
Albert M. K. Cheng

� Outline

� Embedded Real-Time Systems (RTS)

� Functional Reactive Systems (FRS)

� Cyber-Physical Systems (CPS)

� Haskell and Functional Reactive Programming (FRP)

� Priority-based FRP (P-FRP)

� Response time analysis and scheduling

* Supported in part by the National Science Foundation under Awards No. 0720856 and No. 1219082.

Functional Reactive Programming for Real-

Time and Cyber-Physical Systems

Real-Time Systems Group

• Director: Prof. Albert M. K. Cheng

• PhD students: Yong Woon Ahn, Yu Li,

Xingliang Zou, Behnaz Sanati, Zeinab

Kazemi, Carlos Rincon, Hassan Hafiz

• MS student: Chonghua Li

• Undergraduate student (NSF-REU):

Daniel Underwood

• Visiting scholars 2013-2016:

Yu Jiang (Heilongjiang U.), Qiang Zhou

(Beihang U.), Yufeng Zhao (Xi'an Tech. U.),

Qiao-Ling Wang (Jiangxi Agricultural U.),

Yunfeng Peng (UST-Beijing)

• Recent graduates and their positions:

Yuanfeng Wen (MS, Microsoft, then

Facebook), Daxiao Liu (Uber), Chaitanya

Belwal (PhD, Halliburton and Visiting

Assistant Professor, UHCL), Jim Ras (PhD),

Jian Lin (PhD, Assistant Professor, UHCL)

2 / 100

Yu Li (Best Junior PhD Student
Awardee and Friends of NSM
Graduate Fellow) and Prof.
Albert Cheng visit the NSF-
sponsored Arecibo Observatory
after their presentation at the
flagship RTSS 2012 in Puerto
Rico.

Real-time systems research
group at Yuanfeng Wen’s
graduation party in May 2013.
Yuanfeng is now at Facebook.

Fall 2014 (9/3) group meeting -
from left to right: Dr. Qiang
Zhou, Qiong Lu, Carlos Rincon,
Chonghua Li, Prof. Yu Jiang,
Xin Liu, Prof. Yufeng Zhao, Prof.
Albert Cheng, Xingliang
(Jeffrey) Zou, Daxiao Liu, Yu Li,
Yong Woon Ahn, and Behnaz
Sanati. Zeinab Kazemi in class.

Recent Seminar Visits

With Prof. Dan Grossman Audience at the University of Washington (4/2015)

With Prof. Enrico Tronci, U Rome (12/2014) University of Oxford With Prof. Joel Ouaknine (4/2014)

3 / 100

Real-Time Systems Theory

4 / 100

Pathfinder mission to Mars: best known Priority Inversion problem.
Failure to turn on priority Inheritance (PI) - Most PI schemes complicate and slow down

the locking code, and often are used to compensate for poor application designs.
http://research.microsoft.com/en-us/um/people/mbj/mars_pathfinder/mars_pathfinder.html

Real-Time Systems Theory

5 / 100

• The more components a real-time system

has, the more difficult it is to build and

maintain.

– In such systems, preemptive scheduling may
not be suitable, since it is likely to create
runtime overheads which can result in worst-
case task execution times of up to 40% greater
than fully non-preemptive execution.

• Yao G., Buttazzo G., Bertogna M., "Feasibility analysis under
fixed priority scheduling with limited preemptions," Real-Time
Systems, Volume 47 Issue 3, pages: 198-223, May 2011.

Real-Time Systems Theory

6 / 100

– However, preemptive scheduling allows for
more feasible schedules than non-

preemptive scheduling.

– Non-preemptive scheduling automatically
prevents unbounded priority inversion, which
avoids the need for a concurrency control
protocol, leading to a less complex scheduling
model.

– However, fully non-preemptive scheduling is
too inflexible for some real-time applications,
and has the added disadvantage of potentially
introducing large blocking times that would
make it impossible to guarantee the
schedulability of the task set.

Real-Time Systems Theory

7 / 100

• Simplify the design and scheduling

• Avoid priority inheritance

• Use functional programming

• Use abort-and-restart

• Use harmonic task sets

– However, harmonic tasks sets may be too
restrictive for some situations. For example,
one sensor needs to be serviced every 9
seconds and another (because of its design /
physical characteristics) 10 seconds.

Real-Time Systems Theory

8 / 100

• Example (1) - Harmonic task sets

– Can achieve 100% CPU utilization

– Can avoid preemption and context switches costs

V. Bonifaci, A. Marchetti-Spaccamela, N. Megow, and A. Wiese, “Polynomial-Time Exact Schedulability

Tests for Harmonic Real-Time Tasks,” RTSS 2013.

Real-Time Systems Theory

9 / 100

• Example (2) - Harmonic task sets

Embedded Real-Time Systems

• An embedded system is a computer system designed for
specific control functions within a larger system

(A is embedded into B for control)

• Often with such systems there are constraints such as
deadlines, memory, power, size, etc.

10 / 100

Embedded Real-Time Systems

• Real-time systems (RTS) are reactive systems that are
required to respond to an environment in a bounded amount
of time.

• Functional reactive systems (FRS)

• Cyber-physical systems (CPS)

– Challenges

• Complexity

• Reliability

– Fault-tolerant design

– Meeting deadlines (Response Time Analysis (RTA))

• Security/Privacy

11 / 100

Functional Reactive Systems (FRS)

Systems that react to the environment being monitored and
controlled in a timely fashion using functional (reactive)
programming are known as Functional Reactive Systems
(FRS).

These systems can range from small devices (which are not
a CPS) to distributed and complex components (similar to a
CPS).

12 / 100

Functional Reactive Systems (FRS)

13 / 100

Reactive System Reactive Soft Real-Time System

Reactive Hard Real-Time System Reactive Hard Real-Time System

Cyber-Physical Systems (CPS)

14 / 100

• Systematic integration of computation/information processing
and physical processes and devices.

• Communication and sensing are components of CPS

Cyber-Physical Systems (CPS)

The current set of tools available for analysis cannot handle
the complexity of CPS and thus are unable to predict
system behavior with high degree of accuracy.

The consequences of these shortcomings:

Consider the electric power grid -- Massive failures leading
to blackouts can be triggered by minor events.

15 / 100

Cyber-Physical Systems (CPS)

16 / 100

Classic (non-CPS) electric grid system/behavior

Cyber-Physical Systems (CPS)

17 / 100

• In a CPS, wireless/wired smart meters measuring real-time electricity
usage and historical data (state) feedback (communication) to the
generation station to better manage and distribute electricity.

• Current and predicted weather condition data can also further inform the
decision-making in where to distribute electricity (very hot or very cold
weather increase electricity demand).

• There is also a need to guard against intrusion into the system.

• Advocate formal verification to ensure satisfaction of safety properties.

Cyber-Physical Systems (CPS)

18 / 100

Cyber-Physical Systems (CPS)

Example 2: Imagine an airplane that refuses to
crash. While preventing all possible causes of a
crash is not possible, a well-designed flight control
system can prevent certain causes. The systems
that do this are good examples of cyber-physical
systems.

19 / 100

Cyber-Physical Systems (CPS)

For example, some airplanes use a technique called flight envelope
protection to prevent a plane from going outside its safe operating range,
and prevent a pilot from causing a stall.

20 / 100

Cyber-Physical Systems (CPS)

• The embedded control system can over-ride erroneous operation that would lead to an accident.

http://en.wikipedia.org/wiki/Air_France_Flight_447

21 / 100

Cyber-Physical Systems (CPS)

• The concept of flight envelope protection could be
extended to prevent other causes of crashes. For
example, the soft walls system proposed by Prof. Edward
Lee, if implemented, would track the location of the
aircraft on which it is installed and prevent it from flying
into obstacles such as mountains.

– E. A. Lee, "Soft Walls - Modifying Flight Control Systems to Limit the Flight Space
of Commercial Aircraft," EECS Department, University of California, Berkeley,
Tech. Rep. UCB/ERL M01/31, 2001.

22 / 100

Cyber-Physical Systems (CPS)

23 / 100

Cyber-Physical Systems (CPS)

24 / 100

• One of the key goals in our research is to develop the core tools that
can be used to facilitate the analysis, design and engineering of
highly-complex systems.

• With such tools, we can ensure that these systems are reliable,
predictable, efficient, secure and resilient to multiple points of failure,
and hence that their operation and safety can be depended upon
with a high degree of confidence.

• We advocate formal verification to ensure safety of CPS's, but their
complexity requires further research in verification tools.

Cyber-Physical Systems (CPS)

25 / 100

Small Aircraft Transportation System (SATS)

Self Control Area Airspace Volume

Cyber-Physical Systems (CPS)

26 / 100

Small Aircraft Transportation System (SATS)

3-D View of the SCA

Cyber-Physical Systems (CPS)

27 / 100

• We will introduce RTL-based formal verification later in the tutorial.

Small Aircraft Transportation System (SATS)

Functional Reactive Programming

• Priority-based Functional Reactive Programming (P-FRP)

• P-FRP provides real-time guarantees using static priority assignment

• Higher-priority tasks preempt lower-priority ones; preempted tasks are aborted

• Multi-version commit model of execution

• Atomic execution – “all or nothing” proposition

• Execution different from ‘standard’ models

Other Examples of Functional Programming (FP) Languages:

• Haskell

• Atom - Domain Specific Language in Haskell

• Erlang - Developed at Ericsson for programming telecommunication equipment

• Esterel - Designed for reactive programming

• F# - Developed by Microsoft; available as a commercial platform

28 / 100

The Haskell Functional Programming Language

29 / 100

- The GHC compiler/interpreter uses a round-robin scheduler for Haskell threads
- No thread priorities yet for forkIO threads in GHC

A simple ABS example in Haskell:

import Control.Concurrent -- For threading facilities: “forkIO”, “newEmptyMVar”, “takeMVar”, and “putMVar”.
import Control.Monad (forever) -- For "forever"

-- Type aliases help keep track of what values we are talking about.

type WheelSpeed = Double -- A "double" floating point value
type AverageSpeed = Double

-- | The ABS can either forcibly release, focibly engage, or stay neutral for each wheel.
-- The deriving clause creates the obvious Show instance for this ADT.

data BrakeSignal = Release | Engage | Neutral

deriving Show

30 / 100

-- | Compute the average speed by dividing the sum of the list of speeds by the length.
-- fromIntegral is there to convert the result of length (Int) into a Double
-- Note, this will traverse the list twice, ineffcient for vehicles with millions of wheels.
averageSpeed :: [WheelSpeed] -> AverageSpeed
averageSpeed speeds = sum speeds / (fromIntegral $ length speeds)

-- | This algorithm may be much more complicated, but the basic idea is present.
-- Given the average speed and a particular wheel speed, check to see if we are
-- within 5 (mph, kph, m/s, whatever) of the average. If we are below the minimum
-- send the release signal to the brakes. If we are within 5, remain neutral, otherwise
-- send a signal to engage the brakes.
ecuHelper :: AverageSpeed -> WheelSpeed -> BrakeSignal
ecuHelper average speed | speed < min = Release

| speed < max = Neutral
| otherwise = Engage

where
min = average - 5
max = average + 5

The Haskell Programming Language

31 / 100

-- A list of wheel speeds are averaged and the speed of each wheel compared to it
-- and converted into an ABS signal.

ecu :: [WheelSpeed] -> [BrakeSignal]
ecu speeds = let avgS = averageSpeed speeds

in map (ecuHelper avgS) speeds
-- The Main Function:
-- The first thread does all printing whenever information becomes available to the ABS.
-- The second thread waits for sensor data, sends it to the ECU and stores the result in the
ABS
-- The main thread waits for someone to type in a list of numbers and sends it to the “sensors”.

main = do
-- Print initial instructions and an example.
print "Enter wheel speeds: [45,46,45,47]"
-- Create sensors represented as a list of WheelSpeeds, i.e., Doubles.
sensors <- newEmptyMVar
-- Create an ABS represented as as list of BrakeSignals.
abs <- newEmptyMVar

The Haskell Programming Language

32 / 100

-- This thread handles all printing to the console.
forkIO $ forever $ do

putStr "Enter a Speed: "
absOutput <- takeMVar abs -- Read ABS status
print absOutput -- Print ABS status.

-- This thread is the ABS. It reads the sensors, then processes the data and updates the ABS.
forkIO $ forever $ do

sensorData <- takeMVar sensors -- Read sensors.
let brakeCommands = ecu sensorData -- Calculate brake response
putMVar abs brakeCommands -- Update ABS status.

-- The main thread simply waits for users to enter data which is then written to the sensors.
forever $ do

input <- getLine -- User enters a line of text
let wheelSpeedData = read input -- Text is read as [WheelSpeed]
putMVar sensors wheelSpeedData -- wheelSpeedData is written to sensors

The Haskell Programming Language

33 / 100

To run program from the command prompt
In GHCi, type

*Main> main
"Enter wheel speeds: [45,46,45,47]"
Enter a Speed: [45,45,45,55]
[Neutral,Neutral,Neutral,Engage]

Enter a Speed: [45,45,45,45]
[Neutral,Neutral,Neutral,Neutral]

Enter a Speed: [45,45,55,45]
[Neutral,Neutral,Engage,Neutral]

The idea is that you keep entering new sensor data.
The system calculates the new ABS signals to send to the vehicle.
The session should look like this:

The Haskell Programming Language

Functional Reactive Programming (FRP)

34 / 100

• Functional reactive programming (FRP) is a style of functional
programming where programs are inherently stateful, but
automatically react to changes in state.

• FRP allows intuitive specification and formal verification of safety-
critical behaviors, thus reducing the number of defects during the
design phase, and the stateless nature of execution avoids the need
for complex programming involving synchronization primitives.

• Therefore, the program remains an algebraic description of system
state, with the task of keeping the stated (unidirectional) relationships
in sync left to the *language*.

35 / 100

• FRP is essentially (though rarely acknowledged as such) an
extension to the old idea of dataflow programming.

• A key difference is that FRP supports higher-order functions, and
modern FRP systems are generally well-integrated into broader
languages.

• The original (modern) FRP work was built in the context of Haskell,
though major FRP systems have also been built atop many other
languages.

Functional Reactive Programming (FRP)

36 / 100

• Type-safe programming language

• Discrete and Continuous aspects

• Transactional model prevents priority inversion

• Synchronization primitives not required

• Ideal for parallel execution

Basic Abstractions

• FRP divides inputs into two basic classes:

– Behaviors or signals: Functions of time.

– Events: Temporal sequences of discrete values.

• An FRP language must include a means of altering or replacing a program
based on event occurrences - this is the basis of FRP's reactivity.

• These abstractions may be reified in an FRP language or may form the
basis of other abstractions, but they must be present.

Functional Reactive Programming (FRP)

37 / 100

• Weaknesses

• FRP is still relatively new and the design space is still being
explored.

• Strengths

• FRP makes writing reactive programs easier to reason about and to
avoid common errors

• It is easier to expand and create new behaviors. Once the program
becomes more complex, forkIO and multiple threads might start
interfering with each other, or there would be odd interleaving,
blocking, or other bad concurrency behavior.

FRP is still Haskell. It is just a different style.

Functional Reactive Programming (FRP)

38 / 100

• Using FRP makes the controllers (the computational components of CPS)
more amenable to analysis and verification.

• We can treat components (programed in FRP) as mathematical functions,
which can be composed and synthesized to form a much larger, complex
system.

• More resistant to faults since there are no intermediate states. They can be
connected and composed more easily.

• With procedural programs, there are more uncertainties, for example,
intermediate states if faults/interruptions occur that need to be
specified/modeled, making developing a CPS with guaranteed safety and
response much more complex and potentially intractable.

• In the electric grid example, different generating stations have control
components which analyze real-time data from smart meters, weather data,
and industrial plants' energy usage to determine optimal or near-optimal
generation and distribution of electricity.

Functional Reactive Programming (FRP)

Priority-based FRP (P-FRP)

• P-FRP aims to improve the programming of reactive real-
time systems.

– Supports assignment of different priorities to events

– Benefits of using P-FRP over the imperative styles

• P-FRP allows the programmer to intuitively describe safety-
critical behaviors of the system, thus lowering the chance of
introducing bugs in the design phase.

• Its stateless nature of execution does not require the use of
synchronization primitives like mutexes and semaphores, thus
reducing the complexity in programming.

39 / 100

40 / 100

Priority-based FRP (P-FRP)

• To preserve data consistency, shared resources must

be accessed in mutual exclusion:

41 / 100

Priority-based FRP (P-FRP)

• However, mutual exclusion introduces extra delays:

Priority-based FRP (P-FRP)

42 / 100

Example: The Car Controller

* C = worst case execution time
* T = (sampling) period = D (deadline)

• Speed Measurement: C=4ms, T=20ms, D=20ms

• ABS control: C=10ms,T=40ms, D=40ms

• Fuel injection: C=40ms,T=80ms, D=80ms

• Other software with soft deadlines, audio, air condition, etc.

Try any method to schedule the tasks

Priority-based FRP (P-FRP)

43 / 100

Static cyclic scheduling: + and –

• Deterministic: predictable (+)

• Easy to implement (+)

• Inflexible (-)

– Difficult to modify, e.g., adding another task

– Difficult to handle external events

• The table can be huge (-)

– Huge memory-usage

– Difficult to construct the time table

Priority-based FRP (P-FRP)

44 / 100

The Car Controller (Time table constructed with EDF)

Can use the Stack
Resource Policy (SRP)
or the Priority Ceiling
Protocol (PCP) for

concurrency control.

- Inheritance algorithms
are complicated and
difficult to program

correctly.

Priority-based FRP (P-FRP)

• In P-FRP, the scheduling model is called Abort-and-Restart (ANR)

– Copy and restore operations

• To allow for correct restarting of handlers, compilation is

extended to generate statements that store variables

modified in an event handler into fresh temporary (or

scratch) variables in the beginning of the handler while

interrupts are turned off, and to restore variables from the

temporary variables at the end of the handler while

interrupts are turned off.

45 / 100

Priority-based FRP (P-FRP)

46 / 100

Priority-based FRP (P-FRP)

• The Abort-and-Restart (ANR) Scheduling Model

– The idea of the ANR model is that a lower-priority task is aborted
when a higher priority task arrives into the system. Once the higher-
priority task is done, the lower priority task restarts as new.

47 / 100

Priority-based FRP (P-FRP)

48 / 100

Priority-based FRP (P-FRP)

• Advantages of Abort-and-Restart (ANR)

– A simpler programming model

– Tasks execute atomically so no task is blocked by another task

• The priority inversion problem is removed

• No overheads caused by priority inheritance

• Closer adherence to priority scheduling

49 / 100

Priority-based FRP (P-FRP)

Limited Work on Scheduling and Schedulability Analysis

• While there is an extensive understanding of the theory and
proof-carrying capability of functional programs and their
reactive versions, relatively little work is available on the
scheduling of primitives in the corresponding imperative code.

• Also, performance studies of the computational platforms on
which these functional programs execute are mostly absent.

50 / 100

Priority-based FRP (P-FRP)

• The worst-case response time of a task is the length of the
longest interval from a release of that task till its completion.

• With ANR, interference from higher-priority tasks induces
both an interference cost and an abort cost on the response
time of the preempted lower-priority task.

• Current focus is on response time analysis with abstract
memory and I/O access times. Next challenges include
accounting for precise memory and I/O access times.

51 / 100

Priority-based FRP (P-FRP)

• Response time analysis is an exact schedulability test to calculate the
worst-case response time of a task which includes the time of
interference from other higher priority tasks and blocking from lower
priority tasks.

• RTA is not exact unless blocking is exact - which it is not. If the worst-
case response time of a task is longer than its deadline (D), it means the
task will not meet its deadline. The opposite situation is that if the worst-
case response time of the task is less than or equal to its deadline, the
task will meet its deadline.

• The analysis can be applied for D = T (task’s period), D < T, or D > T.

52 / 100

Priority-based FRP (P-FRP)

Response time Analysis for ANR

• For the highest-priority task, its worst response time will be equal to its

own computation time, that is R = C.

• If task j has the highest arrival rate, then the execution time of a task i

cannot exceed Tj − Cj or task i will suffer interference (I) and aborts

(α). So for a general task i :

Ri = Ci + Ii + αi

53 / 100

Priority-based FRP (P-FRP)

Interference Cost

• If the execution time of some task i exceeds Tj − Cj, then
task i will never be able to complete execution.

• A simple expression for obtaining this Interference Cost is
using the ceiling function:

54 / 100

Priority-based FRP (P-FRP)

Maximum Interference

• Each task of higher-priority is interfering with task i, and so:

• This gives us the following equation:

55 / 100

Priority-based FRP (P-FRP)

Maximum Abort Costs

• Each higher-priority task is interfering with task i, so the
maximum Abort Costs are as follows:

• Ck is the maximum execution time between i and the
highest-priority task.

56 / 100

Priority-based FRP (P-FRP)

Maximum Abort Costs

• The maximum abort cost equation is sensible and simple but
overly pessimistic. Therefore, the test is said to be sufficient
but not necessary.

57 / 100

Priority-based FRP (P-FRP)

58 / 100

• Abort-and-Restart with a limit on the number of aborts

Priority-based FRP (P-FRP) Example

Antilock braking system in a car is a simple example of an embedded hard
real-time system with real-time constraints.

The ABS is expected to release a vehicle’s brakes, preventing dangerous
wheel locking, in a predictably short time frame.

ABS uses a kind of an Abort-and-Restart Scheme.

Kaleb R. Christoffersen and Albert M. K. Cheng, ``Model-Based Design: Anti-lock Brake
System with Priority-Based Functional Reactive Programming,’’ submitted to RTSS WIP
2013.

59 / 100

Priority-based FRP (P-FRP)

60 / 100

Anti-Lock Brake Types
ABS uses different schemes depending on the type of brakes in use.

• Four-channel, four-sensor ABS (the best scheme) - there is a speed
sensor on all 4 wheels and a separate valve for all four wheels. With this
setup, the controller monitors each wheel individually to make sure it is
achieving maximum braking force.

• Three-channel, three-sensor ABS - this scheme found often on pickup
trucks. It has a speed sensor and a valve for each of the front wheels,
with one valve and one sensor for both rear wheels.

• One-channel, one-sensor ABS - this system found also often on pickup
trucks with rear-wheel ABS. It has one valve, which controls both rear
wheels, and one speed sensor.

Priority-based FRP (P-FRP)

Example: ABS Controller

– Activities of an ABS control system

1. C = worst case execution time

2. T = (sampling) period = D (deadline)

– (A) Car speed measurement: C= 1 ms, T= 5 ms

– (B) Wheel speed measurement: C= 2 ms,T=8 ms

– (C) Analysis and computation task : C= 3 ms,T=20 ms

– (D) Brakes (Abort (release) /Retry (pressure)) : C= 1 ms,T=25 ms

61 / 100

Prof. Cheng with undergrad
students Mozahid and Kaleb

Priority-based FRP (P-FRP)

62 / 100

Priority-based FRP (P-FRP)

63 / 100

Priority-based FRP (P-FRP)

64 / 100

Typically ABS includes

• Electronic control unit (ECU)

• Wheel speed sensors

• At least two hydraulic valves within the brake hydraulics

• The ECU constantly monitors the rotational speed of each wheel;
if it detects a wheel rotating significantly slower than the others, a
condition indicative of impending wheel lock, it actuates the valves
to reduce hydraulic pressure to the brake at the affected wheel,
thus reducing the braking force on that wheel; the wheel then
turns faster.

Priority-based FRP (P-FRP)

65 / 100

Abort-and-Restart Scheduling

Priority-based FRP (P-FRP)

66 / 100

Priority-based FRP (P-FRP)

67 / 100

Priority-based FRP (P-FRP)

68 / 100

Priority-based FRP (P-FRP)

69 / 100

Priority-based FRP (P-FRP)

70 / 100

Priority-based FRP (P-FRP)

71 / 100

- On-line Schedulability Test returns the gap (the amount of execution time
available) for the next lower-priority task.
- Precise (tight) timing characterization of the embedded controller software
execution leads to faster physical system response compared with one designed
without accurate controller timing analysis (and thus requires more tolerance of
execution time variations).

A Scratchpad Memory-Based Execution
Platform for Functional Reactive Systems
and its Static Timing Analysis

Zeinab Kazemi, Albert M. K. Cheng

IEEE RTAS WIP 2015, Seattle, WA

Latest In-Progress Work

• Maximum length of time for a task to
execute on a specific platform.

• Why is it necessary to compute WCET in
P-FRP?

– To increase responsiveness

• To find a tight bound for response time analysis

– To avoid unnecessary micro-architecture costs

• Optimizing resources by a finding a tighter bound

Worst Case Execution Time
(WCET)

73 / 100

Cache For Real-Time
Systems

• A good solution to speed up for most
programs and average execution time
analysis

• Unpredictable cache miss penalty

• Timing predictability is required for Hard
real-time systems

• Not suitable for P-FRP systems

74 / 100

• Cache
– Suitable for average execution

time analysis

– Write-back to memory

• SPM
– Programmer can specify which

data should be in SPM

– Commit to memory

– DMA

– Suitable for WCET derivation

– Predictable latency

Scratchpad Memory (SPM) vs.
Cache

Fig ref: http://jwhitham.org/c/smmu.html

80/100

SPM in P-FRP

• P-FRP system requires atomic execution
of tasks

– Discard results of preempted tasks

– Commit results to main memory after end of
execution

• Using DMA to read/write to/from main
memory

• Avoid extra overhead

• Limited size - the same as cache
76 / 100

Tasks in P-FRP

• A task should be in SPM before execution

• A task’s data need to be read every time

• Old data will be replaced by the new one

• Multiple Tasks in SPM

• Dynamic Scheduling of Multiple Tasks in
SPM

• Tasks bigger than SPM size

77 / 100

Dynamic Scheduling of
Multiple Tasks in SPM

• Multiple tasks can fit into SPM

• Looking up a task in the SPM using hash
table

• Need to use replacement policies if SPM is
full

• Avoiding the overhead of reading existing
task code

• Manageable at software level

78 / 100

Tasks Larger Than SPM
Size

• Handling Multiple Memory Reads For Data
of A Single Task

– Pieces of data should be read multiple times

– Using DMA to speedup data read

– New chunk of data replaces the processed
data

• Using hash table for fast data access

• The pointer to data chunk is the key

79 / 100

P-FRP Task’s Characteristics

• As small as possible

– Larger tasks mean more overhead caused by
interference

• Every memory write operation is at the end

– Guarantees lack of side effects

– No need to keep the program state

• Committing data is done by DMA

• Need atomic DMA write operation

– DMA write has the highest priority among tasks
80 / 100

• Comparison of Simulation and Estimation
With One Task in SPM

• Based on Chronos Simulator [1]

Preliminary Results

[1] Xianfeng Li, Yun Liang, Tulika Mitra, and Abhik Roychoudhury.Chronos: A timing analyzer for embedded software. Science of
Computer Programming, 69(1):56–67, 2007

81 / 100

Ongoing Work

• A scratchpad execution platform for P-FRP
systems.

• WCET analysis considering memory cost

• Dynamic SPM scheduling to reduce memory
overhead

• A mathematical equation to model WCET
analysis of P-FRP is produced

• Timing analysis of response time in P-FRP
considering memory based on SPM

82 / 100

Evaluation

• Does precise timing characterization of the embedded controller software
execution lead to faster physical system response compared with one
designed without accurate controller timing analysis (and thus requires more
tolerance of execution time variations)?

• How does the time to develop new control components with accurate
response time analysis tools compare to doing the same with older
methods?

• Automotive application: Do the new scheduling/execution such as AWR lead
to safer physical system behaviors such as shorter stopping distance for
ABS-equipped cars?

• Do optimizations to the runtime controller software such as reducing event-
handler preemptions and better priority assignments result in faster
controller response as measured by developed analytical methods,
simulation, and actual physical system testing?

83 / 100

Evaluation

• Does the inclusion of power-aware and power-saving measures maintain the
satisfaction of timing and space/memory constraints imposed on the
embedded controller and controlled physical system behaviors? What is the
amount of energy savings in the physical system and embedded controller
achieved with these approaches compared with systems without them?

• Does the resulting approach make it easier and safer to make minor
modifications to components of the control systems?

• Does this framework and toolset facilitate the design of the controller and its
timing/safety verification? Is the time from design to actual implementation
shortened and the development cost lowered?

84 / 100

Concluding Remarks

• Our goal: Enhance the safety and performance of a physical system
controlled by an embedded controller consisting of single or networked
control components with functional reactive programming (FRP) and real-
time virtualization.

• FRP allows intuitive specification and formal verification of safety-critical
behaviors, thus reducing the number of defects injected during the design
phase, and the stateless nature of execution avoids the need for complex
programming involving synchronization primitives.

• Accurate response time analysis tools (accounting for CPU execution,
memory access, I/O, and sensor processing times), novel scheduling
techniques, and new power-conserving methods are needed.

• Research impact: Facilitate the design and update of the embedded
controller (or network of controllers) as well as its (their) timing and safety
verification.

• Enhance and update embedded systems with real-time virtual resources.

85 / 100

Thank you all!

RTS Textbook and DPRTCPS 2015

86 / 100

DPRTCPS Workshop at RTSS 2015, San Antonio,

Texas. Submissions due on October 9, 2015.

87 / 119

References (1)

• Andrei S., Mozahid H., and Cheng A.M.K., "Optimizing the Linear Real-Time Logic
Verifier,'' 19th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS) WIP Session, Philadelphia, PA, April 8, 2013.

• Andrei S. and Cheng A.M.K., "Decomposition-based Verification of Linear Real-Time
Systems Specifications,'' 2nd Workshop on Compositional Theory and Technology for
Real-Time Embedded Systems (CRTS), Washington, D.C., USA (Co-located with
IEEE RTSS 2009), December 1, 2009.

• Andrei S. and Cheng A.M.K., "Efficient Verification and Optimization of Real-Time
Logic Specified Systems,'' IEEE Transactions on Computers, vol. 58, no. 12, pp.
1640-1653, December 2009.

• Andrei S., Chin W., Lupa M., Cheng A.M.K., "Automatic Debugging of Real-Time
Systems Based on Incremental Satisfiability Counting,'' IEEE Transactions on
Computers, Vol. 55, No. 7, pp. 830-843, July 2006. Selected as this issue's featured
article.

• Andrei S., Mozahid H., and Cheng A.M.K., Optimizing the Linear Real-Time Logic
Verifier,'' 19th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS) WIP Session, Philadelphia, PA, April 8, 2013.

88 / 100

References (2)

• Andrei S., Radulescu V., McNicholl T., Cheng A.M.K., "Toward an optimal power-
aware scheduling technique,'' 14th International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing (SYNASC), Timisoara, Romania,
September 26-29, 2012.

• Belwal C. and Cheng A.M.K., "Chaitanya Belwal, Albert M. K. Cheng, and Bo Liu, ``
Feasibility Interval for the Transactional Event Handlers of P-FRP,'' Special Issue on
UbiSafe Computing and Communications, Elsevier's Journal of Computer and
System Sciences, 2012.

• Belwal C. and Cheng A.M.K., "Determining Actual Response Time in P-FRP," Proc.
Thirteenth International Symposium on Practical Aspects of Declarative Languages
(PADL), Austin, Texas, USA, pages: 250-264, January 24-25, 2011.

• Belwal C. and Cheng A.M.K., "Determining Actual Response Time in P-FRP using
Idle-Period Game Board," Proc. 14th IEEE International Symposium on Object,
Component, and Service-Oriented Real-time Distributed Computing (ISORC),
Newport Beach, CA, USA, pages: 136-143, March 28-31, 2011.

89 / 100

References (3)

• Belwal C. and Cheng A.M.K., "Response Time Bounds for Event Handlers in the
Priority-based Functional Reactive Programming (P-FRP) Paradigm," ACM Research
in Applied Computation Symposium (RACS), San Antonio, Texas, USA, October 23-26,
2012.

• Cheng A.M.K, Niktab H., and Walston M., "Timing Analysis of Small Aircraft
Transportation System (SATS),'' International Conference on Embedded and Real-
Time Computing Systems and Applications (RTCSA), Seoul, Korea, August 2012.

• Ras J. and Cheng A.M.K., "Response Time Analysis of the Abort-and-Restart Model
under Symmetric Multiprocessing." The 7th IEEE International Conferences on
Embedded Software and Systems (ICESS-10)," pages: 1954-1961, 2010.

• Ras J. and Cheng A.M.K., "Response Time Analysis for the Abort-and-Restart Event
Handlers of the Priority-Based Functional Reactive Programming (P-FRP) Paradigm,"
Embedded and Real-Time Computing Systems and Applications (RTCSA-09), pages:
305-314, 2009.

• Sha, L., Elements of Research, UIUC, 2014.

90 / 100

References (4)

• Ras J. and Cheng A.M.K., "An Evaluation of the Dynamic and Static Multiprocessor
Priority Ceiling Protocol and the Multiprocessor Stack Resource Policy in an SMP
System," Proc. IEEE-CS Real-Time and Embedded Technology and Applications
Symposium (RTAS), San Francisco, California, April 2009.

• Wen Y., Liu Z., Shi W., Jiang Y., Yang F., Kohar A., Cheng A.M.K., "Support for Power
Efficient Mobile Video Playback on Simultaneous Hybrid Display,'‘ 10th IEEE
Symposium on Embedded Systems for Real-Time Multimedia Tampere, Finland,
October 11-12, 2012.

• Wen Y., Belwal C., Cheng A.M.K., "Response Time Bounds for Event Handlers in the
Priority based Functional Reactive Programming (P-FRP) Paradigm,'' ACM Research
in Applied Computation Symposium (RACS), San Antonio, Texas, 2012.

• Wen Y., Belwal C., Cheng A.M.K., "Time Petri Nets for Schedulability Analysis of the
Transactional Event Handlers of P-FRP,'' ACM Research in Applied Computation
Symposium (RACS), San Antonio, Texas, USA, October 23-26, 2012.

• Li Y. and Cheng A.M.K., "Static Approximation Algorithms for Regularity-based
Resource Partitioning,'' 33rd Real-Time Systems Symposium (RTSS), San Juan,
Puerto Rico, USA, December 4-7, 2012.

91 / 100

References (5)

• Chaitanya Belwal, Yuanfeng Wen and Albert M. K. Cheng, ``Utilization Bounds of P-
FRP Tasks,'' International Journal of Embedded Systems, 2014.

• Yong woon Ahn, Albert M. K. Cheng, Jinsuk Baek, Minho Jo, and Hsiao-Hwa Chen,
``An Auto-Scaling Mechanism for Virtual Resources to Support Mobile, Pervasive,
Real-Time, Healthcare Applications in Cloud Computing,'' IEEE Network, Sept. 2013.

• Chaitanya Belwal, Albert M. K. Cheng, and Bo Liu, `` Feasibility Interval for the
Transactional Event Handlers of P-FRP,'' Special Issue on UbiSafe Computing and
Communications, Elsevier's Journal of Computer and System Sciences, Volume 79,
Issue 5, pages 530-541, August 2013.

• Yuanfeng Wen, Chaitanya Belwal, and Albert M. K. Cheng, ``Towards Optimal Priority
Assignments for the Transactional Event Handlers of P-FRP,'' ACM International
Conference on Reliable And Convergent Systems (RACS), Montreal, QC, Canada,
October 1-4, 2013.

• Chaitanya Belwal, Albert M. K. Cheng, J. Ras, and Yuanfeng Wen, ``Variable Voltage
Scheduling with the Priority-based Functional Reactive Programming Language,''
ACM International Conference on Reliable And Convergent Systems (RACS),
Montreal, QC, Canada, October 1-4, 2013.

References (6)

• Yu Jiang, Qiang Zhou, Xingliang Zou, and Albert M. K. Cheng, ``Feasibility Interval of
Real-Time Tasks with Arbitrary Release Offsets Under Fixed Priority Scheduling,''
11th IEEE International Conference on Embedded Software and Systems (ICESS), in
conjunction with HPCC and CSS, Paris, France, August 20-22, 2014.

• Zeinab Kazemi Alamouti and Albert M. K. Cheng, ``Static Worst Case Execution Time
Analysis of Functional Reactive Systems,'' 11th IEEE International Conference on
Embedded Software and Systems (ICESS) WIP Session, in conjunction with HPCC
and CSS, Paris, France, August 20-22, 2014.

• Qiang Zhou, Xingliang Zou, Albert M. K. Cheng, and Yu Jiang, ``An Integrated
Analysis of the Worst Case Response Time for P-FRP,'' to appear in 35th IEEE-CS
Real-Time Systems Symposium (RTSS) WIP Session, Rome, Italy, December 3-5,
2014. Jian (Denny) Lin, Albert M. K. Cheng, Douglas Steel, and Michael Yu-Chi Wu,
``Scheduling Mixed-Criticality Real-Time Tasks with Fault Tolerance,'' to appear in
2nd Workshop on Mixed Criticality (WMC), in conjunction with IEEE RTSS, Rome,
Italy, December 2, 2014.

92 / 100

References (7)

• Kaleb Christoffersen and Albert M. K. Cheng, `` Model-Based Design: Anti-lock Brake
System with Priority-Based Functional Reactive Programming,'' 34th IEEE-CS Real-
Time Systems Symposium (RTSS) WIP Session, Vancouver, Canada, Dec. 2013.

• Yong woon Ahn and Albert M. K. Cheng, `` Automatic Resource Scaling for Medical
Cyber-Physical Systems Running in Private Cloud Computing Architecture,'' Medical
Cyber Physical Systems Workshop (MedicalCPS), Cyber-Physical Systems Week
(CPSWeek), Berlin, Germany, April 14, 2014.

• Stefan Andrei, Albert M. K. Cheng, and Mozahid Haque, `` Mathematical
Considerations of Linear Real-Time Logic Verification,'' 20th IEEE-CS Real-Time and
Embedded Technology and Applications Symposium (RTAS) WIP Session, Berlin,
Germany April 2014.

• Yu Jiang, Xingliang Zou, and Albert M. K. Cheng, ``On the Schedulability of P-FRP
Tasks,'' 20th IEEE-CS Real-Time and Embedded Technology and Applications
Symposium (RTAS) WIP Session, Berlin, Germany April 2014.

• Albert M. K. Cheng, ``An Undergraduate Cyber-Physical Systems Course,'' ACM
Workshop on Design, Modeling, and Evaluation of Cyber-Physical Systems (CyPhy),
Cyber-Physical Systems Week (CPSWeek), Berlin, Germany, April 14, 2014.

93 / 100

