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Image source: Clarus Concept of Operations. Publication No. 
FHWA-JPO-05-072, Federal Highway Administration 
(FHWA), 2005. 

Forsberg and Mooz, 
“The Relationship of 
System Engineering to 
the Project Cycle,” Proc. 
Symposium of National 
Council on System 
Engineering, October 
1991. 

This leads to late 
validation (at system 
integration time). 
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Virtual Integration Requires Working with Models. 
Models vs. Reality 
Solomon Golomb: Mathematical models – Uses and limitations. 
Aeronautical Journal 1968 

Solomon Wolf Golomb (1932)  mathematician 
and engineer and a professor of electrical 
engineering at the University of Southern 
California. Best known to the general public and 
fans of  mathematical games as the inventor of  
polyominoes, the inspiration for the computer  
game Tetris. He has specialized in problems  
of combinatorial analysis, number theory,  
coding theory and communications.  

You will never strike oil by 
drilling through the map! 
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But this does not, in any way, 
diminish the value of a map! 
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The Kopetz Principle 
 
Many (predictive) properties that we assert 
about systems (determinism, timeliness, 
reliability, safety) are in fact not properties of 
an implemented system, but rather properties 
of a model of the system. 
 
We can make definitive statements about 
models, from which we can infer properties of 
system realizations. The validity of this 
inference depends on model fidelity, which is 
always approximate. 
 
(paraphrased) 

Prof. Dr. Hermann Kopetz 
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Determinate Models 

Physical System Model 

Synchronous digital logic 
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Determinate Models 

Physical System Model 

Single-threaded imperative programs 
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Determinate Models 

Physical System Model 

Signal Signal 

Differential Equations 
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A Major Problem for CPS: 
Combinations are Nondeterminate 

Signal Signal 
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Schematic of a simple CPS: 
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Computation given in an  
untimed, imperative language. 
Physical plant modeled with  
ODEs or DAEs 
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This code is 
attempting to 
control timing. 
But will it really? 

Lee, Berkeley 15 



Timing behavior emerges from 
the combination of the program 
and the hardware platform. 

USB interface

JTAG and SWD interface

graphics
display

CAN bus interface
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analog
(ADC)
inputs

micro-
controller

removable 
!ash 

memory
slot

PWM outputs

GPIO connectors

switches
connected

to GPIO pins
speaker
connected to
GPIO or PWM

Lee, Berkeley 16 



Consequences 

When timing affects system behavior, designs are brittle. Small 
changes in the hardware, software, or environment can cause 
big, unexpected changes in timing. Testing has to be redone. 
Results: 

¢  Manufacturers frequently stockpile parts to suffice for the 
complete production run of a product. 

¢  Manufacturers cannot take advantage of improvements in 
the hardware (e.g. weight, power). The cost of re-testing and 
re-certifying is too high. 

¢  Designs are over provisioned, increasing cost, weight, and 
energy usage. 
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A Key Challenge: 
Timing is not Part of Software Semantics 

Correct execution of a program in C, C#, Java, Haskell, 
OCaml, etc. has nothing to do with how long it takes to do 
anything. Nearly all our computation and networking 
abstractions are built on this premise. 

  
Programmers have to step outside the 
programming abstractions to specify 
timing behavior. 
 
Programmers have no map! 
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The hardware out of which we build computers 
is capable of delivering “correct” computations 
and precise timing… 

 
The synchronous digital logic 
abstraction removes the 
messiness of transistors. 
 
 
 
… but the overlaying software 
abstractions discard the timing 
precision. 

// Perform the convolution. 
for (int i=0; i<10; i++) { 
  x[i] = a[i]*b[j-i]; 
  // Notify listeners. 
  notify(x[i]); 
} 
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Challenge 

 
Can we change programming models so that a correct 
execution of a program always delivers the same 
temporal behavior (up to some precision) at the 
subsystem I/O? 
 
i.e. we need determinate CPS models 
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Engineering Abstractions and 
Engineering Methodology 

Components in such a system come from multiple vendors 
in diverse engineering disciplines with distinct domain 
expertise. 
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¢  x 

The Challenges of 
CPS Design 
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E.g. Electric Power  
Systems (EPS) for 
Aircraft 

Physically: 
¢  Generators 
¢  Contactors 
¢  Busses 
¢  Loads 
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interface Thanks to Eelco Scholte, UTC 



Challenge 

 
How can we define interfaces between components that 
bridge engineering disciplines and clarify requirements 
and expectations? 
 
i.e. we need a discipline of “model engineering” 
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Heterogeneous Models: 
Discrete-Event (DE) Model of a Generator-Regulator-Protector 
in Ptolemy II 

¢  x 

Heterogeneous Ptolemy II model. 
Superdense model of time with a 
semantics of simultaneity. 



Execution of the 
Ptolemy II 
Model 

¢  x 



Continuous-Time 
Model of a  
Generator-
Contactor-Load 

¢  x 



Dataflow 
Model of a  
Sampled-Data 
Controller 

¢  x 



State Machine 
Model of a  
Supervisory 
Controller 

¢  x 



Multi-Tool Model 
using FMI 
(Modelica and 
Ptolemy II) 

¢  x 



Aspect-Oriented Modeling in Ptolemy II 

¢  x 



Aspect-Oriented Modeling in Ptolemy II 
Two Processor Architecture Model 

¢  x 



Aspect-Oriented Modeling in Ptolemy II 
One Processor Architecture Model 

¢  x 



Other Uses of Aspect-Oriented Modeling 

¢  Modeling communication system architecture 
¢  Modeling the effects of communication impairments 
¢  Modeling faults 
¢  Creating observers: 

l  Anomaly detection 
l  Contract monitoring 

¢  Security attack models 
¢  … 

In Ptolemy II, all of these 
models are cleanly 
separated from the 
functional system model. 
 
Their effect on the model 
is “woven in” at run time. 
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Ptolemy II 
 
http://ptolemy.org  

¢  Open source 
¢  Open architecture 
¢  Well documented 

Free Book: 
Claudius Ptolemaeus, Editor 
 
http://ptolemy.org/systems 
 
This is an open-source book about 
open source software solutions to 
pressing industrial problems. 
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Systems of Systems Modeling 
A discipline of “model engineering” 

l  Embrace models for virtual system integration 

l  Avoid accidental nondeterminism 

l  Embrace heterogeneity 

l  Use aspect-oriented modeling 

Raffaello Sanzio da Urbino – The Athens School 


