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Cyber-Physical Systems

Orchestrating networked computational
resources and physical systems.

Image: Wikimedia Commons

Roots:

« Coined around 2006 by Helen
Gill at the National Science
Foundation in the US

« Cyberspace: attributed William
Gibson, who used the term in the
novel Neuromancer.

« Cybernetics: coined by Norbert
Wiener in 1948, to mean the
conjunction of control and
communication.
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Outline

1. Engineering Models for CPS
2. Time
3. Some Promising Approaches

Lee, Berkeley



Models vs. Reality

Solomon Golomb: Mathematical models — Uses and limitations.
Aeronautical Journal 1968

You will never strike oil by
drilling through the map!

Solomon Wolf Golomb (1932) mathematician
and engineer and a professor of electrical
engineering at the University of Southern
California. Best known to the general public and
fans of mathematical games as the inventor of
polyominoes, the inspiration for the computer
game Tetris. He has specialized in problems

of combinatorial analysis, number theory,
coding theory and communications.
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But this does not, in any way,
diminish the value of a map!
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The Kopetz Principle

Prof. Dr. Hermann Kopetz

Lee, Berkeley

Many (predictive) properties that we assert
about systems (determinism, timeliness,
reliability, safety) are in fact not properties of
an implemented system, but rather properties
of a model of the system.

We can make definitive statements about
models, from which we can infer properties of
system realizations. The validity of this
inference depends on model fidelity, which is
always approximate.

(paraphrased) 8
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Synchronous digital logic
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Determinate Models

Physical System Model

/*¥ Reset the output receivers, which are the inside receivers of
* the output ports of the container.
*  @exception IllegalActionException If getting the receivers fails.
*/
private void _resetOutputReceivers() throws IllegalActionException {
List<I0Port> outputs = ((Actor) getContainer{)).outputPortlist();
for (I0Port output : outputs) {
if (_debugging) {
_debug{"Resetting inside receivers of output port:
+ output.getName());

Receiver[][] receivers = output.getInsideReceivers();
if (receivers != null) {
for {(int 1 = @; 1 < receivers.length; 144} {
if (receivers[i] != null) {
for (int j = B; j = receivers[i].length; j++) {
if (receivers[i][j] instanceof FSMReceiver) {
receivers[1i][i].reset();

}

Single-threaded imperative programs

Lee, Berkeley 10



Determinate Models

Model

module Timer:
input R, SEC;
output L, S;
Loop
weak abort
await 3 SEC;
[
sustain S
||
await 5 SEC;
sustain L

Physical System

] . [S. Edwards,
when R; Columbia U.]
end

end module

Synchronous language programs

Lee, Berkeley
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Determinate Models

Physical System

Image: Wikimedia Commons

Model

Model

Differential Equations
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A Major Problem for CPS:
Combinations are Nondeterminate

/** Reset the output receivers, which are the inside receivers of
*  the output ports of the container.
*  @exception IllegalActionException If getting the receivers fails.
*/
private void _resetOutputReceivers() throws IllegalActionException {
List<I0Port> outputs = {((Actor) getContainer()).outputPortlist();
for (I10Port output : outputs) {
if (_debugging) {
_debug("Resetting inside receivers of output port:
+ output.getName());

Receiver[][] receivers = output.getInsideReceivers();
if (receivers != null) {
for {(int 1 = @; 1 < receivers.length; i++) {
if (receivers[i] != null) {
for (int j = @; J < receivers[i].length; j++) {
if (receivers[i]1[j] instanceof FSMReceiver) {
receivers[i][j].reset();

}

Signal Signal

— f
Image: Wikimedia Commons X(f) - X(O) + H / F(T)dT
0 13
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Schematic of a

simple CPS:

Computational
Platform

Network
Fabric

Computational
Platform

Physical

plant
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Computation given in an

i

\
SysTickPeriodSet (SysCtlClockGet () / 1000);]|
SysTickEnable () ;
SysTickIntEnable ();

untimed, imperative language. it g e o

7 void ISR(void) {
u

Physical plant modeled with L

int main(void) {
SysTickIntRegister (2ISR);

13
14 .. // other init
15 timer_count = 2000;
S Or S s e
1
18
9

while(timer_count != 0) {
... code to run for 2 secon ds
¥
.. // other code

Computational Network
Platform Fabric

Computational
Platform

Physical
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This code is
attempting to
control timing.
But will it really?

Computational
Platform

[

Lee, Berkeley
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void initTimer (void) <{

SysTickPeriodSet (SysCtlClockGet () / 1000);

SysTickEnable () ;
SysTickIntEnable ();
}
volatile uint timer_count = 0;
void ISR(void) A
if (timer_count != 0) {
timer_count --;

}
}
int main(void) {
SysTickIntRegister (&ISR);
. // other init
timer_count = 2000;
initTimer ();
while(timer_count != 0) {
code to run for 2 seconds

}

// other code

16



1 void initTimer(void) { \
SysTickPeriodSet (SysCtlClockGet () / 1000);]|

Timing behavior emerges from e

5 ) \

¢ volatile uint timer_count = O0; \

- - 7 void ISR(void) { '

l I l In I n r r m s if (timer_count != 0) { \
9 timer_count--; \
10 } \

12 int main(void) {

and the hardware platform. R

.. // other code

Computational [:
Platform |

Computational Network
Platform Fabric

/— JTAG and SWD interface

e 5 «—— USB interface

. T

P h VS i Ca I switches

graphics

connected ' : . speaker
p I a_ n t to GPIO pins w o display B connected to
. GPIO or PWM
analog od =
(ADC) — [ T
inputs + - |_dontroller, ~=::= GPIO connectors
e —— PWM outputs
removable 55 .
flash — ’g{:‘(— CAN bus interface
memory
slot \
Ethernet interface

Stellaris LM3S8962 evaluation board (Luminary Micro 2008, now Texas Instruments) 17
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Consequences

When precise control over timing is needed, designs are brittle.
Small changes in the hardware, software, or environment can
cause big, unexpected changes in timing. Results:

o

o

System behavior emerges only at system integration.

Manufacturers stockpile parts to suffice for the complete
production run of a product.

Manufacturers cannot leverage improvements in the
hardware (e.g. weight, power).

Any change forces re-testing and re-certifying.

Designs are over provisioned, increasing cost, weight, and
energy usage.



A Key Challenge:
Timing is not Part of Software Semantics

Correct execution of a program in C, C#, Java, Haskell,
OCaml, Esterel, etc. has nothing to do with how long it
takes to do anything. Nearly all our computation and
networking abstractions are built on this premise.

Programmers have to step outside the

programming abstractions to specify
timing behavior.

Programmers have no map!

19



Computer Science has not ignored timing...

Lee, Berkeley

The first edition of Hennessy and
Patterson (1990) revolutionized
the field of computer architecture
by making performance metrics
the dominant criterion for design.

Today, for computers, timing is
merely a performance metric.

It needs to be a
correctness criterion.

20



Correctness criteria

We can safely

' 1 void foo(int32_t x) {

assert that line 8 : it x> 10005 4
does not execute x = 1000;

) }

5 if (x > 0) {

6 x = x + 1000;

. if (x < 0) {

) - panic () ;

‘ }
(In C, we need to 10 }
separately ensure that =}
no other thread or ISR
can overwrite the stack, We can develop absolute
but in more modern confidence in the software, in that

languages, such
assurance is provided
by construction.)

only a hardware failure is an excuse.

But not with regards to timing!!
Lee, Berkeley 21



The hardware out of which we build computers
Is capable of delivering “correct” computations
and precise timing...

The synchronous digital logic
abstraction removes the
messiness of transistors.

; // Perform the convolution.
... but the overlaying software for (int 1-0: ico0s ian) 1
abstractions discard the timing x[i] = alil*b[j-il;
. // Notify listeners.
pl’eCISIOn notify(x[i]);

}
Lee, Berkeley 22



Challenge # 1

Can we change programming models so that a correct
execution of a program always delivers the same
temporal behavior (with high precision) at the subsystem
1/O?

I.e. we need determinate CPS models with high fidelity
Implementations

Lee, Berkeley
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Challenge # 2

How can we overcome the powerful inertia created by
existing languages, tools, and methodologies to allow
innovation that may change key abstractions?

I.e. we need open minds

Lee, Berkeley
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Outline

1. Engineering Models for CPS
2. Time
3. Some Promising Approaches

Lee, Berkeley
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For CPS the very notion of fime is subtle.

Computational
Platform

Physical

plant

Network Computational
Fabric Platform

Idealized
Newtonian

notion of :
time. e (?

Lee, Berkeley
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Computational platforms have no access to {.
Instead, local measurements of time are used.

Computational
Platform

!

Physical

plant

Network Computational
Fabric Platform

!

Lee, Berkeley
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There are nalve answers out there

o Uniform, global Newtonian time:

o Floating point numbers:

double time;

Lee, Berkeley
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A Major Emerging Opportunity:
Clock Synchronization

Clock synchronization is going to
change the world

(again)
*’E‘P@'ﬁ'ﬁgﬁ'ﬁ‘f‘@t " 7 =
| Beptemiig| R

| | L ‘f 5!E = i .
_HH-"-Z'I__:I.__:IJ'_I I|\I.—:I".$ ‘H!&_.-:) i |
, - LT - TN 2005: first IEEE 1588 plugfest
Gregorian Calendar (BBC history) Musée d'Orsay clock (Wikimedia Commons)
1500s 2000s
days 1800s nanoseconds
seconds
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Global Positioning System

Images: Wikimedia Commons

Lee, Berkeley

Provides ~100ns
accuracy to devices
with outdoor access.
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Precision Time Protocols (PTP)

IEEE 1588 on Ethernet

Press Release October 1, 2007

National
Semiconductor

The Sight & Sound of Information
For More Information Contact

Media Contact

Naomi Mitchell

National Semiconductor
(408) 721-2142
naomi.mitchell@nsc.com

Reader Information
Design Support Group
(800) 272-9959

www.national.com o |EEE 158818 v2 compliant

" % o Sub10nS accuracy
©412 GPI0s for event trigger or capture

Industry’s First Ethernet
Transceiver with IEEE 1588 PTP
Hardware Support from National Semiconductor Delivers
Outstanding Clock Accuracy

Using DP83640, Designers May Choose Any Microcontroller, FPGA or ASIC to
Achieve 8- Nanosecond Precision with Maximum System Flexibility

Lee, berkeley

It is becoming routine
for physical network
interfaces (PHY) to
provide hardware
support for PTPs.

With this first generation
PHY, clocks on a LAN
agree on the current time
of day to within 8ns, far
more precise than GPS
older techniques like

NTP.
31



An Extreme Example:
The Large Hadron Collider

The WhiteRabbit project at CERN is synchronizing the clocks of computers
10 km apart to within about 80 psec using a combination of GPS, IEEE
1588 PTP and synchronous ethernet.

'

Four detectors around the 27-km-long accelerator will hunt for new particles, including the
Higes boson or “God particle”

O Particle detectors

FRANCE

[
Ferney’ /
ALICE () Voitaite /ff

SWITZERLAND

' by ‘ GENEVA
Lee, Berkeley /\ Rhine




Clock Synchronization Enables:

o Energy efficiency
o Coordination, even without communication
o Security

o Resource management
o Determinism

... but I will skip
this story in the
interest of time...

Lee, Berkeley
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Challenge # 3

Can we develop a model of time that is consistent with the
realities of time measurement and clock synchronization
and also with the engineering

models used for physical systems? ?;i
T
I.e. we need a semantics of time ¥ 7
-

Lee, Berkeley - 35



Outline

1. Engineering Models for CPS
2. Time
3. Some Promising Approaches
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Some Promising Approaches

o Superdense time
o PRET machines
o PTIDES for distributed real-time systems

Lee, Berkeley
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Superdense Time

For heterogeneous mixtures of dynamics:

o Continuously evolving state in time
Continuous-time systems

o Discretely evolving state in time
Discrete-time systems
Discrete-event systems
Synchronous systems

o Sequentially evolving state
Imperative programs

Physical Dynamics

Physical Events
Software Controllers
Signal Processing

Software

Lee, Berkeley 38



Image by Dominique Toussaint
GNU Free Documentation License

Consider Physical Events
Momentum of the second ball:

Conventional: p: R— R

N P ifr=r
p(t) = 0 otherwise

Lee, Berkeley 39



Flaws with the Conventional Model

1. Discretizing the p(t) = {
momentum by sampling
yields a signal that is
indistinguishable froma =

continuous signal.

2. Momentum is not
conserved. At the time
of collision, all three
middle balls have equal
momentum summing to
three times the
momentum of the first
ball before the collision.

Image by Dominique Toussaint
GNU Free Documentation License

Lee, Berkeley
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fr=r1
otherwise




Improvements with Superdense Time

P iftr=1tm=1

1. Discretizing by p(t,m) :{ 0 otherwise

sampling yields a signal
that is semantically
distinct from any

continuous signal.

2. Momentum is
conserved.

3. Signals can be
piecewise continuous,
enabling use of
conventional ODE
solvers between
discontinuities.

Image by Dominique Toussaint
GNU Free Documentation License 41
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Superdense Time

Provides a principled
way to mix discrete al o R e ) SR
events and untimed AT Pl i g

 a

sequences (software) | i i A i
with co_ntinuous j i a0 L A r‘
dynamics. A 0 N

[

L

See the Ptolemy book, Chapter 1. 8

http://ptolemy.org/systems G Al 1 R e () By

Continuous ) 4y .,f; (Threads ) ; RF
o - &

V., ,.,'-{ 3
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Some Promising Approaches

o Superdense time
o PRET machines
o PTIDES for distributed real-time systems

Lee, Berkeley
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http.//chess.eecs.berkeley.edu/pret

PRET Machines

o PREcision-Timed processors = PRET
o Predictable, REpeatable Timing = PRET
o Performance with REpeatable Timing = PRET

// Perform the convolution.

for (int 1=0; 1i<10; i++) {
x[1] = al[i]*b[j-1]; =
// Notify listeners.
notify(x[i]);

}

Computing —
Lee, Berkeley With time 44




WCET Benchmarks Instruction Throughput (higher is better)

The Bottom Line o A —]

SA1100 warm s
SA1100 allca:che —

In microarchitecture design, we
have shown that you do not need to
sacrifice performance to get control
over timing.

@ . but | will skip

instruction throughput (instructions/cycle)

thIS Story In the o | WCI=5T Benchmarks Latency (Iowier is bétter)

PTARM
SA1100 allcache —1
SA1100 warm

SA1100 cold =

interest of time. ..

total cycles (logscale)

s

2, 3,

. ) 2

B R O %
Q,

d

[Isaac Liu, PhD Thesis, May, 2012]

.
---------



Some Promising Approaches

o Superdense time
o PRET machines
o PTIDES for distributed real-time systems

Lee, Berkeley
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Ptides: Programming Temporally Integrated Distributed Embedded Systems

First step: Time-stamped messages.

Actors specify

computation

Platform 1

Sensorl

Platform 3

Computation3 E_—

Platform 2 l

”-iﬂﬂ* Sensc{rz H Computation2 *

A
4

Ly

hva

physical Local
interface network| Event
i Source
fabric
@ Computation4 +

Messages carry time
stamps that define their
interleaving

Merge

}' Actuatorl

X
physical
interface

Physical

plant




Ptides: Second step:

Network time synchronization

GPS, NTP, IEEE 1588,
time-triggered busses, ...

they al

| work. We just

need to bound the clock
synchronization error.

(2

Platform 1
Computationl
puatont §

Platform 3

-

Platform 2 l

"—iﬂ-ﬂ* Sensc{rz H Comp/ /i0n2 *
Al /|

\

i Computation3 E_—

%

physical
interface

.

Computationd +

Assume bounded '™
clock error e nt

Clock synchronization
gives global meaning to

time stamps

Actuatorl

physical
nterface

Messages are
processed in time-

Stamp order




Ptides: Third step:
Bind time stamps to real time at sensors and actuators

Actors wrap

Sensors . .
Time stamp value is
rm1 | time of measurement Time stamp value is a
| deadline
Computationl *
Platform 3
i Computation3 E_—
Actors wrap
actuators

Platform 2 l
”.‘932* Sensq‘rz H Computation2 * Mer %/

physical Local phy!SicaI
interface network| Event |
fabric Source interface
s
@ Computation4 +

Physical
plant

Ly

hva




Ptides: Fourth step:
Specify latencies in the model

Global latencies between sensors and actuators become
controllable, which enables analysis of system dynamics.

l l Model includes
Platform 1 manipulations of time
|I Computation] _ stamps, which control
Platform 3 1 latencies between
/ ICDmputatmn3 : 'S’J’lgﬁ'ﬂme* sensors and actors
Platform 2 l
tﬂﬂ* SenscfrB H Computation2 *
model time
L - BT
e work| oy
; networ ;
interface Fabric Source interf
of _
b@—# Computation4 Actuators may be
designed to interpret

input time stamps as

the time at which to
take action.

Feedback through the physical world |




Ptides: Fifth step
Safe-to-process analysis (ensures determinacy)

Safe-to-process analysis guarantees that events are processed in time-stamp
order, given some assumptions.

Assume bounded
sensor delay s

Technical:
Need to have
deadlines on
network
interfaces, to
guarantee
time-stamp
order
irrespective
of execution
times of
actors.

Assume bounded
network delay d

\_x

r

Platform 2

—
l

A

v |

phﬁica
interfac

Assume bounded
clock error e

network
fabric

odel time
delay d3

]

Local
Event
——

Application
specification of
latency d2

An earliest event with
time stamp t here can
be safely merged when
real time exceeds
t+s+d+e—-d?




So Many Assumptions?
Recall Solomon Wolf Golomb:

You will never strike oil by
drilling through the map!

All of the assumptions are achievable with today’s
technology, and in fact are requirements anyway

for hard-real-time systems. The Ptides model
makes the assumptions explicit.

Violations of the assumptions are detectable as
out-of-order events and can be treated as faults.

Lee, Berkeley 52



Ptides Schedulability Analysis

Determine whether deadlines can be met

The problem turns out to be decidable for a large class of models.

Input Automata LI} ==
one per sensor D]]:D “
N O

Scheduler Automaton

Task Automata one per platform
one per actor in the model

On the Schedulability of Real-Time Discrete-Event

Systems:
Eleftherios Matsikoudis Christos Stergiou - Edward A. Lee

EMSOFT 2013

o I




Google Spanner

Google
independently
developed a
very similar
technique and
applied it to
distributed
databases.

Lee, Berkeley

Spanner: Google’s Globally-Distributed Database

James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, JJ Furman,
Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter Hochschild, Wilson Hsieh,
Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik, David Mwaura,
David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak,
Christopher Taylor, Ruth Wang, Dale Woodford

Google, Inc.

Abstract

Spanner is Google’s scalable, multi-version, globally-
distributed, and synchronously-replicated database. It is
the first system to distribute data at global scale and sup-
port externally-consistent distributed transactions. This
paper describes how Spanner is structured, its feature set,
the rationale underlying various design decisions, and a
novel time API that exposes clock uncertainty. This API
and its implementation are critical to supporting exter-
nal consistency and a variety of powerful features: non-
blocking reads in the past, lock-free read-only transac-
tions, and atomic schema changes, across all of Spanner.

tency over higher availability, as long as they can survive
1 or 2 datacenter failures.

Spanner’s main focus is managing cross-datacenter
replicated data, but we have also spent a great deal of
time in designing and implementing important database
features on top of our distributed-systems infrastructure.
Even though many projects happily use Bigtable [9], we
have also consistently received complaints from users
that Bigtable can be difficult to use for some kinds of ap-
plications: those that have complex. evolving schemas,
or those that want strong consistency in the presence of
wide-area replication. (Similar claims have been made

by other authors [37].) Manv applications at Google

Proceedings of OSDI 2012
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Ptides is a Change in Philosophy

The implementation platform affects timing in a distributed
real-time system.

Conventional approach: Specify functionality,
Implementation architecture, and mapping. Timing
emerges from the combination.

Ptides approach: Specify temporal behavior. Then verify
that it is met by a candidate implementation architecture.



Ptides offers a deterministic
model of computation
for distributed real-time systems.

http://chess.eecs.berkeley.edu/ptides



Challenge # 4

How to define interfaces between components that bridge
engineering disciplines and clarify requirements and
expectations?

We need a discipline of “model engineering” ‘

Promising approaches:
o Heterogeneous MoCs
o Aspect-oriented modeling

... but I will skip
this story in the

Lee, Berkeley interest of time...
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Four Big Challenges

1. Determinate CPS models

2. Open minds about languages and tools
3. A semantics of time

4. A discipline of “model engineering”

Raffaello Sanzio da Urbino — The Athens School , Image: Wikimedia Commons
. " .... T - .
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