (TypeConstant, {x = general, y = general})

Display Stack Trace Dismiss

Example 3: Declaring JSONToToken.output = general imposes no constraints
on the parsed input, but limits the composability with downstream actors.

Robustness

® Let type safe operation of actors be guaranteed by the run-time
type checker.

Do error handling at the sender's side to allow fall-back modes to kick
in before the model comes to a grinding halt.

Convenlence

® Automatically infer types to unburden the user. / programmer

Future

Ptolemy models that use web resources are still rather
brittle; absence of an appropriate response to a request
for remote data will raise a run-time type error, which
brings execution to a halt.

By defining alternative error handling strategies, we can make models
more robust, possibilities are:

® Retry

Try another resource

Resend a previous value

Output a nil token

Output no token at all

Figure 5: An error transition.



