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Goal of this talk 

l  Spur collaborations with other researchers in the department 
¤  Developed theoretical framework 
¤  Developed (prototype) tool implementation 
¤  Now it is time to apply the framework to relevant case studies 

l  Success stories 
¤  Verification of human driver behavior (D. Sadigh, K. Driggs Campbell) 
¤  On-going integration of the algorithms within PRISM (state-of-the-art 

tool developed at the University of Birmingham and Oxford University, 
UK) 



Verify a Hybrid World with Uncertainties 

Need to formally verify and quantitatively analyze system 
performances in the presence of uncertainties (unmodeled dynamics, 

errors in parameter estimation, faulty and malicious behaviors) 

Robot Path Planning 

Sensor Networks 

Stock Market Exchange 

Biochemical Synthesis SoC Power Management 

Renewables Scheduling 
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Crash 

Behavior of a Human Driver 

“The driver will always eventually perform the maneuver correctly” – FALSE 
“The driver will perform the maneuver correctly with probability higher than 90%” – 
TRUE 
 



Setup for Model Training 

l  Intrinsic uncertainties in modeling the human behavior! 

l  How can we account for this at verification time? 

courtesy of V. Vasudevan, 
K. Driggs Campbell, 
G. Juniwal 
   



Two More Steps Towards the Goal 

[Bianco’95-Courcoubetis’95] 
Verification algorithms for 

Markov Decision Processes (MDPs) 

[Hansson et al. ’94]  
Probabilistic Computation 

Tree Logic (PCTL) 

[Kozine et al. ’02]  
Interval-MDP: Interval Uncertainties 
in transition probabilities of MDPs 

[Chatterjee et al. ’08] 
PCTL verification for  

Interval-MDPs is at most in co-NP  

[Puggelli et al. ’13] 
Polynomial-time algorithm for 

PCTL verification of Convex-MDPs 

Verify a Hybrid World with Uncertainties 

[Kwiatkowska et al. ’00] 
PRISM: Algorithms and Tool for 

PCTL verification of MDPs 
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Outline 

l  Background 
¤  Convex-MDP: MDP with Convex Uncertainty Sets 
¤  Probabilistic Computation Tree Logic (PCTL) 

l  Polynomial-Time Verification Algorithm1 

l  Case Studies 
¤  Randomized Consensus Protocol 
¤  ZeroConf Protocol 
¤  Behavior of a Human Driver2 
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Convex-MDP 

Ellipsoidal 

f1 

f2 

f1+f2=1 

S2 
FAIL 

S3 
DONE 

S0 
START 

S1 
WORK 

Likelihood 

f1+f2=1 
f2 f1 

f1=.1 

f1∈ [.2-.3] 

f2=.9 

f1=.2 

f1=.8 

f2∈ [.7-.8] 

l  Action chosen by an 
Adversary 

l  Transition probability 
distribution chosen 
by Nature 

l  Transition 
probabilistically 
executed 

a 

b 

f1+f2=1 

f1 

f2 

Interval 

.2 .3 

.8 

.7 

f

∈U

A. Nilim, “Robust Control of Markov Decision Processes with Uncertain Transition Matrices”, 2005 
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Semantics of Convex-MDPs (1) 
S2 

FAIL 

S3 
DONE 

S0 
START 

S1 
WORK 

f1=.1 

f1∈ [.2-.3] 

f2=.9 

f1=.2 

f1=.8 

f2∈ [.7-.8] 

l  Action chosen by an 
Adversary 

l  Transition probability 
distribution chosen 
once by Nature 

l  Transition 
probabilistically 
executed 

a 

b 

6 

Path 

S0 S1 S1 

a, [0.25,0.75] a, [0.25,0.75] S1 

S3 

b, [0.2,0.8] Static process: 

E.g. Variability in integrated circuits 



Semantics of Convex-MDPs (2) 
S2 

FAIL 

S3 
DONE 

S0 
START 

S1 
WORK 

f1=.1 

f1∈ [.2-.3] 

f2=.9 

f1=.2 

f1=.8 

f2∈ [.7-.8] 

l  Action chosen by an 
Adversary 

l  Transition probability 
distribution chosen at 
each step by Nature 

l  Transition 
probabilistically 
executed 

a 

b 

6 

Path 

S0 S1 S1 

a, [0.25,0.75] a, [0.22,0.78] S1 

S3 

b, [0.2,0.8] Time or space varying process: 

E.g. Quality of a wireless link 



Probabilistic Computation Tree Logic 
l  Logic syntax 

 

l  Logic semantics 

 

l  Verification algorithm: solve the optimization problem 

Next Bounded 
Until 

Unbounded 
Until 

7 



Which Logic to Use? 
l  Qualitative logics (LTL, CTL): 

¤  Pros: efficient algorithms,  
¤  Cons: only give “yes/no” answers 

l  Quantitative logics: 
¤  PCTL 

¢  Pros: efficient algorithms, enables quantitative analysis 
¢  Cons: can’t express arbitrary liveness and fairness properties 

¤  ω-PCTL1 

¢  Pros: quantitative analysis, express safety, liveness, fairness 
¢  Cons: no efficient algorithm 
 

1. K. Chatterjee et al., “Model-Checking ω-Regular Properties of Interval 
Markov Chains”, TACAS 2008 



Outline 

l  Background 
¤  Convex-MDP: MDP with Convex Uncertainty Sets 
¤  Probabilistic Computation Tree Logic (PCTL) 

l  Polynomial-Time Verification Algorithm1 

l  Case Studies 
¤  Randomized Consensus Protocol 
¤  ZeroConf Protocol 
¤  Behavior of a Human Driver2 

5 

1. A. Puggelli et al., Proceedings of CAV2013 
2. D. Sadigh et al., submitted to AAAI 2014 Symposium 



New Results in Theoretical Complexity 

PCTL Operator 
Verification Complexity 

Puggelli’13 Chatterjee’08* 
In R In Q In R In Q 

Qualitative P P P P 
Next (X) P P co-NP P 
Bounded Until (U≤k) P Pseudo-P 

in kmax 
- - 

Unbounded Until (U) P P co-NP P 

l  Size of Convex-MDP 
¤  R = O(#States x #Transitions x #Actions) 

l  Size of PCTL formula 
¤  Q = O(#Operators(excluding U≤k) + #(U≤k) x kmax) 

*Only interval uncertainties 
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1.     = Probability of satisfying     for i-th state 

2.  Set up and solve the system of equations 

3.  #Equations = #States = N 

4.  Algorithmic complexity O(N3) è Polynomial in R 

Unbounded Until in Markov Chains 

x2 = 0
x3 =1
x0 = 0.9x1 + 0.1x2
x1 = 0.2x1 + 0.7x3 + 0.1x2

!

"
#
#

$
#
#

xi
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1.  Need to consider the worst-case adversary 
(historyless-deterministic enough) 

2.  Set up and solve the linear program 

3.  #Constraints = O(#States x #Actions) 

4.  Interior Point è Algorithmic complexity polynomial in R 

Unbounded Until in MDP 

x2 = 0
x3 =1
x1 ≤ 0.3x1 + 0.7x3
x1 ≤ 0.2x2 + 0.8x3
x0 = 0.9x1 + 0.1x2

maxx xi∑
s.t.
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1.  Need to consider the worst-case adversary and nature 

2.  Set up the optimization problem 

3.  The adversarial nature minimizes the upper bound on  

4.  To maintain convexity, need to add one constraint  

5.  Uncountably infinite number of constraints: cannot solve 

Unbounded Until in Convex-MDP 

maxx xi∑
x2 = 0
x3 =1
x0 = 0.9x1 + 0.1x2
x1 ≤ 0.2x2 + 0.8x3
x1 ≤min f


∈U f1x3 + f2x1

s.t.

∀ f

∈U
xi
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Unbounded Until in Convex-MDP 
l  Try all Probability Distributions? 

 

l  NO: Uncountably infinite number 
of distributions 

 

 

x2 = 0
x3 =1
x0 = 0.9x1 + 0.1x2
x1 ≤ 0.2x1 + 0.7x3 + 0.1x2
x1 ≤ 0.2x1 + 0.8x3
x1 ≤ 0.25x1 + 0.75x3
x1 ≤ 0.21x1 + 0.79x3
...

maxx xi∑
s.t. 

S2 
FAIL 

S3 
DONE 

S0 
START 

S1 
WORK 

f1=.1 

f1∈ [.2-.3] 

f2=.9 

f1=.2 

f1=.8 

f2∈ [.7-.8] 
a 

b 

f1+f2=1 

f1 

f2 

Interval 

.2 .3 

.8 

.7 

f

∈U



l  Primal Problem 

l  Dual Problem 
¤  Convex 
¤  Number of dual variables and constraints is polynomial in R  
¤    
¤  Strong duality holds: 

Primal Cost 
Function 

f, 

σ 

Cost 

Dual Transformation for the Inner Problem 

λ 

Dual Cost Function 

d 

σ (x

) =min f


∈U f1x3 + f2x1

d(x

) =max

λ

∈D g(λ

, x

)

d(x

) =σ (x


)

Upper bound on xi 
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σ (x

) ≥ g(λ


, x

)   ∀λ

∈ D



New Formulation 

x2 = 0
x3 =1
x0 = 0.9x1 + 0.1x2
x1 ≤ 0.2x2 + 0.8x3
x1 ≤maxλ∈D g(λ, x)

maxx xi∑
x2 = 0
x3 =1
x0 = 0.9x1 + 0.1x2
x1 ≤ 0.2x2 + 0.8x3
x1 ≤ g(λ, x)
λ ∈ D

maxx,λ xi∑
s.t. s.t.

maxx xi∑
x2 = 0
x3 =1
x0 = 0.9x1 + 0.1x2
x1 ≤ 0.2x2 + 0.8x3
x1 ≤min f


∈U f1x3 + f2x1

s.t.

Unbounded Until can be verified by solving one convex problem 
with a number of variables and constraints polynomial in R.  

Original formulation Dual transformation of 
the inner problems 

New formulation 
(drop all inner problems) 

f, λ 
 

Primal 

Dual 
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Randomized Consensus Protocol [Aspnes’90] 

P2 

P1 

P3 

P4 

C 

l  Study the probability of 
agreement in a network 
of asynchronous 
processes 

l  Uncertainty models a 
faulty/compromised 
process which tosses a 
biased coin fH = 0.5 fT = 0.5

fH = 0.5 fT = 0.5

fH = 0.5 fT = 0.5

fH ∈ [0.4− 0.6]
fT ∈ [0.4− 0.6]
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Randomized Consensus Protocol 
l  With fair coins, the 

probability of 
agreement increases 
for increasing protocol 
rounds 

l  In the presence of 
uncertainty, 
increasing the 
protocol rounds 
instead decreases 
the probability of 
agreement 

The proposed analysis allows a better tuning of protocol 
parameters to accommodate for  
faulty/compromised processes 
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Runtime Analysis 
l  Use MOSEK as 

background LP solver 

l  Size of the convex 
problem and runtime 
scale polynomially 

l  Comparable with PRISM2 
and 1000x faster than 
PARAM3 

1. www.mosek.com 

2. Kwiatkowska et al., “PRISM 4.0: Verification of Probabilistic Real-time Systems” 
3. Hahn et al., “Synthesis for PCTL in Parametric Markov Decision Processes” 



ZeroConf Protocol [Cheshire’05] 

(source: doip.org) 

l  Study the QoS of a network 
configuration protocol for 
domotic applications 

l  Model the network as a 
Timed Automata  

Likelihood 

f1+f2=1 

f2 f1 

l  Maximum likelihood estimator 
to model the losses in the 
(physical) wireless channel 
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ZeroConf Protocol 

Our analysis enables a robust 
configuration of protocol 
parameters to fit variable 
conditions of operation 

l  Probability of failing to 
register to the network 
within a preset deadline 

l  Analysis with no 
uncertainties largely 
underestimates the 
probability of failure  

Low Uncertainty High Uncertainty 

Probability 
of failure 
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Why Modeling the Driver Behavior? 
More effective teaching strategies 

Driving regulations and 
insurance terms (Semi)-Autonomous Driving 

Lane 
changing 

Collision 
avoidance 

Assisted 
maneuvers 



Data Collection 

1. V. Vasudevan et al., “Safe Semi-Autonomous Control with Enhanced Driver 
Modeling”, ACC 2012  

Scenario 1: No distraction, no obstacle 

Scenario 2: Distraction, no obstacle 

Scenario 3: No distraction, Obstacle 

Scenario 4: Distraction, Obstacle 

t 

Obstacle 
Distraction 

Obstacle 

Distraction 

l  Focus on modeling differences between attentive and 
distracted driving1 



Library of Atomic Behaviors 
l  Library of atomic labels L = {distracted, attentive, swerving, 

braking, accelerating, right lane, left lane…} 
l  Modes ⊆ 2L            E.g. m1=(distracted, right lane) 

l  Goal: Predict vehicle trajectories for each mode 
l  Measured inputs: 

¤  Driver steering angle (every 30ms) 
¤  Driver pose -> proxy for attention level 

l  Cluster measured inputs into the available atomic modes 
l  For each mode, use a model of vehicle dynamics to predict 

possible trajectories for 1.2s  

Example: 
Mode = (right lane, straight, distracted) 



Model Creation 

l  Modes are interpreted as 
states of the Convex-MDP 

l  Transition probabilities are 
computed based on 
empirical frequencies of 
trajectory end-points. 



Analysis of a Complex Maneuver 

l  Repeat the process  to 
build the model of a 
complex maneuver 



Verified Properties 

l  Evaluating different driving styles 

l  Estimating probability of threats 



Comparison among Uncertainty Models 

l  With no uncertainty, results might be overly optimistic 

l  Both uncertainty models trained with 95% confidence 
¤  Interval model might be overly pessimistic 
¤  Likelihood model is a statistically-valid compromise 

Pmax[attentive U unsafe] 

Pmin[right lane U final] 



Sensitivity to the Uncertainty Level 

l  Attentive driver always perform better (gap varies among 
individuals!) 

l  Depending on the specification, a different level of confidence is 
required -> guide on how to train the model! 

Pmax[attentive U unsafe] 



Characterization of Individual Driving Styles 

l  Compare driving 
styles 
¤  S2 worst on keeping 

the right lane 
¤  S3 brakes less often 

l  The presence of an 
obstacle always 
increases the 
probability of threats 



Conclusions and Future Work 
l  Proposed a polynomial time algorithm for the verification of PCTL 

properties of MDPs  

l  Lowered theoretical complexity for Interval-MDPs from co-NP to P 
and extended to a large class of non-linear convex models of 
uncertainty 

l  Applied to the verification of the behavior of a human driver 

l  Application to further case studies (e.g. pricing of renewable energy) 

l  Theory extensions: 
¤  Continuous-Time Markov Chains 
¤  Compositional methods (assume-guarantee) 
¤  Stochastic control 

Source code available at: 
http://www.eecs.berkeley.edu/~puggelli/ 20 



Runtime Analysis 

l  Use MOSEK as 
background convex solver 

l  Size of the convex 
problem and runtime 
scale polynomially 

l  Comparable with PRISM2 
and 1000x faster than 
PARAM3 

1. www.mosek.com 

2. Kwiatkowska et al., “PRISM 4.0: Verification of Probabilistic Real-time Systems” 
3. Hahn et al., “Synthesis for PCTL in Parametric Markov Decision Processes” 17 



Unbounded Until in Convex-MDP 

S2 
FAIL 

S3 
DONE 

S0 
START 

S1 
WORK 

f1=.1 

f1 = .7 

f2=.9 

f1=.2 

f1=.8 

f2=.3 

a 

b 



Unbounded Until in Convex-MDP 
l  Try all Probability Distributions? 

l  NO: Uncountably infinite number of distributions 

 

 

x2 = 0
x3 =1
x0 = 0.9x1 + 0.1x2
x1 ≤ 0.2x1 + 0.7x3 + 0.1x2
x1 ≤ 0.2x1 + 0.8x3
x1 ≤ 0.25x1 + 0.75x3
x1 ≤ 0.21x1 + 0.79x3
...

maxx xi∑
s.t. S2 

FAIL 

S3 
DONE 

S0 
START 

S1 
WORK 

f1=.1 

f1∈ [.2-.3] 

f2=.9 

f1=.2 

f1=.8 

f2∈ [.7-.8] 
a 

b 



Until Operator in CMDPs:  
Duality 

l  Worst-case: 
¤  Minimize the upper bound 

l                                          
¤  Primal problem 

x2 = 0
x3 =1
x0 = 0.9x1 + 0.1x2
x1 ≤min p∈U1 p1,1x1 + p1,2x2 + p1,3x3
x1 ≤min p∈U2 p2,1x1 + p2,3x3

x2 = 0
x3 =1
x0 = 0.9x1 + 0.1x2
x1 ≤ 0.2x1 + 0.7x3 + 0.1x2
x1 ≤ 0.2x1 + 0.8x3
x1 ≤ 0.25x1 + 0.75x3
x1 ≤ 0.21x1 + 0.79x3
...

maxx xi∑
s.t. 

maxx xi∑
s.t. 

min p∈U1 p1,1x1 + p1,2x2 + p1,3x3



Until Operator in CMDPs:  
Duality-Theory Approach 

x2 = 0
x3 =1
x0 = 0.9x1 + 0.1x2
x1 ≤min p∈U1 p1,1x1 + p1,2x2 + p1,3x3
x1 ≤min p∈U2 p2,1x1 + p2,3x3

maxx xi∑
s.t. x2 = 0

x3 =1
x0 = 0.9x1 + 0.1x2
x1 ≤maxλ1∈D1 g1(λ1, x)
x1 ≤maxλ2∈D2 g2 (λ2, x)

maxx xi∑
s.t. 

l  Substitute each primal problem with the corresponding dual 
problem 


