
20th IMEKO TC4 International Symposium and
18th International Workshop on ADC Modelling and Testing
Research on Electric and Electronic Measurement for the Economic Upturn
Benevento, Italy, September 15-17, 2014

Logically Synchronous Models of Distributed
Systems with Explicit Timing Specifications

Patricia Derler1, Edward A. Lee1, Michael Zimmer1

1University of California, Berkeley,
{pd, eal, mzimmer}@eecs.berkeley.edu

Abstract – Globally asynchronous, locally synchronous
(GALS) has become the standard model of compu-
tation (MoC) for designing distributed software sys-
tems. Essentially, distributed components are each in-
ternally synchronous, but operate in different clock do-
mains and communicate with other components asyn-
chronously. Advances in clock synchronization mecha-
nisms, supported by the increasing availability of clock
synchronization implementations, allow for establish-
ing a common notion of time across distributed plat-
forms. We therefore advocate for a synchronous model
of computation for the distributed system as a whole,
assuming synchronized clocks. The paper discusses
such a MoC called Ptides (Programming Temporally
Integrated Distributed Embedded Systems). A Ptides
model explicitly describes platform independent time
delays within and across distributed components. 1

I. INTRODUCTION
The importance of correct timing in embedded and

cyber-physical systems has been recognized and various
efforts are dedicated to (re)introducing time into program-
ming abstractions. When it comes to distributed sys-
tems, the model of computation (MoC) that has been suc-
cessfully applied is globally asynchronous, locally syn-
chronous (GALS). GALS [1] has been introduced in the
1980s to relax the synchrony assumption between differ-
ent clock domains on distributed components. A system
is split into synchronous islands that communicate asyn-
chronously, for instance, via FIFO queues. GALS is used
both for software and hardware systems. Here, we focus
on modeling distributed software systems.

A synchronous system is one where at every time step,
every variable has precisely one value, or the value is ab-
sent. The system is represented as a collection of commu-
nicating components whose state is updated in one zero-
time step. Synchronous systems are typically determinis-

1This work was supported in part by the iCyPhy Research Center (In-
dustrial Cyber-Physical Systems, supported by IBM and United Tech-
nologies), and the Center for Hybrid and Embedded Software Systems
(CHESS) at UC Berkeley, which receives support from the National Sci-
ence Foundation (NSF awards #0720882 (CSR-EHS: PRET), #1035672
(CPS: Medium: Timing Centric Software), and #0931843 (CPS: Large:
ActionWebs)), the Naval Research Laboratory (#NOOI73-12-1-G015),
and the following companies: Denso, National Instruments, and Toyota.

tic, i.e. given the same input, the system always produces
the same outputs. This property is important for testing
and verification. Examples of synchronous programming
languages are Lustre [2] and Esterel [3]. The discrete event
(DE) MoC is also synchronous because at every time step,
the exact value of each variable can be determined. Ab-
sence of a value at a certain time means that there is no
event with that time stamp. DE is commonly used for sim-
ulation [4], where time is logical and merely used to order
actions. In this article, we use DE as a programing model.

Synchronous subsystems in a GALS architecture com-
municate asynchronously with one another, and in many
implementations, inputs for such subsystems are sampled.
Nondeterminism can be introduced at this point. While
nondeterminism is not erroneous behavior, it does impede
the analysis of a system and makes it harder to give guar-
antees about the behavior, i.e. the timing and functionality.

A key assumption in GALS systems is that clocks are
not synchronized. In recent years, clock synchronization
technologies have been introduced and various implemen-
tations are available, ranging from synchronization to time
servers or satellites all the way to protocols that take care
of the time synchronization (see IEEE1588 [5] or NTP [6],
for example). Clock synchronization technology provides
a distributed system with a common notion of time.

In this article, we advocate for leveraging clock synchro-
nization in order to develop an entire distributed system as
a synchronous system with one, logical clock domain. We
refer to this system as logically synchronous. Clock syn-
chronization guarantees that the difference between clock
values is bounded with a known clock error.

A synchronous MoC for developing distributed systems
that relies on clock synchronization is Ptides, which stands
for Programming Temporally Integrated Distributed Em-
bedded Systems. Ptides extends the discrete-event MoC
and links logical time to real time, also referred to as phys-
ical time, at I/O to achieve deterministic behavior. A Ptides
model contains explicit time delays between input and out-
put actions. In a Ptides system, all communication is time
stamped, which allows for reasoning about the causality of
events, the detection of timing errors and even the identifi-
cation of error conditions such as missing inputs. We dis-
cuss the programming model on an example and discuss
extension and error handling possibilities.



read inputs write outputs

logical 
view

physical 
view

Logical Execution Time (LET)

preempt resume

time

release terminate
start finish

Fig. 1. The logical execution time abstraction.

II. BACKGROUND AND RELATED WORK
The design of a distributed system as if all distributed

components were driven by a perfect global clock is also
addressed in the work on physically asynchronous, log-
ically synchronous (PALS) [7] architectures. While the
PALS work deals with synchronization protocols and pro-
poses special components to handle the interaction with
the environment, our approach differs in that we assume
synchronized clocks but do not require special synchro-
nizers. Instead, all components communicate via time-
stamped events according to the DE model of computa-
tion and components in the system consume events in time-
stamped order.

Most synchronous languages have rigorous mathemati-
cal semantics and are used for programming real-time sys-
tems. The assumption is that processors are infinitely fast.
Latencies arise from the implementation instead of being
part of the programming abstraction. Here, we explicitly
specify latencies as part of the programming model.

The logical synchrony idea is closely related to the log-
ical execution time abstraction introduced in Giotto [8], a
time-triggered programming model. The idea of the LET
abstraction is illustrated in Figure 1, which represents one
execution of a task, a part of a software system. All inputs
are read at the release time of the task and all outputs are
written at the termination time. A fixed logical execution
time defines the distance between release and termination
time. The actual execution of this task happens any time
in between release and termination time. The only require-
ment for the task execution is that the time of I/O opera-
tions is fixed.

III. PTIDES
Ptides (Programming Temporally Integrated Distributed

Embedded Systems) [9] is a programming model for the
design of distributed, cyber-physical systems. Ptides mod-
els are deterministic with respect to value and timing. One
of the key ideas is, just like in the LET abstraction, to fix
the time between I/O operations, but only constrain execu-
tion and communication where necessary. Ptides abstracts
away from execution and communication delays of actual
implementations by using logical time delays, which are
platform-independent.

Ptides is based on the discrete event MoC where com-

ponents communicate via time-stamped events. The time
stamps refer to logical time and are used to order events.
Distributed Ptides components, also referred to as plat-
forms, contain sensors, actuators, network input ports, net-
work output ports, computations and delay blocks. Net-
work ports send and receive events to and from other
Ptides platforms, whereas sensors and actuators commu-
nicate with other non-Ptides components or the physical
environment. We assume all clocks in the Ptides platforms
to be synchronized with a known clock synchronization er-
ror of ε.

Within a Ptides platform, all communication is done via
time-stamped events (t, v) with t as the time stamp and
v the value. Sensors receive inputs from the environment
either by detecting a change in the environment or by sam-
pling. Sensors then create events with time stamps equal to
the current physical time, which is obtained from the plat-
form clock. Computations consume events and produce
new output events. All inputs consumed by a computation
are time-stamped events and for one execution, only events
with the same time stamp are consumed. Multiple events
with different time stamps result in multiple executions of
the computation, one for every time stamp. Computations
can have state, in which case they have to consume input
events in time stamp order. If inputs are consumed in ar-
bitrary order, the system might become nondeterministic.
Computations do not match the time stamp of the event to
real time.

Delay blocks increase the time stamp of input events by
a specified amount. Delays are application specific and
platform independent; they are derived from the applica-
tion requirements. For instance, in the case of a control
loop, the control engineer determines the delay between
input and output that leads to a stable controller. Delay val-
ues between sensors and actuators act as the deadline for
the actuator. Actuators receive events (t, v) and perform
the communication with the environment at time tp ≤ t,
where tp is the platform time; i.e. the time of the platform
clock. If the time stamp of the event received by an ac-
tuator is smaller than the current platform time, then the
deadline was missed.

Network ports are used for communication between
Ptides platforms via networks. Network output ports treat
event time stamps similar to actuators. To simplify presen-
tation, we are ignoring the clock synchronization bound ε.
A network output port has to send an event (t, v) at a plat-
form time tp ≤ t. A network input port has to receive an
event (t, v) at a time tp ≤ t+n, where n is the upper bound
on the network communication time. In order to give tim-
ing guarantees, such an upper bound must be specified. If
a network output port receives an event with time stamp
t < tp, or if a network input port receives an event with
time stamp t < tp − n, then the timing specifications of
the Ptides program were violated.



Platform 1 Platform 2

Network

εε

δ1

n

WCET1

C1 D1

d1

δ2

D2

d2 δ3

WCET2

C2 D3

d3

d5

d4

N1

N2

A

S2

S1

Fig. 2. Example of a distributed system model using Ptides.

For every I/O device, a device delay bound parameter
specifies a bound on the physical time it takes for the de-
vice to perform the I/O operation. For instance, it takes
some time between measuring a change in the environment
and creating a time-stamped event that can be posted on the
event queue.

A. A Ptides Example
Figure 2 shows an example of a Ptides system with two

platforms. The clock symbol in the platforms symbolizes
the platform clock. ε is the clock synchronization error
bound which is the same for all platforms in the system.
The computation blocks C1 and C2 are associated with a
worst case execution time WCET1 and WCET2, the delay
blocks D1, D2 and D3 are associated with logical time de-
lays δ1, δ2 and δ3 and all I/O devices have device delay
bounds d1 through d5. Only δ1, δ2 and δ3 are needed for
modeling and analysis of the platform-independent behav-
ior, so all executions and communications are assumed to
have zero execution time. All other parameters are needed
for the platform dependent schedulability analysis which
determines whether this system can be executed correctly
on a given hardware.

Figure 3 depicts the processing of one event from sensor
to actuator and compares the logical view with the physical
view. The process is described from the model perspec-
tive, using logical time, and from the physical perspective,
by showing the platform time lines. The event is created
by sensor S1 on platform 1 and it is transmitted to actua-
tor A on platform 2. The top time line shows the logical
time behavior of the system. An event from Sensor S1 is
received by A after δ1 + δ2 + δ3 time units—a straightfor-
ward, platform-independent specification of functionality
and timing behavior. Computations are assumed to have
zero execution time in the modeling phase.

The bottom time lines illustrates the transmission of one
event in a possible implementation of this system; this im-
plementation must decide when to execute computations to
achieve the specified behavior. Platform 1 and platform 2
have different time lines representing the different clocks.
In this example, we require the actuator to send the output
at the time of the event time stamp, not before. Thus, there

δ1 δ2

Actu
ati

on

Com
pu

tat
ion

 C 1

Com
pu

tat
ion

 C 2 idl
e

model time

platform 
time at 

Platform 1

de
vic

e d
ela

y a
t N

1

de
vic

e d
ela

y a
t N

2

de
vic

e d
ela

y a
t A

ne
tw

ork
 

de
lay

δ3

Event at S1 ,
Computation C1 Computation C2 Actuation

platform 
time at 

Platform 2

Eve
nt 

at 
S 1

de
vic

e d
ela

y a
t S 1

Fig. 3. Transmission of one event from sensor S1 to actua-
tor A in model and real time.

is some idle time before the actuation. Note also that the
actuator has to take into account the device delay meaning
that the actuator has to start actuation before the deadline.
Note that, in this example, we assume that sensor S2 does
not produce any events.

In order to ensure that an event created by S1 can
be received by the actuator A in time, all delays along
the path have to be added up and compared to the log-
ical time delays. In this example, an event can be pro-
cessed in time, if both d1 + WCET1 + d2 ≤ δ1 and
n + d3 + WCET2 + d5 + ε ≤ δ2 + δ3. Now this case
only deals with one event with no other demands on the
processor. In a real system, there might be several events
with short inter-arrival times. Also, with more elaborate
program structures such as loops, merges and splits, the
analysis becomes more difficult. The schedulability prob-
lem for Ptides becomes more complex, however, it is de-
cidable as shown by Matsikoudis et al. [10].

On platform 2, events are merged between sensor S2

and the network inputs. Here, a so called "safe-to-process"
analysis is needed to determine when it is safe to process
an event. Assume network input N2 receives an event,
which is then processed by the delay component D2. D2

increases the time stamp of the event by δ2. Computation
C2 has to consume events in time stamp order, thus we
need to make sure that there is no event on any other in-
put, i.e. there is no event from sensor S2, arriving with a
smaller time stamp. Execution strategies that involve dif-
ferent ways of performing this safe-to-process analysis are
discussed by Zou et al. [11]. Also, a more complex model
can have multiple computations that are safe-to-process,
requiring a scheduling decision [12].

The application behavior is value and timing determin-
istic. The implementation of the above described system
can be distributed differently. For instance, computation
C1 can be split into two computations that are performed
on different platforms. Or, the system can be implemented



on a single platform. Because of the behavior implemented
by the sensors, actuators and network ports, we can guar-
antee that, given that the system is schedulable, the I/O
behavior will remain unchanged.

B. Interface of a Ptides platform
A Ptides platform can be used and connected to other

Ptides platforms as a black box, if the Ptides platform is
schedulable, and the network delay bounds n on all net-
work delays are specified. The implementation must then
guarantee that the network delays are not bigger than the
given bounds.

An extension to the Ptides interface can loosen the tim-
ing requirements on platforms and expose additional in-
formation at the interface. In the example in Figure 2, if
the computation C1 takes longer than the delay δ1, then a
problem will be detected at the network portN1. However,
if computation C2 only takes a very short time, the event
from sensor S1 could still be at the actuator in δ1+ δ2+ δ3
time units. An extension to the interface can be imple-
mented by adding an additional parameter to both the net-
work output and the network input port. The network out-
put port additionally gets a parameter platformDelayBound
p which is to be added to the explicit delays in the model.
The network port then checks the time stamp of this event
t and compares it to the physical time. In the event that
physical time tp > t+ p, an error occurred. This error can
stem from an erroneous design, wrong assumptions about
the platform, or malfunction of the hardware.

On the receiving side of the event, the network input
port also gets an additional parameter called sourcePlat-
formDelayBound. This parameter must have the same or
larger value as the connected network output port. The
network receiver can then check the time stamp of the in-
coming event with the same condition as the sending net-
work port. If physical time tp > t+ p+ n, then the event
was received too late.

C. Error handling
A Ptides system can detect violations of timing specifi-

cations. Network ports and actuators know whether events
have been received in time or too late. The latter is also
referred to as a deadline miss. With Ptides, it is also pos-
sible to observe that an event is missing completely, for
instance, due to hardware failure. Missing events can be
detected with heart beat monitors. A model of such a de-
tection and the monitor design in Ptides is illustrated by
Eidson et al. [13].

Handling of such errors is application specific. Many
hard real time applications are fault tolerant and can ac-
cept one or a few missed deadlines. In such cases, an event
that was received late can still be transmitted. In applica-
tions where the late transmission of an event causes prob-
lems, the event can be discarded. Deadline misses should

be recorded such that, in case of repeated deadline misses,
users can be notified and appropriate countermeasures can
be taken. The causes range from hardware problems to
faulty system designs. In order to prevent further dead-
line misses, actions such as switching to operation modes
with lower resource consumption can be taken. Another
possibility to remedy the problem is to increase the logical
delays in order to adapt to the increased load.

IV. CONCLUSIONS
This article advocates for modeling distributed systems

logically synchronous, by assuming one common notion of
time. With technology available today, this common no-
tion of time is achievable: various clock synchronization
mechanisms have been developed that keep clocks in dis-
tributed systems synchronized with a known upper bound
on the error. We discuss Ptides as a synchronous program-
ming model for distributed systems. Ptides extends the dis-
crete event model of computation to include a careful map-
ping between logical time and real time. This mapping
allows for the development of deterministic systems with
the same I/O behavior in simulation and execution, even on
different platforms. This work is demonstrated in a proto-
typical implementation in the Ptolemy II [14] framework,
which includes the modeling capabilities that allow for de-
signing and simulating Ptides platforms with all the param-
eters. Error handling mechanisms can be modeled as part
of this framework. The workflow around the Ptides project
also includes a code generator and schedulability analysis
tools.

While the Ptides programming model is based on the
discrete-event MoC, the application is not restricted to DE.
We envision the use of Ptides as a coordination language
for software tasks that can be implemented in other MoCs,
as long as they can be encapsulated inside a DE block. This
merely means that tasks are triggered by inputs. The time
stamps of the inputs determine the order in which tasks are
triggered. Tasks have to produce time-stamped outputs. If
the MoC of the task is untimed, the output time stamps
are the same as the input time stamps. For timed MoCs
(where time is a logical concept used to order executions),
appropriate delay blocks have to be inserted. Even legacy
code that is non-deterministic can be made deterministic
by wrapping legacy software tasks inside Ptides compo-
nents that enforce deterministic timing of input and output
operations.

REFERENCES
[1] D. M. Chapiro, Globally-Asynchronous Locally-

Synchronous Systems. PhD thesis, Stanford Univer-
sity, Oct. 1984.

[2] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud,
“The synchronous data flow programming language
LUSTRE,” Proceedings of the IEEE, vol. 79, no. 9,



pp. 1305–1319, 1991.
[3] G. Berry and G. Gonthier, “The Esterel synchronous

programming language: Design, semantics, im-
plementation,” Science of Computer Programming,
vol. 19, no. 2, pp. 87–152, 1992.

[4] J. Misra, “Distributed discrete event simulation,”
ACM Computing Surveys, vol. 18, no. 1, pp. 39–65,
1986.

[5] “IEEE standard for a precision clock synchronization
protocol for networked measurement and control sys-
tems,” IEEE Std. 1588-2008, 2008.

[6] D. L. Mills, “A brief history of NTP time: con-
fessions of an internet timekeeper,” ACM Computer
Communications Review, vol. 33, 2003.

[7] L. Sha, A. Al-Nayeem, M. Sun, J. Meseguer, and
P. Ölveczky, “PALS: Physically asynchronous log-
ically synchronous systems,” tech. rep., Tech. rep.,
Department of Computer Science, University of Illi-
nois at Urbana-Champaign (2009), 2009.

[8] T. A. Henzinger, B. Horowitz, and C. M. Kirsch,
“Embedded control systems development with
giotto.,” in LCTES/OM (S. Hong and S. Pande, eds.),
pp. 64–72, ACM, 2001.

[9] Y. Zhao, E. A. Lee, and J. Liu, “A programming
model for time-synchronized distributed real-time
systems,” in Real-Time and Embedded Technology
and Applications Symposium (RTAS), (Bellevue, WA,
USA), pp. 259 – 268, IEEE, 2007.

[10] E. Matsikoudis, C. Stergiou, and E. A. Lee, “On
the schedulability of real-time discrete-event sys-
tems,” in 13th International Conference on Embed-
ded Software (EMSOFT), September 2013. Montreal,
Canada.

[11] J. Zou, S. Matic, E. A. Lee, T. H. Feng, and P. Der-
ler, “Execution strategies for ptides, a programming
model for distributed embedded systems,” in 15th
IEEE Real-Time and Embedded Technology and Ap-
plications Symposium, 2009, pp. 77–86, IEEE Com-
puter Society, April 2009.

[12] J. Zou, S. Matic, and E. Lee, “PtidyOS: A lightweight
microkernel for Ptides real-time systems,” in Real-
Time and Embedded Technology and Applications
Symposium (RTAS), IEEE, April 2012.

[13] J. Eidson, E. A. Lee, S. Matic, S. A. Seshia, and
J. Zou, “A time-centric model for cyber-physical ap-
plications,” in Workshop on Model Based Architect-
ing and Construction of Embedded Systems (ACES-
MB), 2010.

[14] J. Cardoso, P. Derler, J. C. Eidson, E. A. Lee,
S. Matic, Y. Zhao, and J. Zou, “Modeling timed sys-
tems,” in System Design, Modeling, and Simulation
using Ptolemy II (C. Ptolemaeus, ed.), Ptolemy.org,
2014.


	Introduction
	Background and Related Work
	Ptides
	A Ptides Example
	Interface of a Ptides platform
	Error handling

	Conclusions

