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Yu Li (Best Junior PhD Student 
Awardee and Friends of NSM 
Graduate Fellow) and Prof. 
Albert Cheng visit the NSF-
sponsored Arecibo Observatory 
after their presentation at the 
flagship RTSS 2012 in Puerto 
Rico.

Real-time systems research 
group at Yuanfeng Wen’s 
graduation party in May 2013.
Yuanfeng is now at Facebook.

Fall 2014 (9/3) group meeting -
from left to right: Dr. Qiang 
Zhou, Qiong Lu, Carlos Rincon, 
Chonghua Li, Prof. Yu Jiang, 
Xin Liu, Prof. Yufeng Zhao, Prof. 
Albert Cheng, Xingliang 
(Jeffrey) Zou, Daxiao Liu, Yu Li, 
Yong Woon Ahn, and Behnaz 
Sanati. Zeinab Kazemi in class.



Recent Seminar Visits

With Prof. Dan Grossman         Audience at the University of Washington (4/2015)

With Prof. Enrico Tronci, U Rome (12/2014)      University of Oxford          With Prof. Joel Ouaknine (4/2014) 

3 / 100



Real-Time Systems Theory
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Pathfinder mission to Mars: best known Priority Inversion problem.
Failure to turn on priority Inheritance (PI) - Most PI schemes complicate and slow down 

the locking code, and often are used to compensate for poor application designs.
http://research.microsoft.com/en-us/um/people/mbj/mars_pathfinder/mars_pathfinder.html



Real-Time Systems Theory
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• The more components a real-time system 

has, the more difficult it is to build and 

maintain.

– In such systems, preemptive scheduling may 
not be suitable, since it is likely to create 
runtime overheads which can result in worst-
case task execution times of up to 40% greater 
than fully non-preemptive execution.

• Yao G., Buttazzo G., Bertogna M., "Feasibility analysis under
fixed priority scheduling with limited preemptions," Real-Time
Systems, Volume 47 Issue 3, pages: 198-223, May 2011.



Real-Time Systems Theory
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– However, preemptive scheduling allows for 
more feasible schedules than non-

preemptive scheduling.

– Non-preemptive scheduling automatically 
prevents unbounded priority inversion, which 
avoids the need for a concurrency control 
protocol, leading to a less complex scheduling 
model.

– However, fully non-preemptive scheduling is 
too inflexible for some real-time applications, 
and has the added disadvantage of potentially 
introducing large blocking times that would 
make it impossible to guarantee the 
schedulability of the task set.



Real-Time Systems Theory
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• Simplify the design and scheduling

• Avoid priority inheritance

• Use functional programming 

• Use abort-and-restart

• Use harmonic task sets

– However, harmonic tasks sets may be too 
restrictive for some situations. For example, 
one sensor needs to be serviced every 9
seconds and another (because of its design / 
physical characteristics) 10 seconds.



Real-Time Systems Theory
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• Example (1)  - Harmonic task sets

– Can achieve 100% CPU utilization

– Can avoid preemption and context switches costs

V. Bonifaci, A. Marchetti-Spaccamela, N. Megow, and A. Wiese, “Polynomial-Time Exact Schedulability

Tests for Harmonic Real-Time Tasks,” RTSS 2013.



Real-Time Systems Theory
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• Example (2)  - Harmonic task sets



Embedded Real-Time Systems

• An embedded system is a computer system designed for 
specific control functions within a larger system  

( A is embedded into B for control )

• Often with such systems there are constraints such as 
deadlines, memory, power, size, etc.
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Embedded Real-Time Systems

• Real-time systems (RTS) are reactive systems that are 
required to respond to an environment in a bounded amount
of time.

• Functional reactive systems (FRS)

• Cyber-physical systems (CPS)

– Challenges

• Complexity  

• Reliability  

– Fault-tolerant design 

– Meeting deadlines (Response Time Analysis (RTA))

• Security/Privacy
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Functional Reactive Systems (FRS)

Systems that react to the environment being monitored and
controlled in a timely fashion using functional (reactive)
programming are known as Functional Reactive Systems
(FRS).

These systems can range from small devices (which are not
a CPS) to distributed and complex components (similar to a
CPS).
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Functional Reactive Systems (FRS)
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Reactive System Reactive Soft Real-Time System

Reactive Hard Real-Time System Reactive Hard Real-Time System



Cyber-Physical Systems (CPS)
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• Systematic integration of computation/information processing 
and physical processes and devices.

• Communication and sensing are components of CPS



Cyber-Physical Systems (CPS)

The current set of tools available for analysis cannot handle
the complexity of CPS and thus are unable to predict
system behavior with high degree of accuracy.

The consequences of these shortcomings:

Consider the electric power grid -- Massive failures leading
to blackouts can be triggered by minor events.
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Cyber-Physical Systems (CPS)
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Classic (non-CPS) electric grid system/behavior



Cyber-Physical Systems (CPS)

17 / 100

• In a CPS, wireless/wired smart meters measuring real-time electricity
usage and historical data (state) feedback (communication) to the
generation station to better manage and distribute electricity.

• Current and predicted weather condition data can also further inform the
decision-making in where to distribute electricity (very hot or very cold
weather increase electricity demand).

• There is also a need to guard against intrusion into the system.

• Advocate formal verification to ensure satisfaction of safety properties.



Cyber-Physical Systems (CPS)
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Cyber-Physical Systems (CPS)

Example 2: Imagine an airplane that refuses to
crash. While preventing all possible causes of a
crash is not possible, a well-designed flight control
system can prevent certain causes. The systems
that do this are good examples of cyber-physical
systems.
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Cyber-Physical Systems (CPS)

For example, some airplanes use a technique called flight envelope
protection to prevent a plane from going outside its safe operating range,
and prevent a pilot from causing a stall.
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Cyber-Physical Systems (CPS)

• The embedded control system can over-ride erroneous operation that would lead to an accident.

http://en.wikipedia.org/wiki/Air_France_Flight_447
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Cyber-Physical Systems (CPS)

• The concept of flight envelope protection could be
extended to prevent other causes of crashes. For
example, the soft walls system proposed by Prof. Edward
Lee, if implemented, would track the location of the
aircraft on which it is installed and prevent it from flying
into obstacles such as mountains.

– E. A. Lee, "Soft Walls - Modifying Flight Control Systems to Limit the Flight Space
of Commercial Aircraft," EECS Department, University of California, Berkeley,
Tech. Rep. UCB/ERL M01/31, 2001.
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Cyber-Physical Systems (CPS)
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Cyber-Physical Systems (CPS)

24 / 100

• One of the key goals in our research is to develop the core tools that
can be used to facilitate the analysis, design and engineering of
highly-complex systems.

• With such tools, we can ensure that these systems are reliable,
predictable, efficient, secure and resilient to multiple points of failure,
and hence that their operation and safety can be depended upon
with a high degree of confidence.

• We advocate formal verification to ensure safety of CPS's, but their
complexity requires further research in verification tools.



Cyber-Physical Systems (CPS)
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Small Aircraft Transportation System (SATS)

Self Control Area Airspace Volume



Cyber-Physical Systems (CPS)
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Small Aircraft Transportation System (SATS)

3-D View of the SCA



Cyber-Physical Systems (CPS)
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• We will introduce RTL-based formal verification later in the tutorial.

Small Aircraft Transportation System (SATS)



Functional Reactive Programming

• Priority-based Functional Reactive Programming (P-FRP)

• P-FRP provides real-time guarantees using static priority assignment

• Higher-priority tasks preempt lower-priority ones; preempted tasks are aborted

• Multi-version commit model of execution

• Atomic execution – “all or nothing” proposition

• Execution different from ‘standard’ models

Other Examples of Functional Programming (FP) Languages: 

• Haskell

• Atom - Domain Specific Language in Haskell

• Erlang - Developed at Ericsson for programming telecommunication equipment

• Esterel - Designed for reactive programming

• F# - Developed by Microsoft; available as a commercial platform
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The Haskell Functional Programming Language 
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- The GHC compiler/interpreter uses a round-robin scheduler for Haskell threads 
- No thread priorities yet for forkIO threads in GHC

A simple ABS example in Haskell:

import Control.Concurrent  -- For threading facilities: “forkIO”, “newEmptyMVar”, “takeMVar”, and “putMVar”.
import Control.Monad (forever) -- For "forever"

-- Type aliases help keep track of what values we are talking about.

type WheelSpeed    = Double  -- A "double" floating point value
type AverageSpeed = Double

-- | The ABS can either forcibly release, focibly engage, or stay neutral for each wheel.
-- The deriving clause creates the obvious Show instance for this ADT.

data BrakeSignal = Release | Engage | Neutral

deriving Show
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-- | Compute the average speed by dividing the sum of the list of speeds by the length.
-- fromIntegral is there to convert the result of length (Int) into a Double
-- Note, this will traverse the list twice, ineffcient for vehicles with millions of wheels.
averageSpeed :: [WheelSpeed] -> AverageSpeed
averageSpeed speeds = sum speeds / (fromIntegral $ length speeds)

-- | This algorithm may be much more complicated, but the basic idea is present.
-- Given the average speed and a particular wheel speed, check to see if we are
-- within 5 (mph, kph, m/s, whatever) of the average. If we are below the minimum
-- send the release signal to the brakes. If we are within 5, remain neutral, otherwise
-- send a signal to engage the brakes.
ecuHelper :: AverageSpeed -> WheelSpeed -> BrakeSignal
ecuHelper average speed | speed < min = Release

| speed < max = Neutral
| otherwise = Engage

where
min = average - 5
max = average + 5

The Haskell Programming Language 
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-- A list of wheel speeds are averaged and the speed of each wheel compared to it
-- and converted into an ABS signal.

ecu :: [WheelSpeed] -> [BrakeSignal]
ecu speeds = let avgS = averageSpeed speeds

in map (ecuHelper avgS) speeds
-- The Main Function:
-- The first thread does all printing whenever information becomes available to the ABS.
-- The second thread waits for sensor data, sends it to the ECU and stores the result in the 
ABS
-- The main thread waits for someone to type in a list of numbers and sends it to the “sensors”.

main = do
-- Print initial instructions and an example.
print "Enter wheel speeds: [45,46,45,47]"
-- Create sensors represented as a list of WheelSpeeds, i.e., Doubles.
sensors <- newEmptyMVar
-- Create an ABS represented as as list of BrakeSignals.
abs <- newEmptyMVar

The Haskell Programming Language 
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-- This thread handles all printing to the console.
forkIO $ forever $ do

putStr "Enter a Speed: " 
absOutput <- takeMVar abs         -- Read ABS status
print absOutput                     -- Print ABS status.

-- This thread is the ABS. It reads the sensors, then processes the data and updates the ABS.
forkIO $ forever $ do 

sensorData <- takeMVar sensors     -- Read sensors.
let brakeCommands = ecu sensorData  -- Calculate brake response
putMVar abs brakeCommands   -- Update ABS status.

-- The main thread simply waits for users to enter data which is then written to the sensors.
forever $ do 

input <- getLine                    -- User enters a line of text
let wheelSpeedData = read input     -- Text is read as [WheelSpeed]
putMVar sensors wheelSpeedData      -- wheelSpeedData is written to sensors

The Haskell Programming Language 
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To run program from the command prompt
In GHCi, type

*Main> main
"Enter wheel speeds: [45,46,45,47]"
Enter a Speed: [45,45,45,55]
[Neutral,Neutral,Neutral,Engage]

Enter a Speed: [45,45,45,45]
[Neutral,Neutral,Neutral,Neutral]

Enter a Speed: [45,45,55,45]
[Neutral,Neutral,Engage,Neutral]

The idea is that you keep entering new sensor data. 
The system calculates the new ABS signals to send to the vehicle. 
The session should look like this:

The Haskell Programming Language 



Functional Reactive Programming (FRP)
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• Functional reactive programming (FRP) is a style of functional
programming where programs are inherently stateful, but
automatically react to changes in state.

• FRP allows intuitive specification and formal verification of safety-
critical behaviors, thus reducing the number of defects during the
design phase, and the stateless nature of execution avoids the need
for complex programming involving synchronization primitives.

• Therefore, the program remains an algebraic description of system
state, with the task of keeping the stated (unidirectional) relationships
in sync left to the *language*.
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• FRP is essentially (though rarely acknowledged as such) an
extension to the old idea of dataflow programming.

• A key difference is that FRP supports higher-order functions, and
modern FRP systems are generally well-integrated into broader
languages.

• The original (modern) FRP work was built in the context of Haskell,
though major FRP systems have also been built atop many other
languages.

Functional Reactive Programming (FRP)
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• Type-safe programming language

• Discrete and Continuous aspects

• Transactional model prevents priority inversion

• Synchronization primitives not required

• Ideal for parallel execution

Basic Abstractions

• FRP divides inputs into two basic classes:

– Behaviors or signals: Functions of time.

– Events: Temporal sequences of discrete values.

• An FRP language must include a means of altering or replacing a program 
based on event occurrences - this is the basis of FRP's reactivity.

• These abstractions may be reified in an FRP language or may form the 
basis of other abstractions, but they must be present.

Functional Reactive Programming (FRP)
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• Weaknesses

• FRP is still relatively new and the design space is still being
explored.

• Strengths

• FRP makes writing reactive programs easier to reason about and to
avoid common errors

• It is easier to expand and create new behaviors. Once the program
becomes more complex, forkIO and multiple threads might start
interfering with each other, or there would be odd interleaving,
blocking, or other bad concurrency behavior.

FRP is still Haskell. It is just a different style.

Functional Reactive Programming (FRP)
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• Using FRP makes the controllers (the computational components of CPS)
more amenable to analysis and verification.

• We can treat components (programed in FRP) as mathematical functions,
which can be composed and synthesized to form a much larger, complex
system.

• More resistant to faults since there are no intermediate states. They can be
connected and composed more easily.

• With procedural programs, there are more uncertainties, for example,
intermediate states if faults/interruptions occur that need to be
specified/modeled, making developing a CPS with guaranteed safety and
response much more complex and potentially intractable.

• In the electric grid example, different generating stations have control
components which analyze real-time data from smart meters, weather data,
and industrial plants' energy usage to determine optimal or near-optimal
generation and distribution of electricity.

Functional Reactive Programming (FRP)



Priority-based FRP  (P-FRP)

• P-FRP aims to improve the programming of reactive real-
time systems.

– Supports assignment of different priorities to events

– Benefits of using P-FRP over the imperative styles 

• P-FRP allows the programmer to intuitively describe safety-
critical behaviors of the system, thus lowering the chance of
introducing bugs in the design phase.

• Its stateless nature of execution does not require the use of
synchronization primitives like mutexes and semaphores, thus
reducing the complexity in programming.
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Priority-based FRP  (P-FRP)

• To preserve data consistency, shared resources must 

be accessed in mutual exclusion:
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Priority-based FRP  (P-FRP)

• However, mutual exclusion introduces extra delays:



Priority-based FRP  (P-FRP)
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Example: The Car Controller

* C = worst case execution time
* T = (sampling) period   = D (deadline)

• Speed Measurement: C=4ms, T=20ms, D=20ms

• ABS control: C=10ms,T=40ms, D=40ms

• Fuel injection:  C=40ms,T=80ms, D=80ms

• Other software with soft deadlines,  audio, air condition, etc. 

Try any method to schedule the tasks



Priority-based FRP  (P-FRP)
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Static cyclic scheduling: + and –

• Deterministic: predictable (+)

• Easy to implement (+) 

• Inflexible (-) 

– Difficult to modify, e.g., adding another task

– Difficult to handle external events

• The table can be huge (-)

– Huge memory-usage

– Difficult to construct the time table



Priority-based FRP  (P-FRP)
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The Car Controller (Time table constructed with EDF) 

Can use the Stack 
Resource Policy (SRP) 
or the Priority Ceiling 
Protocol (PCP) for 

concurrency control.

- Inheritance algorithms 
are complicated and 
difficult to program 

correctly.



Priority-based FRP (P-FRP)

• In P-FRP, the scheduling model is called Abort-and-Restart (ANR)

– Copy and restore operations

• To allow for correct restarting of handlers, compilation is

extended to generate statements that store variables

modified in an event handler into fresh temporary (or

scratch) variables in the beginning of the handler while

interrupts are turned off, and to restore variables from the

temporary variables at the end of the handler while

interrupts are turned off.
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Priority-based FRP  (P-FRP)
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Priority-based FRP  (P-FRP)

• The Abort-and-Restart  (ANR) Scheduling Model

– The idea of the ANR model is that a lower-priority task is aborted
when a higher priority task arrives into the system. Once the higher-
priority task is done, the lower priority task restarts as new.
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Priority-based FRP  (P-FRP)
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Priority-based FRP  (P-FRP)

• Advantages of Abort-and-Restart (ANR)  

– A simpler programming model

– Tasks execute atomically so no task is blocked by another task

• The priority inversion problem is removed

• No overheads caused by priority inheritance

• Closer adherence to priority scheduling
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Priority-based FRP  (P-FRP)

Limited Work on Scheduling and Schedulability Analysis

• While there is an extensive understanding of the theory and 
proof-carrying capability of functional programs and their 
reactive versions, relatively little work is available on the 
scheduling of primitives in the corresponding imperative code.

• Also, performance studies of the computational platforms on 
which these functional programs execute are mostly absent.
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Priority-based FRP  (P-FRP)

• The worst-case response time of a task is the length of the 
longest interval from a release of that task till its completion.

• With ANR, interference from higher-priority tasks induces 
both an interference cost and an abort cost on the response 
time of the preempted lower-priority task.

• Current focus is on response time analysis with abstract 
memory and I/O access times. Next challenges include 
accounting for precise memory and I/O access times.
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Priority-based FRP  (P-FRP)

• Response time analysis is an exact schedulability test to calculate the
worst-case response time of a task which includes the time of
interference from other higher priority tasks and blocking from lower
priority tasks.

• RTA is not exact unless blocking is exact - which it is not. If the worst-
case response time of a task is longer than its deadline (D), it means the
task will not meet its deadline. The opposite situation is that if the worst-
case response time of the task is less than or equal to its deadline, the
task will meet its deadline.

• The analysis can be applied for D = T (task’s period), D < T, or D > T.
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Priority-based FRP  (P-FRP)

Response time Analysis for ANR

• For the highest-priority task, its worst response time will be equal to its

own computation time, that is R = C.

• If task j has the highest arrival rate, then the execution time of a task i

cannot exceed Tj − Cj or task i will suffer interference (I) and aborts

(α). So for a general task i :

Ri = Ci + Ii + αi
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Priority-based FRP  (P-FRP)

Interference Cost

• If the execution time of some task i exceeds Tj − Cj, then
task i will never be able to complete execution.

• A simple expression for obtaining this Interference Cost is
using the ceiling function:
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Priority-based FRP  (P-FRP)

Maximum Interference

• Each task of higher-priority is interfering with task i, and so:

• This gives us the following equation:
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Priority-based FRP  (P-FRP)

Maximum Abort Costs

• Each higher-priority task is interfering with task i, so the
maximum Abort Costs are as follows:

• Ck is the maximum execution time between i and the 
highest-priority task.
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Priority-based FRP  (P-FRP)

Maximum Abort Costs

• The maximum abort cost equation is sensible and simple but 
overly pessimistic. Therefore, the test is said to be sufficient
but not necessary.
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Priority-based FRP  (P-FRP)

58 / 100

• Abort-and-Restart with a limit on the number of aborts



Priority-based FRP (P-FRP) Example

Antilock braking system in a car is a simple example of an embedded hard
real-time system with real-time constraints.

The ABS is expected to release a vehicle’s brakes, preventing dangerous
wheel locking, in a predictably short time frame.

ABS uses a kind of an Abort-and-Restart Scheme.

Kaleb R. Christoffersen and Albert M. K. Cheng, ``Model-Based Design: Anti-lock Brake 
System with Priority-Based Functional Reactive Programming,’’ submitted to RTSS WIP 
2013.
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Priority-based FRP  (P-FRP)
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Anti-Lock Brake Types 
ABS uses different schemes depending on the type of brakes in use.

• Four-channel, four-sensor ABS (the best scheme) - there is a speed 
sensor on all 4 wheels and a separate valve for all four wheels. With this 
setup, the controller monitors each wheel individually to make sure it is 
achieving maximum braking force.

• Three-channel, three-sensor ABS - this scheme found often on pickup 
trucks. It has a speed sensor and a valve for each of the front wheels, 
with one valve and one sensor for both rear wheels.

• One-channel, one-sensor ABS - this system found also often on pickup 
trucks with rear-wheel ABS. It has one valve, which controls both rear 
wheels, and one speed sensor.



Priority-based FRP  (P-FRP)

Example: ABS Controller

– Activities of an ABS control system 

1. C = worst case execution time

2. T = (sampling) period   = D (deadline)

– (A) Car speed measurement: C= 1 ms, T= 5 ms

– (B) Wheel speed measurement: C= 2 ms,T=8 ms

– (C) Analysis and computation task : C= 3 ms,T=20 ms

– (D) Brakes (Abort (release) /Retry (pressure)) : C= 1 ms,T=25 ms 
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Prof. Cheng with undergrad
students Mozahid and Kaleb



Priority-based FRP  (P-FRP)
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Priority-based FRP  (P-FRP)
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Priority-based FRP  (P-FRP)
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Typically ABS includes 

• Electronic control unit (ECU)

• Wheel speed sensors

• At least two hydraulic valves within the brake hydraulics

• The ECU constantly monitors the rotational speed of each wheel;
if it detects a wheel rotating significantly slower than the others, a
condition indicative of impending wheel lock, it actuates the valves
to reduce hydraulic pressure to the brake at the affected wheel,
thus reducing the braking force on that wheel; the wheel then
turns faster.



Priority-based FRP  (P-FRP)
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Abort-and-Restart Scheduling



Priority-based FRP  (P-FRP)
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Priority-based FRP  (P-FRP)
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Priority-based FRP  (P-FRP)
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Priority-based FRP  (P-FRP)
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Priority-based FRP  (P-FRP)

70 / 100



Priority-based FRP  (P-FRP)
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- On-line Schedulability Test returns the gap (the amount of execution time
available) for the next lower-priority task.
- Precise (tight) timing characterization of the embedded controller software
execution leads to faster physical system response compared with one designed
without accurate controller timing analysis (and thus requires more tolerance of
execution time variations).



A Scratchpad Memory-Based Execution 
Platform for Functional Reactive Systems 
and its Static Timing Analysis

Zeinab Kazemi, Albert M. K. Cheng

IEEE RTAS WIP 2015, Seattle, WA

Latest In-Progress Work



• Maximum length of time for a task to 
execute on a specific platform.

• Why is it necessary to compute WCET in 
P-FRP?

– To increase responsiveness

• To find a tight bound for response time analysis

– To avoid unnecessary micro-architecture costs

• Optimizing resources by a finding a tighter bound

Worst Case Execution Time 
(WCET)
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Cache For Real-Time 
Systems

• A good solution to speed up for most 
programs and average execution time 
analysis

• Unpredictable cache miss penalty

• Timing predictability is required for Hard 
real-time systems 

• Not suitable for P-FRP systems
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• Cache
– Suitable for average execution 

time analysis

– Write-back to memory

• SPM
– Programmer can specify which 

data should be in SPM

– Commit to memory

– DMA

– Suitable for WCET derivation

– Predictable latency

Scratchpad Memory (SPM) vs. 
Cache

Fig ref:  http://jwhitham.org/c/smmu.html
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SPM in P-FRP

• P-FRP system requires atomic execution 
of tasks

– Discard results of preempted tasks

– Commit results to main memory after end of 
execution

• Using DMA to read/write to/from main 
memory

• Avoid extra overhead

• Limited size - the same as cache
76 / 100



Tasks in P-FRP

• A task should be in SPM before execution

• A task’s data need to be read every time

• Old data will be replaced by the new one

• Multiple Tasks in SPM

• Dynamic Scheduling of Multiple Tasks in 
SPM

• Tasks bigger than SPM size
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Dynamic Scheduling of 
Multiple Tasks in SPM

• Multiple tasks can fit into SPM

• Looking up a task in the SPM using hash 
table

• Need to use replacement policies if SPM is 
full

• Avoiding the overhead of reading existing 
task code

• Manageable at software level
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Tasks Larger Than SPM 
Size

• Handling Multiple Memory Reads For Data 
of A Single Task

– Pieces of data should be read multiple times

– Using DMA to speedup data read

– New chunk of data replaces the processed 
data

• Using hash table for fast data access 

• The pointer to data chunk is the key
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P-FRP Task’s Characteristics

• As small as possible

– Larger tasks mean more overhead caused by 
interference 

• Every memory write operation is at the end

– Guarantees lack of side effects

– No need to keep the program state

• Committing data is done by DMA

• Need atomic DMA write operation

– DMA write has the highest priority among tasks
80 / 100



• Comparison of Simulation and Estimation 
With One Task in SPM

• Based on Chronos Simulator [1]

Preliminary Results

[1] Xianfeng Li, Yun Liang, Tulika Mitra, and Abhik Roychoudhury.Chronos: A timing analyzer for embedded software. Science of
Computer Programming, 69(1):56–67, 2007
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Ongoing Work

• A scratchpad execution platform for P-FRP 
systems.

• WCET analysis considering memory cost

• Dynamic SPM scheduling to reduce memory 
overhead

• A mathematical equation to model WCET 
analysis of P-FRP is produced

• Timing analysis of response time in P-FRP 
considering memory based on SPM

82 / 100



Evaluation

• Does precise timing characterization of the embedded controller software 
execution lead to faster physical system response compared with one 
designed without accurate controller timing analysis (and thus requires more 
tolerance of execution time variations)?

• How does the time to develop new control components with accurate 
response time analysis tools compare to doing the same with older 
methods?

• Automotive application: Do the new scheduling/execution such as AWR lead 
to safer physical system behaviors such as shorter stopping distance for 
ABS-equipped cars?

• Do optimizations to the runtime controller software such as reducing event-
handler preemptions and better priority assignments result in faster 
controller response as measured by developed analytical methods, 
simulation, and actual physical system testing?
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Evaluation

• Does the inclusion of power-aware and power-saving measures maintain the 
satisfaction of timing and space/memory constraints imposed on the 
embedded controller and controlled physical system behaviors? What is the 
amount of energy savings in the physical system and embedded controller 
achieved with these approaches compared with systems without them?

• Does the resulting approach make it easier and safer to make minor 
modifications to components of the control systems?

• Does this framework and toolset facilitate the design of the controller and its 
timing/safety verification?  Is the time from design to actual implementation 
shortened and the development cost lowered?
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Concluding Remarks

• Our goal: Enhance the safety and performance of a physical system 
controlled by an embedded controller consisting of single or networked 
control components with functional reactive programming (FRP) and real-
time virtualization.

• FRP allows intuitive specification and formal verification of safety-critical 
behaviors, thus reducing the number of defects injected during the design 
phase, and the stateless nature of execution avoids the need for complex 
programming involving synchronization primitives.

• Accurate response time analysis tools (accounting for CPU execution, 
memory access, I/O, and sensor processing times), novel scheduling 
techniques, and new power-conserving methods are needed.

• Research impact: Facilitate the design and update of the embedded 
controller (or network of controllers) as well as its (their) timing and safety 
verification. 

• Enhance and update embedded systems with real-time virtual resources.
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Thank you all!

RTS Textbook and DPRTCPS 2015
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DPRTCPS Workshop at RTSS 2015, San Antonio,

Texas. Submissions due on October 9, 2015.
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