
Cyber-Physical Systems
A Fundamental Intellectual Challenge

Edward A. Lee
Robert S. Pepper Distinguished Professor
UC Berkeley

Invited Talk
College de France

December 11, 2013.
Paris, France

Cyber-Physical Systems

Orchestrating networked computational
resources and physical systems.

Lee, Berkeley 4

Image: Wikimedia Commons

Roots:
•! Coined around 2006 by Helen

Gill at the National Science
Foundation in the US

•! Cyberspace: attributed William
Gibson, who used the term in the
novel Neuromancer.

•! Cybernetics: coined by Norbert
Wiener in 1948, to mean the
conjunction of control and
communication.

Outline

1.  Engineering Models for CPS
2.  Time
3.  Some Promising Approaches

Lee, Berkeley 5

 Models vs. Reality
Solomon Golomb: Mathematical models – Uses and limitations.
Aeronautical Journal 1968

Solomon Wolf Golomb (1932) mathematician
and engineer and a professor of electrical
engineering at the University of Southern
California. Best known to the general public and
fans of mathematical games as the inventor of
polyominoes, the inspiration for the computer
game Tetris. He has specialized in problems
of combinatorial analysis, number theory,
coding theory and communications.

You will never strike oil by
drilling through the map!

Lee, Berkeley 6

But this does not, in any way,
diminish the value of a map!

Lee, Berkeley 7

The Kopetz Principle

Many (predictive) properties that we assert
about systems (determinism, timeliness,
reliability, safety) are in fact not properties of
an implemented system, but rather properties
of a model of the system.

We can make definitive statements about
models, from which we can infer properties of
system realizations. The validity of this
inference depends on model fidelity, which is
always approximate.

(paraphrased)

Prof. Dr. Hermann Kopetz

Lee, Berkeley 8

Determinate Models

Physical System Model

Synchronous digital logic
Lee, Berkeley 9

Image: Wikimedia Commons

Determinate Models

Physical System Model

Single-threaded imperative programs
Lee, Berkeley 10

Image: Wikimedia Commons

Determinate Models

Physical System
Model

Synchronous language programs
Lee, Berkeley 11

module Timer:
input R, SEC;
output L, S;
Loop
 weak abort
 await 3 SEC;
 [
 sustain S
 ||
 await 5 SEC;
 sustain L
]
 when R;
 end
end module

[S. Edwards,
Columbia U.]

Image: Wikimedia Commons

Determinate Models

Physical System Model

Signal Signal

Differential Equations
Lee, Berkeley 12

Image: Wikimedia Commons

A Major Problem for CPS:
Combinations are Nondeterminate

Signal Signal

Lee, Berkeley 13
Image: Wikimedia Commons

Schematic of a simple CPS:

Lee, Berkeley 14

Computation given in an
untimed, imperative language.
Physical plant modeled with
ODEs or DAEs

Lee, Berkeley 15 Image: Wikimedia Commons

This code is
attempting to
control timing.
But will it really?

Lee, Berkeley 16

Timing behavior emerges from
the combination of the program
and the hardware platform.

USB interface

JTAG and SWD interface

graphics
display

CAN bus interface

Ethernet interface

analog
(ADC)
inputs

micro-
controller

removable
!ash

memory
slot

PWM outputs

GPIO connectors

switches
connected

to GPIO pins
speaker
connected to
GPIO or PWM

Lee, Berkeley 17 Stellaris LM3S8962 evaluation board (Luminary Micro 2008, now Texas Instruments)

Consequences

When precise control over timing is needed, designs are brittle.
Small changes in the hardware, software, or environment can
cause big, unexpected changes in timing. Results:

¢  System behavior emerges only at system integration.

¢  Manufacturers stockpile parts to suffice for the complete
production run of a product.

¢  Manufacturers cannot leverage improvements in the
hardware (e.g. weight, power).

¢  Any change forces re-testing and re-certifying.

¢  Designs are over provisioned, increasing cost, weight, and
energy usage.

A Key Challenge:
Timing is not Part of Software Semantics

Correct execution of a program in C, C#, Java, Haskell,
OCaml, Esterel, etc. has nothing to do with how long it
takes to do anything. Nearly all our computation and
networking abstractions are built on this premise.

Programmers have to step outside the
programming abstractions to specify
timing behavior.

Programmers have no map!

Lee, Berkeley 19

The first edition of Hennessy and
Patterson (1990) revolutionized
the field of computer architecture
by making performance metrics
the dominant criterion for design.

Today, for computers, timing is
merely a performance metric.

It needs to be a
correctness criterion.

Computer Science has not ignored timing!

Lee, Berkeley 20

Correctness criteria

We can safely
assert that line 8
does not execute

(In C, we need to
separately ensure that
no other thread or ISR
can overwrite the stack,
but in more modern
languages, such
assurance is provided
by construction.)

We can develop absolute
confidence in the software, in that
only a hardware failure is an excuse.

But not with regards to timing!!

Lee, Berkeley 21

The hardware out of which we build computers
is capable of delivering “correct” computations
and precise timing!

The synchronous digital logic
abstraction removes the
messiness of transistors.

! but the overlaying software
abstractions discard the timing
precision.

// Perform the convolution.
for (int i=0; i<10; i++) {
 x[i] = a[i]*b[j-i];
 // Notify listeners.
 notify(x[i]);
}

Lee, Berkeley 22

Challenge # 1

Can we change programming models so that a correct
execution of a program always delivers the same
temporal behavior (with high precision) at the subsystem
I/O?

i.e. we need determinate CPS models with high fidelity
implementations

Lee, Berkeley 23

Challenge # 2

How can we overcome the powerful inertia created by
existing languages, tools, and methodologies to allow
innovation that may change key abstractions?

i.e. we need open minds

Lee, Berkeley 24

Outline

1.  Engineering Models for CPS
2.  Time
3.  Some Promising Approaches

Lee, Berkeley 25

For CPS the very notion of time is subtle.

Idealized
Newtonian
notion of
time.

Lee, Berkeley 26

Computational platforms have no access to t.
Instead, local measurements of time are used.

Lee, Berkeley 27

There are naïve answers out there

!! Uniform, global Newtonian time:

!! Floating point numbers:
 double time;

Lee, Berkeley 28

A Major Emerging Opportunity:
Clock Synchronization

Clock synchronization is going to
change the world

(again)

1500s
days

Gregorian Calendar (BBC history) Musée d'Orsay clock (Wikimedia Commons)

1800s
seconds

2000s
nanoseconds

2005: first IEEE 1588 plugfest

Lee, Berkeley 29

Global Positioning System

Provides ~100ns
accuracy to devices
with outdoor access.

Lee, Berkeley 30

Images: Wikimedia Commons

Precision Time Protocols (PTP)
IEEE 1588 on Ethernet

It is becoming routine
for physical network
interfaces (PHY) to
provide hardware
support for PTPs.

With this first generation
PHY, clocks on a LAN
agree on the current time
of day to within 8ns, far
more precise than GPS
older techniques like
NTP.

Press Release October 1, 2007

Lee, Berkeley 31

An Extreme Example:
The Large Hadron Collider

The WhiteRabbit project at CERN is synchronizing the clocks of computers
10 km apart to within about 80 psec using a combination of GPS, IEEE
1588 PTP and synchronous ethernet.

Lee, Berkeley 32

Clock Synchronization Enables:

¢  Energy efficiency
¢  Coordination, even without communication
¢  Security
¢  Resource management
¢  Determinism

Lee, Berkeley 34

… but I will skip
this story in the
interest of time…

Challenge # 3

Can we develop a model of time that is consistent with the
realities of time measurement and clock synchronization
and also with the engineering
models used for physical systems?

i.e. we need a semantics of time

Lee, Berkeley 35

Outline

1.  Engineering Models for CPS
2.  Time
3.  Some Promising Approaches

Lee, Berkeley 36

Some Promising Approaches

¢  Superdense time
¢  PRET machines
¢  PTIDES for distributed real-time systems

Lee, Berkeley 37

Software

Physical Events
Software Controllers

Signal Processing

Physical Dynamics

Superdense Time

For heterogeneous mixtures of dynamics:

¢  Continuously evolving state in time

l  Continuous-time systems
¢  Discretely evolving state in time

l  Discrete-time systems
l  Discrete-event systems
l  Synchronous systems

¢  Sequentially evolving state
l  Imperative programs

Lee, Berkeley 38

Consider Physical Events
Momentum of the second ball:

Lee, Berkeley 39

Image by Dominique Toussaint
GNU Free Documentation License

Flaws with the Conventional Model
1.! Discretizing the

momentum by sampling
yields a signal that is
indistinguishable from a
continuous signal.

2.! Momentum is not
conserved. At the time
of collision, all three
middle balls have equal
momentum summing to
three times the
momentum of the first
ball before the collision.

Lee, Berkeley 40
Image by Dominique Toussaint
GNU Free Documentation License

Improvements with Superdense Time
1.! Discretizing by

sampling yields a signal
that is semantically
distinct from any
continuous signal.

2.! Momentum is
conserved.

3.! Signals can be
piecewise continuous,
enabling use of
conventional ODE
solvers between
discontinuities.

Lee, Berkeley 41
Image by Dominique Toussaint
GNU Free Documentation License

Superdense Time

Provides a principled
way to mix discrete
events and untimed
sequences (software)
with continuous
dynamics.

See the Ptolemy book, Chapter 1.
http://ptolemy.org/systems

Lee, Berkeley 42 42

Some Promising Approaches

¢  Superdense time
¢  PRET machines
¢  PTIDES for distributed real-time systems

Lee, Berkeley 43

PRET Machines

!! PREcision-Timed processors = PRET
!! Predictable, REpeatable Timing = PRET
!! Performance with REpeatable Timing = PRET

= PRET +
Computing

With time

// Perform the convolution.
for (int i=0; i<10; i++) {
 x[i] = a[i]*b[j-i];
 // Notify listeners.
 notify(x[i]);
}

http://chess.eecs.berkeley.edu/pret

Lee, Berkeley 44

! but I will skip
this story in the
interest of time!

The Bottom Line

In microarchitecture design, we
have shown that you do not need to
sacrifice performance to get control
over timing.

[Isaac Liu, PhD Thesis, May, 2012]

Some Promising Approaches

¢  Superdense time
¢  PRET machines
¢  PTIDES for distributed real-time systems

Lee, Berkeley 46

Ptides: Programming Temporally Integrated Distributed Embedded Systems
First step: Time-stamped messages.

Messages carry time
stamps that define their

interleaving

Actors specify
computation

Ptides: Second step:
Network time synchronization

GPS, NTP, IEEE 1588,
time-triggered busses, !
they all work. We just
need to bound the clock
synchronization error.

Assume bounded
clock error

Assume bounded
clock error e

Assume bounded
clock error e

Clock synchronization
gives global meaning to

time stamps

Messages are
processed in time-
stamp order

Ptides: Third step:
Bind time stamps to real time at sensors and actuators

Time stamp value is a
deadline

Time stamp value is
time of measurement

Actors wrap
sensors

Actors wrap
actuators

Global latencies between sensors and actuators become
controllable, which enables analysis of system dynamics.

Ptides: Fourth step:
Specify latencies in the model

Model includes
manipulations of time
stamps, which control

latencies between
sensors and actors

Actuators may be
designed to interpret
input time stamps as
the time at which to

take action. Feedback through the physical world

Ptides: Fifth step
Safe-to-process analysis (ensures determinacy)
Safe-to-process analysis guarantees that events are processed in time-stamp
order, given some assumptions.

Assume bounded
network delay d

Assume bounded
clock error

Assume bounded
clock error e

An earliest event with
time stamp t here can
be safely merged when
real time exceeds
t + s + d + e – d2

Assume bounded
clock error e

Assume bounded
sensor delay s

Application
specification of

latency d2
Technical:
Need to have
deadlines on
network
interfaces, to
guarantee
time-stamp
order
irrespective
of execution
times of
actors.

 So Many Assumptions?
Recall Solomon Wolf Golomb:

All of the assumptions are achievable with today’s
technology, and in fact are requirements anyway
for hard-real-time systems. The Ptides model
makes the assumptions explicit.

Violations of the assumptions are detectable as
out-of-order events and can be treated as faults.

You will never strike oil by
drilling through the map!

Lee, Berkeley 52

Ptides Schedulability Analysis
Determine whether deadlines can be met

The problem turns out to be decidable for a large class of models.

Google Spanner

Google
independently
developed a
very similar
technique and
applied it to
distributed
databases.

Lee, Berkeley 54

 Proceedings of OSDI 2012

Ptides is a Change in Philosophy

The implementation platform affects timing in a distributed
real-time system.

Conventional approach: Specify functionality,
implementation architecture, and mapping. Timing
emerges from the combination.

Ptides approach: Specify temporal behavior. Then verify
that it is met by a candidate implementation architecture.

Ptides offers a deterministic
model of computation

for distributed real-time systems.

http://chess.eecs.berkeley.edu/ptides

Challenge # 4

How to define interfaces between components that bridge
engineering disciplines and clarify requirements and
expectations?

We need a discipline of “model engineering”

Promising approaches:
¢  Heterogeneous MoCs
¢  Aspect-oriented modeling

Lee, Berkeley 57

… but I will skip
this story in the
interest of time…

Four Big Challenges

1.! Determinate CPS models
2.! Open minds about languages and tools
3.! A semantics of time
4.! A discipline of “model engineering”

Raffaello Sanzio da Urbino – The Athens School

Lee, Berkeley 58

Image: Wikimedia Commons

Acknowledgements

¢  David Broman (PRET)
¢  Patricia Derler (PTIDES)
¢  John Eidson (PTIDES, clock synchronization)
¢  Isaac Liu (PRET)
¢  Xiaojun Liu (Time)
¢  Slobodan Matic (PTIDES)
¢  Eleftherios D. Matsikoudis (Time)
¢  Christos Stergiou (PTIDES)
¢  Stavros Tripakis (Modeling)
¢  Yang Zhao (PTIDES)
¢  Haiyang Zheng (Time)
¢  Michael Zimmer (PRET)
¢  Jia Zou (PTIDES)
Plus: The entire Ptolemy II Pteam

Lee, Berkeley 59

