Polynomial-Time Verification of PCTL Properties of MDPs with Convex Uncertainties and its Application to Cyber-Physical Systems

Alberto Puggelli

DREAM Seminar - November 26, 2013

Collaborators and Pls:

Wenchao Li

Dorsa Sadigh

Katherine Driggs Campbell

A. L. Sangiovanni-Vincentelli

S. A. Seshia

Goal of this talk

- Spur collaborations with other researchers in the department
 - Developed theoretical framework
 - Developed (prototype) tool implementation
 - Now it is time to apply the framework to relevant case studies
- Success stories
 - Verification of human driver behavior (D. Sadigh, K. Driggs Campbell)
 - On-going integration of the algorithms within PRISM (state-of-the-art tool developed at the University of Birmingham and Oxford University, UK)

Verify a Hybrid World with Uncertainties

Sensor Networks

SoC Power Management

Biochemical Synthesis

Need to **formally** verify and **quantitatively** analyze system performances in the presence of **uncertainties** (unmodeled dynamics, errors in parameter estimation, faulty and malicious behaviors)

Stock Market Exchange

Renewables Scheduling

Robot Path Planning

Behavior of a Human Driver

"The driver will always eventually perform the maneuver correctly" – FALSE "The driver will perform the maneuver correctly with probability higher than 90%" – TRUE

Setup for Model Training

- Intrinsic uncertainties in modeling the human behavior!
- How can we account for this at verification time?

Two More Steps Towards the Goal

Verify a Hybrid World with Uncertainties

[Chatterjee et al. '08]
PCTL verification for
Interval-MDPs is at most in co-NP

[Kwiatkowska et al. '00]

PRISM: Algorithms and Tool for PCTL verification of MDPs

[Bianco'95-Courcoubetis'95]
Verification algorithms for
Markov Decision Processes (MDPs)

[Puggelli et al. '13]
Polynomial-time algorithm for
PCTL verification of Convex-MDPs

[Kozine et al. '02]
Interval-MDP: Interval Uncertainties
in transition probabilities of MDPs

[Hansson et al. '94]
Probabilistic Computation
Tree Logic (PCTL)

Outline

- Background
 - Convex-MDP: MDP with Convex Uncertainty Sets
 - Probabilistic Computation Tree Logic (PCTL)
- Polynomial-Time Verification Algorithm¹
- Case Studies
 - Randomized Consensus Protocol
 - ZeroConf Protocol
 - Behavior of a Human Driver²

^{1.} A. Puggelli *et al.*, Proceedings of CAV2013

^{2.} D. Sadigh et al., submitted to AAAI 2014 Symposium

Outline

- Background
 - Convex-MDP: MDP with Convex Uncertainty Sets
 - Probabilistic Computation Tree Logic (PCTL)
- Polynomial-Time Verification Algorithm¹
- Case Studies
 - Randomized Consensus Protocol
 - ZeroConf Protocol
 - Behavior of a Human Driver²

- ^{1.} A. Puggelli *et al.*, Proceedings of CAV2013
- ^{2.} D. Sadigh et al., submitted to AAAI 2014 Symposium

Convex-MDP

- Action chosen by an <u>Adversary</u>
- Transition probability distribution chosen by <u>Nature</u>
 - Transition probabilistically executed

A. Nilim, "Robust Control of Markov Decision Processes with Uncertain Transition Matrices", 2005

Semantics of Convex-MDPs (1)

- Action chosen by an <u>Adversary</u>
- Transition probability distribution chosen
 once by <u>Nature</u>
- Transition probabilistically executed

Path

Semantics of Convex-MDPs (2)

- Action chosen by an <u>Adversary</u>
- Transition probability distribution chosen at each step by <u>Nature</u>
 - Transition probabilistically executed

 S_3

Time or space varying process:

E.g. Quality of a wireless link

Probabilistic Computation Tree Logic

Logic syntax

$$\begin{array}{lll} \phi ::= True \mid \omega \mid \neg \phi \mid \phi_1 \wedge \phi_2 \mid P_{\bowtie p} \left[\psi \right] & \text{state formulas} \\ \psi ::= \mathcal{X}\phi \mid \phi_1 \ \mathcal{U}^{\leq k}\phi_2 \mid \phi_1 \ \mathcal{U}\phi_2 & \text{path formulas} \\ & \text{Next} & \text{Bounded} & \text{Unbounded} \end{array}$$

Until

Logic semantics

```
\begin{array}{lll} s \models \mathrm{True} \\ s \models \omega & \mathrm{iff} \ \omega \in L(s) \\ s \models \neg \phi & \mathrm{iff} \ s \not\models \phi \\ s \models \phi_1 \wedge \phi_2 & \mathrm{iff} \ s \models \phi_1 \wedge s \models \phi_2 \\ s \models P_{\bowtie p} [\psi] & \mathrm{iff} \ Prob\left(\{\pi \in \varPi_s(\alpha, \eta^a) \mid \pi \models \psi\}\right) \bowtie p \\ \forall \alpha \in Adv \ \mathrm{and} \ \eta^a \in Nat \end{array}
```

Until

Verification algorithm: solve the optimization problem

$$P_s^{max}[\psi] = \max_{a \in \mathcal{A}(s)} \max_{\mathbf{f}_s^a \in \mathcal{F}_s^a} P_s(a, \mathbf{f}_s^a)[\psi] \stackrel{?}{\leq} p \qquad P_s^{min}[\psi] = \min_{a \in \mathcal{A}(s)} \min_{\mathbf{f}_s^a \in \mathcal{F}_s^a} P_s(a, \mathbf{f}_s^a)[\psi] \stackrel{?}{\geq} p$$

Which Logic to Use?

- Qualitative logics (LTL, CTL):
 - Pros: efficient algorithms,
 - Cons: only give "yes/no" answers
- Quantitative logics:
 - PCTL
 - o Pros: efficient algorithms, enables quantitative analysis
 - o Cons: can't express arbitrary liveness and fairness properties
 - ω-PCTL¹
 - o Pros: quantitative analysis, express safety, liveness, fairness
 - Cons: no efficient algorithm

^{1.} K. Chatterjee *et al.*, "Model-Checking **ω**-Regular Properties of Interval Markov Chains", TACAS 2008

Outline

- Background
 - Convex-MDP: MDP with Convex Uncertainty Sets
 - Probabilistic Computation Tree Logic (PCTL)
- Polynomial-Time Verification Algorithm¹
- Case Studies
 - Randomized Consensus Protocol
 - ZeroConf Protocol
 - Behavior of a Human Driver²

- ^{1.} A. Puggelli *et al.*, Proceedings of CAV2013
- ^{2.} D. Sadigh et al., submitted to AAAI 2014 Symposium

New Results in Theoretical Complexity

- Size of Convex-MDP
 - $\mathcal{R} = O(\#States \times \#Transitions \times \#Actions)$
- Size of PCTL formula
 - $Q = O(\#Operators(excluding U^{\leq k}) + \#(U^{\leq k}) \times k_{max})$

	Verification Complexity				
PCTL Operator	Pugg	elli'13	Chatterjee'08*		
	In ${\cal R}$	In Q	In ${\cal R}$	In Q	
Qualitative	Р	Р	Р	Р	
Next (X)	Р	Р	co-NP	Р	
Bounded Until ($\mathcal{U}^{\leq k}$)	Р	Pseudo-P in k_{max}	-	-	
Unbounded Until (U)	Р	Р	co-NP	Р	

*Only interval uncertainties

Unbounded Until in Markov Chains

$$\phi = P_{\geq 0.7} [\neg \text{FAIL } \mathcal{U} \text{ DONE}]$$

- 1. x_i = Probability of satisfying ϕ for i-th state
- 2. Set up and solve the system of equations

$$\begin{cases} x_2 = 0 \\ x_3 = 1 \\ x_0 = 0.9x_1 + 0.1x_2 \\ x_1 = 0.2x_1 + 0.7x_3 + 0.1x_2 \end{cases}$$

- 3. #Equations = #States = N
- 4. Algorithmic complexity $O(N^3) \rightarrow Polynomial in \mathcal{R}$

Unbounded Until in MDP

$$\phi = P_{\geq 0.7} [\neg \text{FAIL } \mathcal{U} \text{ DONE}]$$

- Need to consider the worst-case adversary (historyless-deterministic enough)
- 2. Set up and solve the linear program

$$\max_{x} \sum x_{i}$$
s.t. $x_{2} = 0$

$$x_{3} = 1$$

$$x_{1} \le 0.3x_{1} + 0.7x_{3}$$

$$x_{1} \le 0.2x_{2} + 0.8x_{3}$$

$$x_{0} = 0.9x_{1} + 0.1x_{2}$$

- 3. #Constraints = O(#States x #Actions)
- 4. Interior Point \rightarrow Algorithmic complexity polynomial in \mathcal{R}

Unbounded Until in Convex-MDP

$$\phi = P_{\geq 0.7} [\neg \text{FAIL } \mathcal{U} \text{ DONE}]$$

- 1. Need to consider the worst-case adversary and nature
- 2. Set up the optimization problem

$$\max_{x} \sum_{x_{i}} x_{i}$$
s.t. $x_{2} = 0$

$$x_{3} = 1$$

$$x_{0} = 0.9x_{1} + 0.1x_{2}$$

$$x_{1} \le 0.2x_{2} + 0.8x_{3}$$

$$x_{1} \le \min_{\vec{f} \in U} f_{1}x_{3} + f_{2}x_{1}$$

- 3. The adversarial nature minimizes the upper bound on X_i
- 4. To maintain convexity, need to add one constraint $\forall \vec{f} \in U$
- 5. Uncountably infinite number of constraints: cannot solve

Unbounded Until in Convex-MDP

Try all Probability Distributions?

$$\max_{x} \sum x_{i}$$
s.t. $x_{2} = 0$

$$x_{3} = 1$$

$$x_{0} = 0.9x_{1} + 0.1x_{2}$$

$$x_{1} \leq 0.2x_{1} + 0.7x_{3} + 0.1x_{2}$$

$$x_{1} \leq 0.2x_{1} + 0.8x_{3}$$

$$x_{1} \leq 0.25x_{1} + 0.75x_{3}$$

$$x_{1} \leq 0.21x_{1} + 0.79x_{3}$$
...

NO: Uncountably infinite number of distributions

Dual Transformation for the Inner Problem

Primal Problem
$$\sigma(\vec{x}) = \min_{\vec{f} \in U} f_1 x_3 + f_2 x_1$$

Dual Problem

$$d(\vec{x}) = \max_{\vec{\lambda} \in D} g(\vec{\lambda}, \vec{x})$$

- Convex
- Number of dual variables and constraints is polynomial in ${\mathcal R}$
- \circ $\sigma(x) \ge g(\lambda, x) \quad \forall \lambda \in D$
- Strong duality holds: $d(x) = \sigma(x)$

New Formulation

Original formulation

$$\max_{x} \sum x_{i}$$

$$s.t. x_2 = 0$$

$$x_3 = 1$$

$$x_0 = 0.9x_1 + 0.1x_2$$

$$x_1 \le 0.2x_2 + 0.8x_3$$

$$x_1 \le \min_{\vec{f} \in U} f_1 x_3 + f_2 x_1$$

<u>Dual transformation of</u> <u>the inner problems</u>

$$\max_{x} \sum x_{i}$$

$$s.t. \quad x_2 = 0$$

$$x_3 = 1$$

$$x_0 = 0.9x_1 + 0.1x_2$$

$$x_1 \le 0.2x_2 + 0.8x_3$$

$$x_1 \le \max_{\lambda \in D} g(\lambda, x)$$

New formulation (drop all inner problems)

$$\max_{x,\lambda} \sum x_i$$

$$s.t. x_2 = 0$$

$$x_3 = 1$$

$$x_0 = 0.9x_1 + 0.1x_2$$

$$x_1 \le 0.2x_2 + 0.8x_3$$

$$x_1 \le g(\lambda, x)$$

$$\lambda \in D$$

Unbounded Until can be verified by solving one convex problem with a number of variables and constraints polynomial in \mathcal{R} .

Outline

- Background
 - Convex-MDP: MDP with Convex Uncertainty Sets
 - Probabilistic Computation Tree Logic (PCTL)
- Polynomial-Time Verification Algorithm¹
- Case Studies
 - Randomized Consensus Protocol
 - ZeroConf Protocol
 - Behavior of a Human Driver²

- ^{1.} A. Puggelli *et al.*, Proceedings of CAV2013
- ^{2.} D. Sadigh et al., submitted to AAAI 2014 Symposium

Randomized Consensus Protocol [Aspnes'90]

- Study the probability of agreement in a network of asynchronous processes
- Uncertainty models a faulty/compromised process which tosses a biased coin

$$P_{s_0}^{min} [\psi] := P_{s_0}^{min} (\mathbf{F} (\{finished\} \land \{all_coins_equal_1\}))$$

Randomized Consensus Protocol

- With fair coins, the probability of agreement increases for increasing protocol rounds
- In the presence of uncertainty, increasing the protocol rounds instead decreases the probability of agreement

The proposed analysis allows a better tuning of protocol parameters to accommodate for faulty/compromised processes

Runtime Analysis

- Use MOSEK as background LP solver
- Size of the convex problem and runtime scale polynomially
- Comparable with PRISM² and 1000x faster than PARAM³

		ĸ					
Tool	P = 2, R = 2	R = 7	R = 128	P = 4, R = 2	R = 32	R = 44	P = 6, R = 4
1001	N + T = 764	2,604	47,132	97,888	1,262,688	1,979,488	14,211,904
CP	0.02s	0.1s	2.1s	8.3s	1,341s	2,689	TO
PRISM	0.01s	0.09s	196s	1s	2,047s	TO	1860s
PARAM	22.8s	657s	TO	TO	TO	TO	TO

^{1.} www.mosek.com

^{2.} Kwiatkowska et al., "PRISM 4.0: Verification of Probabilistic Real-time Systems"

^{3.} Hahn et al., "Synthesis for PCTL in Parametric Markov Decision Processes"

ZeroConf Protocol [Cheshire'05]

- Study the QoS of a network configuration protocol for domotic applications
- Model the network as a Timed Automata

Maximum likelihood estimator to model the losses in the (physical) wireless channel

Likelihood

ZeroConf Protocol

 Probability of failing to register to the network within a preset deadline

 Analysis with no uncertainties largely underestimates the probability of failure

configuration of protocol parameters to fit variable conditions of operation

Why Modeling the Driver Behavior?

More effective teaching strategies

Lane changing

Assisted maneuvers

Driving regulations and insurance terms

Data Collection

 Focus on modeling differences between attentive and distracted driving¹

Scenario 1: No distraction, no obstacle

Scenario 2: Distraction, no obstacle

Distraction

Scenario 3: No distraction, Obstacle

Obstacle

Scenario 4: Distraction, Obstacle

Distraction

Obstacle

^{1.} V. Vasudevan *et al.*, "Safe Semi-Autonomous Control with Enhanced Driver Modeling", ACC 2012

Library of Atomic Behaviors

- Library of atomic labels L = {distracted, attentive, swerving, braking, accelerating, right lane, left lane...}
- Modes $\subseteq 2^L$ E.g. m_1 =(distracted, right lane)
- Goal: Predict vehicle trajectories for each mode
- Measured inputs:
 - Driver steering angle (every 30ms)
 - Driver pose -> proxy for attention level
- Cluster measured inputs into the available atomic modes
- For each mode, use a model of vehicle dynamics to predict possible trajectories for 1.2s

Example:

Mode = (right lane, straight, distracted)

Model Creation

- Modes are interpreted as states of the Convex-MDP
- Transition probabilities are computed based on empirical frequencies of trajectory end-points.

Predicted Trajectories

Transition	Transition
Transition	Probability Interval
$S_0 \rightarrow S_1$	[0.019,0.021]
$S_0 \rightarrow S_2$	[0.890,0.980]
$S_0 \rightarrow S_1$	[0.048,0.053]

Analysis of a Complex Maneuver

Verified Properties

Table 1: Verified Properties

	P_{max}/P_{min} [Attention \mathcal{U} $Unsafe$]		
P2	P_{max}/P_{min} [(Attention $\land \neg Swerving) \ \mathcal{U} \ Final$]		
I	P_{max}/P_{min} [(Attention \land Right Lane) \mathcal{U} Final]		
P4	P_{max}/P_{min} [(Attention $\land \neg Braking) \ \mathcal{U} \ Final$]		
Atte	Attention is a placeholder for either Attentive or Distracted		

- Evaluating different driving styles
- Estimating probability of threats

Comparison among Uncertainty Models

- With no uncertainty, results might be overly optimistic
- Both uncertainty models trained with 95% confidence
 - Interval model might be overly pessimistic
 - Likelihood model is a statistically-valid compromise

Sensitivity to the Uncertainty Level

- Attentive driver always perform better (gap varies among individuals!)
- Depending on the specification, a different level of confidence is required -> guide on how to train the model!

Characterization of Individual Driving Styles

Table 1: Verified Properties

P1	P_{max}/P_{min} [Attention \mathcal{U} $Unsafe$]	
P2	P_{max}/P_{min} [(Attention $\land \neg Swerving$) \mathcal{U} $Final$]	
	P_{max}/P_{min} [(Attention \land Right Lane) \mathcal{U} Final]	
	P_{max}/P_{min} [(Attention $\land \neg Braking) \ \mathcal{U} \ Final$]	
Attention is a placeholder for either <i>Attentive</i> or <i>Distracted</i>		

Compare driving styles

- S2 worst on keeping the right lane
- S3 brakes less often

The presence of an obstacle always increases the probability of threats

Conclusions and Future Work

- Proposed a polynomial time algorithm for the verification of PCTL properties of MDPs
- Lowered theoretical complexity for Interval-MDPs from co-NP to P and extended to a large class of non-linear convex models of uncertainty
- Applied to the verification of the behavior of a human driver
- Application to further case studies (e.g. pricing of renewable energy)
- Theory extensions:
 - Continuous-Time Markov Chains
 - Compositional methods (assume-guarantee)
 - Stochastic control

Source code available at: http://www.eecs.berkeley.edu/~puggelli/

Runtime Analysis

- Use MOSEK as background convex solver
- Size of the convex problem and runtime scale polynomially
- Comparable with PRISM² and 1000x faster than PARAM³

^{1.} www.mosek.com

^{2.} Kwiatkowska et al., "PRISM 4.0: Verification of Probabilistic Real-time Systems"

^{3.} Hahn et al., "Synthesis for PCTL in Parametric Markov Decision Processes"

Unbounded Until in Convex-MDP

Unbounded Until in Convex-MDP

Try all Probability Distributions?

NO: Uncountably infinite number of distributions

Until Operator in CMDPs: Duality

$$\max_{x} \sum x_{i}$$
s.t. $x_{2} = 0$

$$x_{3} = 1$$

$$x_{0} = 0.9x_{1} + 0.1x_{2}$$

$$x_{1} \le 0.2x_{1} + 0.7x_{3} + 0.1x_{2}$$

$$x_{1} \le 0.2x_{1} + 0.8x_{3}$$

$$x_{1} \le 0.25x_{1} + 0.75x_{3}$$

$$x_{1} \le 0.21x_{1} + 0.79x_{3}$$

$$\max_{x} \sum_{x_{1}} x_{i}$$
s.t. $x_{2} = 0$

$$x_{3} = 1$$

$$x_{0} = 0.9x_{1} + 0.1x_{2}$$

$$x_{1} \leq \min_{p \in U_{1}} p_{1,1}x_{1} + p_{1,2}x_{2} + p_{1,3}x_{3}$$

$$x_{1} \leq \min_{p \in U_{2}} p_{2,1}x_{1} + p_{2,3}x_{3}$$

- Worst-case:
 - Minimize the upper bound
- $\min_{\mathbf{p}_{1}, \mathbf{x}_{2}} p_{1,3} x_{2} + p_{1,3} x_{3}$

Until Operator in CMDPs: Duality-Theory Approach

$$\max_{x} \sum x_{i}$$
s.t. $x_{2} = 0$

$$x_{3} = 1$$

$$x_{0} = 0.9x_{1} + 0.1x_{2}$$

$$x_{1} \leq \min_{p \in U_{1}} p_{1,1}x_{1} + p_{1,2}x_{2} + p_{1,3}x_{3}$$

$$x_{1} \leq \min_{p \in U_{2}} p_{2,1}x_{1} + p_{2,3}x_{3}$$

$$\max_{x} \sum_{x_{i}} x_{i}$$
s.t. $x_{2} = 0$

$$x_{3} = 1$$

$$x_{0} = 0.9x_{1} + 0.1x_{2}$$

$$x_{1} \leq \max_{\lambda_{1} \in D_{1}} g_{1}(\lambda_{1}, x)$$

$$x_{1} \leq \max_{\lambda_{2} \in D_{2}} g_{2}(\lambda_{2}, x)$$

Substitute each primal problem with the corresponding dual problem