
Aspect-oriented Modeling of Attacks in
Automotive Cyber-Physical Systems

Armin Wasicek
University of California,

Berkeley
arminw@berkeley.edu

Patricia Derler
University of California,

Berkeley
patriciad@berkeley.edu

Edward A Lee
University of California,

Berkeley
eal@berkeley.edu

ABSTRACT
This paper introduces aspect-oriented modeling (AOM) as
a powerful, model-based design technique to assess the secu-
rity of Cyber-Physical Systems (CPS). Particularly in safety-
critical CPS such as automotive control systems, the pro-
tection against malicious design and interaction faults is
paramount to guaranteeing correctness and reliable opera-
tion. Essentially, attack models are associated with the CPS
in an aspect-oriented manner to evaluate the system under
attack. This modeling technique requires minimal changes
to the model of the CPS. Using application-specific metrics,
the designer can gain insights into the behavior of the CPS
under attack.1

Categories and Subject Descriptors
[Computer systems organization]: Embedded and cyber-
physical systems; [Security and Privacy]: Software and
application security—Software security engineering

Keywords
Aspect-oriented Modeling, Security, Cyber-Physical Systems

1. INTRODUCTION
Providing secure and safe mobility is a key challenge for a
modern society. More and more electronic components and
control systems are deployed to solve this challenge. Such
systems incorporate networked computational and physical
processes and are generally referred to as Cyber-Physical
Systems (CPSs) [16]. Security, which is the protection against

1
This research was in part supported by a Marie Curie IOF Action

within the 7th Framework Programme under the funding ID PIOF-
GA-2012-326604 (MODESEC) and the iCyPhy Research Center (In-
dustrial Cyber-Physical Systems, supported by IBM and United Tech-
nologies), and the Center for Hybrid and Embedded Software Systems
(CHESS) at UC Berkeley (supported by the National Science Foun-
dation, NSF awards #0720882 (CSR-EHS: PRET) and #0931843
(ActionWebs), the Naval Research Laboratory (NRL #N0013-12-1-
G015), and the following companies: Bosch, National Instruments,
and Toyota).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
DAC ’14, June 01 - 05 2014, San Francisco, CA, USA
Copyright 2014 ACM 978-1-4503-2730-5/14/06. . . $15.00.
http://dx.doi.org/10.1145/2593069.2593095

malicious manipulation, is a mission-critical property of any
CPS. In particular, intrusions that can propagate from the
security to the safety domain with potentially catastrophic
consequences are a major concern in CPSs.

Recent incidents such as the Stuxnet attack [9] suggest that
CPSs are vulnerable to malicious attacks. In the past, secu-
rity has been no or only a minimal concern in CPS design
and automotive engineering for several reasons: First, sys-
tems have operated predominantly in isolation and, hence,
there was no need for security considerations. Second, dur-
ing development, functionality has often taken priority over
security. Security measures were implemented late as an
add-on resulting in brittle designs that lack proper integra-
tion. Third, security measures did not cover the intended or
required attack model and attack models did not take into
account the particularities of CPS. Our approach addresses
these challenges early during the design phase of a CPS.

Building a CPS [15] is, by nature, a multi-disciplinary de-
sign challenge that requires expertise from the control, soft-
ware, and hardware domain. Model-based design is proven
to be an effective, computer-aided design methodology that
increases productivity and reduces cost through the early
location and detection of faults and design reuse [3]. When
carrying out a model-based design approach, several models
reflecting different aspects of the required system are devel-
oped and used throughout the system development process.
Building these models is a complex task that requires experts
from different engineering fields to work closely together.
The model-based design tool chain is the main point of in-
teraction between different branches of engineers. Therefore,
we engage at this focal point and extend the model-based
design process by modeling attacks on the CPS.

In particular, we propose to extend the model-based design
process to include security concerns, to use Aspect-Oriented
Modeling (AOM) techniques to reason about systems and
attacks, to integrate attack models in the analysis of control
systems, and to reuse patterns and models of prototypical
attacks.

The evaluation of the system behavior in case of attacks
should not require major changes to the system model. We
use AOM techniques to associate attack models with system
components. An attack model is considered to be an aspect
that is associated with the communication paths in the sys-
tem under attack. This association is done by annotating

the communication between components. As a result, we
can develop various attack models independently from the
system model and eventually build up a library of attack
models.

The organization of the paper is as follows: Section 2 dis-
cusses the background and the related work of attack mod-
els and AOM. The core idea of using AOM in a security
engineering process is described in Section 3. Section 4 is
dedicated to an automotive case study and, finally, Section 5
draws conclusions.

2. BACKGROUND AND RELATED WORK
In this section we discuss variants of attack models as well as
the aspect-oriented programming paradigm. We also men-
tion other approaches on aspect-oriented attack modeling.

2.1 Attack Models for CPS
An attack model describes an adversary by its capabilities
and/or behaviors. For example, the Dolev-Yao adversary
model [7] assigns an attacker unlimited computational power
and bandwidth. Commonly, attack models are used to iden-
tify weaknesses in a design, to support the search for mitiga-
tion strategies, and to promote the understanding of attacks.
Thus, the first step in a security engineering approach is to
develop appropriate attack models. Subsequently, the risk
of potential attacks is estimated and adequate countermea-
sures can be defined.

Traditionally, most attack models on computer systems are
represented either textually or graphically. Textual models
are used to describe security incidents [12] with the goal
of exchanging information on attacks across system bound-
aries. Graphical attack models are either tree-based or graph-
based. Attack trees [22] are similar to fault trees in Fault-
Tree Analysis (FTA). The root of the tree represents the
goal of the attack and the different branches represent differ-
ent attack paths that lead to a successful execution. Graph-
based methods [14] provide a more general flexible structure
to express causes and consequences of attacks. Trees and
graphs are parsed to gain insights on viable attack paths
or to estimate risks. If nodes and relations are enriched
with probabilities, they can be processed, for instance, with
Bayesian inference algorithms.

Traditional approaches for attack modeling are not appli-
cable for CPS. When including physical processes in the
system model, emphasis is put on the interaction between
cyber and physical parts of the CPS and physical entities
such as time in the computer system need to be considered.
Cárdenas et al. [5] therefore postulate ’realistic and rational
adversary models’ for CPS. Liu et al. [18] model attackers
by malicious sensors that inject false data in the controller
of an electrical power grid. Cárdenas et al [4] describe at-
tackers with a similar capability to influence the output of
a chemical reactor plant. Pasquetti et al. [19] include a spe-
cial disturbance signal which is used to represent a specific
attack strategy. All these approaches aim to model proto-
typical attacks on computer systems like replay, injection, or
Denial-of-Service (DoS) by control theoretic means and as a
result, they translate the security problem into a robustness
problem for control.

2.2 Aspect-oriented Modeling
The ideas for AOM are based on the Aspect-Oriented Pro-
gramming (AOP) [13] paradigm, where cross-cutting func-
tionality is modeled as aspects and annotations in object-
oriented code connect aspect functionality to object func-
tionality. The motivation behind AOP is separation of con-
cerns, i.e. while object-oriented programs separate concerns
into independent objects, AOP also separates out aspects
that concern multiple objects. Benefits of AOP are reduc-
tion of code duplication, code scattering, and code tangling
resulting in cleaner, more understandable designs.

2.3 Other aspect-oriented approaches for at-
tack modeling

Other works have used aspect-oriented modeling techniques
to create attack-defense models. Xu et al. [23] extend a sys-
tem described by a Petri-net with additional Petri-nets for-
malizing attacks and countermeasures. Verification is done
by evaluating whether a threat path is part of a possible
firing sequence. Georg et al. [11] refine a UML model with
attacks generating the misuse model and countermeasures
resulting in the security-treated model. The latter is then
analyzed using formal methods to verify if assets are suffi-
ciently protected.

Our work diverges from these approaches by targeting CPS
rather than web services and e-commerce applications. More-
over, our modeling environment facilitates heterogeneity, which
allows the definition of system, attack, and countermeasure
with different formalisms. Finally, the verification step in
this work focuses on proving presence or absence of a prop-
erty in the secured system model. Our approach suggests the
detailed analysis of the impact of an attack on the system
by using domain-specific metrics and methods (e.g., stability
criterion for a control system).

3. MODELING ATTACKS AS ASPECTS
Aspect-oriented attack modeling is the concept of model-
ing attacks as aspects of a system and executing aspect and
attack models together with the goal of evaluating the sys-
tem under attack. We explore the use of AOM as discussed
in [6], which facilitates loose coupling of attack and system
models.

Aspect models can be elaborate and internally use specific
Model of Computations (MoCs). Therefore, we explore mod-
eling aspects as actors in actor-oriented designs. An aspect
actor annotates other actors, the execution of other actors,
or the communication between actors with aspect-specific
attributes. Attack aspect actors modify the communication
between actors by introducing undesirable behavior.

3.1 Benefits of Aspect-oriented Modeling
The construction of CPS follows a rigorous engineering pro-
cess that handles functional as well as non-functional prop-
erties. However, the requirements for both kinds of proper-
ties are often contradictory or the work on one kind might
obstruct the work on the other. For instance, encrypting
messages establishes confidentiality, but encumbers debug-
ging, because inspecting the payload is not trivial anymore.
As a consequence, security properties were often neglected
during the development process.

We suggest to use AOM as part of a security engineering
process to systematically secure a system against a certain
attacks. Using AOM techniques aligns very well with exist-
ing model-based design approaches for CPS. Particularly,
adding attack aspects to the system model enables:

Separation of concerns:
Separating functional and attack models through aspects
facilitates domain experts to work on different aspects with-
out interfering. For instance, the control expert can develop
robust control algorithms whereas the security engineer de-
fines attack models. Both views are synthesized through the
model-based design tool.

Design space exploration:
Anticipating the effects of an intrusion is not trivial, because
the effects might manifest in a very different part of the sys-
tem than the attack. Moreover, differentiating secure and
insecure system states is challenging, because an attacker
will most likely aim to remain covered. Simulation of dif-
ferent attack scenarios promotes an understanding of attack
vectors. Moreover, model-based design facilitates the cre-
ation of arbitrary attack scenarios, even ones that would be
risky in the real world.

Reduction of complexity:
System models can become very complex, i.e., the number
of entities and relations is very high. AOM reduces this
complexity by making only those aspects that are relevant
visible.

Improved Testing:
In-the-loop testing is an important testing strategy for CPS.
Incrementally, parts of the system model are replaced with
instances of real system components. For example, in rest-
bus simulation controllers are connected to a model of the
environment and the other parts of the system. Using as-
pects, the system model can quickly be adapted to run dif-
ferent testing campaigns including security tests.

Reuse of models:
General versions of an attack model can be instantiated for
different systems, since an attack aspect actor is portable.
It is part of this research to devise a library of attack mod-
els that can be embedded into different system models at
different places in the system.

3.2 Design Process with Aspects
Introducing aspects-oriented techniques in the system de-
sign, does not necessarily change the development method
for a CPS. The basic steps of an according systems engi-
neering process are:

1. Design: Develop the system model according to re-
quirements and specification. Include countermeasures,
or intrusion tolerance strategies.

2. Annotate: Develop attack models that extend the sys-
tem model in a non-intrusive way.

3. Analyze: Reason about the system. Verify and val-
idate functional correctness, apply tests, checks, and
metrics to measure properties like integrity, reliability,
stability, etc. Go to step 1, if analysis fails.

4. Synthesize: Devise an implementation that can detect
or dismiss certain attacks.

After refining the system model with appropriate attack as-
pect models, the systems engineer can verify, if the system
achieves certain security goals. Steps 2 to 3 are iterated,
until the system model satisfies requirements and security
goals. The early location and correction of faults is a par-
ticular strength of the model-based design approach. This
basic method can be followed partly automated, for instance,
steps 3 and 4 have a high potential for automation. Each
step, however, requires a supervision by an educated en-
gineer. Therefore, no total, but reasonable automation is
possible.

3.3 Model Analysis and Assessment
Our approach particularly aims at revealing potential vul-
nerabilities that manifest as malicious design and interaction
faults [1]. Discovery and removal of bugs and vulnerabili-
ties during design time is most cost efficient and much easier
than in later the stages of the development. For instance,
fixing software of an automotive system in production or
even after rollout can get very costly. Removing a defect af-
ter deployment is 5× to 30× more expensive than a removal
in the phase of introduction [21].

Model-based design tools offer various strategies to gain
knowledge of a system. Executing models in a simulation
is a very powerful method to examine a system’s behavior.
Particularly when dealing with models of complex physical
components (which is the case in CPS), simulation is of-
ten the only way to study the behavior. Model executions
support system engineers to answer what-if questions, get
reference values for subsequent tests, and promote an un-
derstanding of the system.

The behavior of a system can be represented as a trace that
is interpreted by applying metrics that measure properties of
the system. An example for an application-specific metrics
for a control system is the stability criterion. An automotive
engineer, for instance, needs to know if an attack can influ-
ence the control system, i.e., if the control system remains
stable despite an attack. Special security metrics might be
used to verify security properties or to validate the effec-
tiveness and performance of countermeasures. Using AOM,
analysis and assessment methods can be implemented as as-
pects in the system model.

Certainly, there are as well some limitations. The outcome
of a model execution is only as good as the input. If the at-
tack model or the assumptions on the input do not hold, the
analysis might lead in the wrong direction. Moreover, arbi-
trarily enabling and disabling aspects in the system model
might change the model formalism such that system analy-
sis is not straightforward anymore. For instance, an aspect
might introduce new logic in an Linear Time-Invariant (LTI)
system that invalidates the linearity property. Consequently,
some stability criteria like Routh Hurwitz is not applicable
anymore. This is not a real deficit, but rather a circum-
stance that the engineer must be aware of when modeling
and analyzing.

4. AUTOMOTIVE CASE STUDY
We illustrate our research objectives on a model [17] of an
adaptive cruise control system. More precisely, we use pla-
tooning which is a common application of adaptive cruise
control as an example. A platoon couples two or more ve-
hicles in a single sphere of control such that the vehicles
accelerate or brake simultaneously.

4.1 Adaptive Cruise Control Model
Models in this case study are developed with Ptolemy II [8],
a modeling and simulation framework for heterogeneous sys-
tems. Ptolemy models are actor-oriented, meaning that they
consist of actors that execute concurrently. Actors com-
municate via ports. The semantics of actor execution and
communication is determined by a special actor, the direc-
tor. Ptolemy contains various directors that represent het-
erogeneous execution semantics, also referred to as MoC.
Examples for MoCss are Discrete Event (DE), Continuous
Time (CT), and Process Network (PN). Ptolemy supports
heterogeneity, meaning that a model can embody different
MoCss [20].

Ptolemy supports AOM [6]. An aspect actor is a special ac-
tor that decorates other model components with additional
parameters (see the decorator design pattern [10]). In or-
der to model attacks on a system, we focus on aspects that
decorate communications between actors. Following exam-
ple shows how an aspect works: Actor A sends a message
via its output port to the input port p of actor B. Port p
stores messages, also called tokens, until actor B is ready to
consume them. An aspect that annotates a communication
is associated with the input port of this communication - in
this example it is port p. Tokens sent from actor A to actor
B are first processed by the aspect and only then forwarded
to the receiver in port p.

Figure 1: Aspect-oriented attack models decorat-
ing the communication between a controller its sen-
sor/actuator interface in Ptolemy II

Figure 1 shows the Ptolemy model (Java Web Start version2)
for adaptive cruise control with two cars: a leading car (ac-
tor LeadingCar and a following car (actor FollowingCar).
The implementation of the car model, which is equivalent
for leading and following car, is shown in the grey box in
Figure 1. The car model is a composite actor that takes as
an input the desired speed and outputs the speed and posi-
tion of the car. It matches the desired speed using feedback
control. The model is continuous, thus it uses the Continu-
ous Director. The car model is initialized by two parameters:
the initialSpeed and the initialPosition. These parameters
are used to initialize the integrator actors; Integrator1 is ini-
tialized with initialSpeed and Integrator2 is initialized with
initialPosition. We start both cars with an initial speed of
0.0. The initial position of the leading car is 10.0, the initial
position of the following car is 0.0 to model that the leading
car is 10 meters ahead of the following car. The control goal
is to maintain this distance to keep the cars in the platoon.

The car model simulates acceleration, cruising, deceleration
and breaking. The input for the leading car is provided by
the actor UrbanDrivingCycle that emulates a driver accord-
ing to ECE-15 [2].

We want to explore the effect of attacks on the communica-
tion between leading and following car. The model contains
four attack models illustrated as aspect-oriented attack ac-
tors in Figure 1. The attack models are not directly con-
nected to any actors in the model but the input port of the
following car can be associated with an attack model. In
the example, the input port is associated with the attack
model ManInTheMiddleAttack. The color of the port and a
textual description show this association.

4.2 Attack Models
We discuss four different attack models : (a) a man-in-the-
middle attack (see Figure 4), also referred to as modification,
(b) a fuzz attack (see Figure 2), (c) an interruption attack
(see Figure 3), and (d), a replay attack(see Figure 5).

Figure 2 illustrates a fuzz attack, in the literature also re-
ferred to as fuzzing. In this attack, random, often invalid
data is inserted at random times. The actor PoissonClock
produces discrete events according to a Poisson process. The
Uniform actor produces a random sequence with a uniform
distribution.

Figure 2: Fuzz attack as an aspect

An interruption of signal transfer is modeled in Figure 3.

2http://ptolemy.eecs.berkeley.edu/attackModeling/

Start and end of the attack are configured via the two param-
eters attackStart and attackEnd that are used in the actors
AttackStartEvent and AttackEndEvent. These actors create
a discrete event at the configured times. Between start and
end event, tokens, are inhibited by the Inhibit actor.

Figure 3: Interruption attack modeled as an aspect

The man-in-the-middle attack model is shown in Figure 4.
Attack models are implemented as composite actors. Tokens
processed by aspects are received by special input ports (see
actor in in the attack models in Figures 4, 2 and These
ports combine the incoming token into a record containing
the target receiver and the token. The actors RecordDis-
assenbler and RecordAssembler are used to extract fields
out of records and to combine fields into records. The two
parameters attackStart and attackEnd define the temporal
context of the attack. The malicious logic is implemented as
a modal model with a normal state and an attack state. In
the normal state, tokens are forwarded from input to out-
put without modification. In the attack state, tokens are

Figure 4: Man-in-the-middle attack modeled as an
aspect

replaced by tokens modified through the manipulate expr
parameter. After processing of the incoming tokens by the

modal model, the token is reassembled with the receiver that
was stored temporarily in a register actor. A special output
port, out, receives the record, takes the token and sends it
to the receiver in the record.

A model of a replay attack is illustrated in Figure 5. Similar
to other attack models, the time this attack is active can be
configured. The attack is implemented as a modal model
with three states. In the idling state the array of recorded-
Tokens is reset. In the recording state, incoming tokens are
recorded but tokens are also forwarded to the receiver. In
the replaying state, the array of recorded tokens is sent to
the receiver instead of the incoming tokens.

Figure 5: Replay attack as an aspect

4.3 Results
A comparison of the controller behavior is shown in Figure
6. Lines (a) and (b) are the reference trajectories. In (c),
the fuzz attack speeds up the following car to potentially
go below a safe distance. Attacks in (d) and (e) accelerate
the following car such that it crashes into the leading car
in front. Finally, (f) slows down the second car, which will
consequently leave the platoon.

Aspect-oriented modeling is a very powerful way of perform-
ing design space exploration in a minimally intrusive ways.
Special attention has to be paid to the mechanisms of linking
aspects to system models and to the model of computation
of the aspect. For instance, an aspect that handles delays
and resource contention needs a timed model of computation
and cannot be embedded into an untimed model of compu-
tation. Special attention has to be paid, if MoCss in the
system model and aspect model implement different notions
of time which can potentially introduce discontinuities and
disrupt control algorithms.

0
10

20

30

40

50

60

70

80

90

0 5 10 15 20 25 30

Position

time (seconds)

di
st

an
ce

 (m
et

er
s)

0

1

2

3

4

5

6

0 5 10 15 20 25 30

Speed

time (seconds)

sp
ee

d
(m

et
er

s/
se

co
nd

)

a. Leading car
b. Following car

c. Fabrication attack
d. Interruption attack

e. Man-in-the-middle attack
f. Replay attack

a a
b

b

c

c

d
d

e e

f f

Figure 6: Comparison of Controller behavior under
individual attacks

5. CONCLUSION
In this work, we presented aspect-oriented modeling as a
powerful modeling technique to assess a CPS’ security under
specified attack models. It enables assessing system models
and associated attacks within the same model environment,
but using potentially distinct MoC. Using this technique,
future work will be dedicated to researching appropriate ex-
ecutable attack models for CPS and generating instances of
attacks from general attack patterns.

6. REFERENCES
[1] A. Avizienis, J.-C. Laprie, B. Randell, and

C. Landwehr. Basic Concepts and Taxonomy of
Dependable and Secure Computing. IEEE
Transactions on Dependable and Secure Computing,
1(1):11–33, January 2004.

[2] T. J. Barlow, S. Latham, I. S. McCrae, and P. G.
Boulter. A reference book of driving cycles for use in
the measurement of road vehicle emissions. Published
Project Report PPR354, TRL Limited, June 2009.

[3] M. Broy, M. Feilkas, M. Herrmannsdoerfer,
S. Merenda, and D. Ratiu. Seamless Model-Based
Development: From Isolated Tools to Integrated
Model Engineering Environments. Proceedings of the
IEEE, 98(4):526 – 545, 2010.

[4] A. A. Cárdenas, S. Amin, Z.-S. Lin, Y.-L. Huang,
C.-Y. Huang, and S. Sastry. Attacks Against Process
Control Systems: Risk Assessment, Detection, and
Response. In Proceedings of the 6th ACM Symposium
on Information, Computer and Communications
Security (ASIACCS), March 2011.

[5] A. A. Cárdenas, S. Amin, and S. Sastry. Secure
control: Towards survivable cyber-physical systems. In
Proceedings of the First International Workshop on
Cyber-Physical Systems (WCPS), June 2008.

[6] J. Cardoso, P. Derler, J. C. Eidson, E. A. Lee,
S. Matic, Y. Zhao, and J. Zou. Modeling timed
systems. In C. Ptolemaeus, editor, System Design,
Modeling, and Simulation using Ptolemy II, page 355.
Ptolemy.org, 2014.

[7] D. Dolev and A. C. Yao. On the security of public key

protocols. In Proceedings of the IEEE 22nd Annual
Symposium on Foundations of Computer Science,
pages 350–357, 1981.

[8] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu,
J. Ludvig, S. Sachs, Y. Xiong, and S. Neuendorffer.
Taming heterogeneity - the ptolemy approach.
Proceedings of the IEEE, 91(1):127–144, 2003.

[9] N. Falliere, L. O. Murchu, and E. Chien. W32.stuxnet
dossier. Security Response v1.4, Symantec, Feb 2011.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design patterns: elements of reusable object-oriented
software. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1995.

[11] G. Georg, I. Ray, K. Anastasakis, B. Bordbar,
M. Toahchoodee, and S. H. Houmb. An
aspect-oriented methodology for designing secure
applications. Information and Software Technology,
51(5):846 – 864, 2009.

[12] J. D. Howard and T. A. Longstaff. A common
language for computer security incidents. Report
SAND98–8667, Sandia National Laboratories, 1998.

[13] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J. marc Loingtier, and J. Irwin.
Aspect-oriented programming. In ECOOP.
SpringerVerlag, 1997.

[14] B. Kordy, L. Pietre-Cambacedes, and P. Schweitzer.
Dag-based attack and defense modeling: Don’t miss
the forest for the attack trees. arXiv, 1303.7397, 2013.

[15] E. Lee. Cyber physical systems: Design challenges. In
International Symposium on Object Oriented
Real-Time Distributed Computing (ISORC), 2008.

[16] E. A. Lee. CPS foundations. In Proceedings of the 47th
Design Automation Conference, DAC ’10, pages
737–742, New York, NY, USA, 2010. ACM.

[17] J. M.-K. Leung, T. Mandl, E. A. Lee, E. Latronico,
C. Shelton, S. Tripakis, and B. Lickly. Scalable
semantic annotation using lattice-based ontologies. In
12th International Conference on Model Driven
Engineering Languages and Systems, pages 393–407.
ACM/IEEE, October 2009. (recipient of the MODELS
2009 Distinguished Paper Award).

[18] Y. Liu, P. Ning, and M. K. Reiter. False data injection
attacks against state estimation in electric power
grids. In Proceedings of the 16th ACM Conference on
Computer and Communications Security, 2009.

[19] F. Pasqualetti, F. Dorfler, and F. Bullo. Attack
detection and identification in cyber-physical systems.
Automatic Control, IEEE Transactions on,
58(11):2715–2729, 2013.

[20] C. Ptolemaeus, editor. System Design, Modeling, and
Simulation using Ptolemy II. Ptolemy.org, 2014.

[21] G. Tassey. The economic impacts of inadequate
infrastructure for software testing. RTI Project
Number 7007.011, NIST, 2002.

[22] J. D. Weiss. A system security engineering process. In
Proceedings of the 14th National Computer Security
Conference, 1991.

[23] D. Xu and K. Nygard. Threat-driven modeling and
verification of secure software using aspect-oriented
petri nets. Software Engineering, IEEE Transactions
on, 32(4):265–278, 2006.

