
Programming Languages for
High-Assurance Autonomous

Vehicles
Lee Pike (speaker) leepike@galois.com

Pat Hickey, James Bielman, Trevor Elliott, Erlend Hamberg, Thomas DuBuisson,
Jamey Sharp, Eric Seidel

VSTTE | July 2015

© 2015 Galois, Inc. All rights reserved.

Embedded Security: Where Are We At?

© 2015 Galois, Inc. All rights reserved.

Embedded Programming 1970s - 2015

Typical tools:
● Programming: C/C++
● Building: GNU Make/GCC
● Debugging: GDB

© 2015 Galois, Inc. All rights reserved.

From Embedded Systems
to Cyber Physical Systems

src: Kathleen Fisher, http://www.cyber.umd.edu/sites/default/files/documents/symposium/fisher-HACMS-MD.pdf

© 2015 Galois, Inc. All rights reserved.

Hacking Cars

New York Times

© 2015 Galois, Inc. All rights reserved.

Example Attacks

Comprehensive Experimental Analyses of Automotive Attack Surfaces, Stephen
Checkoway et al.

© 2015 Galois, Inc. All rights reserved.

Who Needs Attackers?

LA Times

Code issues:
● Buffer overflows
● Unsafe casts
● Race conditions
● Recursion (makes stack analysis difficult)

© 2015 Galois, Inc. All rights reserved.

Aren't These Solved Problems?

● Virtualization & sandboxes

● E.g., Xen, Chrome Native Client

● High-level languages, powerful type systems

● E.g., Ocaml, Haskell

● Sound verification tools

● E.g., Frama-C, Coq

© 2015 Galois, Inc. All rights reserved.

Nope.
● Small, cheap hardware

● <1MB flash, <1MB RAM, <32-bit architecture, 10s of MHz speed

● No virtual memory

● Must control memory usage, timing

● “Hello World” in Haskell on x86_64 requires ~1MB RAM usage, ~1MB exec

● Can't even fit an OS sometimes

● Unpredictable scheduling/garbage collection

● Too complex for post-hoc verification

● Model of libc, ASM

● Concurrency

© 2015 Galois, Inc. All rights reserved.

Heterogenous Embedded Systems:
What are the properties?

RC Receiver

Modem

Gyro + Accel

Compass

Barometer

GPS

UART
Driver

Timer
Driver

Input
Decoder

I2C, SPI
Drivers

UART
Driver

Sensor
Fusion

Packet
Decode

Stabilization

GCS
Comms

Auto
Flight Modes

Motors

Packet
Encode

Motor
Mixing

UART
Driver

Modem

UART
Driver

Decrypt/
Auth.

Encrypt/
Sign

Sensor fusion

Device
drivers

Mode
Management &
Fault recovery

Control systems

Crypto

Networking

Consider an autopilot:
Not just different properties,
different kinds of properties

© 2015 Galois, Inc. All rights reserved.

Air Team Platforms

/* The STM32F405 has 1024Kb of FLASH beginning at address 0x0800:0000 and

 * 192Kb of SRAM. SRAM is split up into three blocks:

 *

 * 1) 112Kb of SRAM beginning at address 0x2000:0000

 * 2) 16Kb of SRAM beginning at address 0x2001:c000

 * 3) 64Kb of TCM SRAM beginning at address 0x1000:0000

 *

 * When booting from FLASH, FLASH memory is aliased to address 0x0000:0000

 * where the code expects to begin execution by jumping to the entry point in

 * the 0x0800:0000 address range.

 *

 * HWF4: In the original linker script, the first 0x4000 of flash was

 * reserved for the bootloader. For now, we'll place the application

 * at the start of flash until we start using a boot loader again.

 */

MEMORY

{

/* flash (rx) : ORIGIN = 0x08004000, LENGTH = 1008K */

 flash (rx) : ORIGIN = 0x08000000, LENGTH = 1024K

 sram (rwx) : ORIGIN = 0x20000000, LENGTH = 128K

 ccsram (rwx) : ORIGIN = 0x10000000, LENGTH = 64K

}

/* Top of the user mode stack. */

_estack = 0x20020000; /* top of 128KiB of SRAM */

/* Error in the linker if heap and stack don't fit. */

_min_heap_size = 0;

_min_stack_size = 0x400;

OUTPUT_ARCH(arm)

ENTRY(Reset_Handler)

/*

 * Ensure that abort() is present in the final object. The exception handling

 * code pulled in by libgcc.a requires it (and that code cannot be easily avoided).

 */

/* EXTERN(abort) */

/* The STM32F405 has 1024Kb of FLASH beginning at address 0x0800:0000 and

 * 192Kb of SRAM. SRAM is split up into three blocks:

 *

 * 1) 112Kb of SRAM beginning at address 0x2000:0000

 * 2) 16Kb of SRAM beginning at address 0x2001:c000

 * 3) 64Kb of TCM SRAM beginning at address 0x1000:0000

 *

 * When booting from FLASH, FLASH memory is aliased to address 0x0000:0000

 * where the code expects to begin execution by jumping to the entry point in

 * the 0x0800:0000 address range.

 *

 * HWF4: In the original linker script, the first 0x4000 of flash was

 * reserved for the bootloader. For now, we'll place the application

 * at the start of flash until we start using a boot loader again.

 */

MEMORY

{

/* flash (rx) : ORIGIN = 0x08004000, LENGTH = 1008K */

 flash (rx) : ORIGIN = 0x08000000, LENGTH = 1024K

 sram (rwx) : ORIGIN = 0x20000000, LENGTH = 128K

 ccsram (rwx) : ORIGIN = 0x10000000, LENGTH = 64K

}

/* Top of the user mode stack. */

_estack = 0x20020000; /* top of 128KiB of SRAM */

/* Error in the linker if heap and stack don't fit. */

_min_heap_size = 0;

_min_stack_size = 0x400;

OUTPUT_ARCH(arm)

ENTRY(Reset_Handler)

/*

 * Ensure that abort() is present in the final object. The exception handling

 * code pulled in by libgcc.a requires it (and that code cannot be easily avoided).

 */

/* EXTERN(abort) */

Boeing Unmanned
Little Bird (AH-6)

AR.drone &
ArduCopter
(SMACCMcopter)

New electronics to
host provably secure
software

src: Rockwell Collins

© 2015 Galois, Inc. All rights reserved.

Architecture-Driven Assurance

src: Rockwell Collins

© 2015 Galois, Inc. All rights reserved.

Multiple airframes

New hardware

eChronos FreeRTOS Multiple OSes

.c .h
~100klocs autopilot,
comms, devices

security
properties

AADL
architecture

models
Design, synthesize
autopilot

Ground control
station

“Most Secure UAV in the World”

GenerateGenerate

Embedded
encrypted
datalink

Design Generate

© 2015 Galois, Inc. All rights reserved.

Languages for Secure Embedded Systems

© 2015 Galois, Inc. All rights reserved.

The Problem(s) With C

● Memory unsafe

● Undefined behavior everywhere!

● Dereferencing, arithmetic, casting, etc.

● Implementation-defined behavior everywhere!

● Type sizes, signed/unsigned types, bit-fields, type-punning, etc.

© 2015 Galois, Inc. All rights reserved.

Even Defined C is Problematic

Distilled ArduPilot bug discovered by Galois:
...
uint8_t a = 10;
uint8_t b = 250;
printf("Answer: %i, %i", a-b > 0, (uint8_t)(a-b) > 0);
...

Answer: 0, 1
Assuming int > uint8_t

© 2015 Galois, Inc. All rights reserved.

JPL's “Power of 10” Rules

1. Simple control flow (no
setjmp, longjmp, etc)

2. Loops with fixed upper
bounds

3. No dynamic memory (after
allocation)

4. Short functions

5. >= 2 assertions per function

6. Data objects in smallest
scope

7. Check return vals/args

(e.g., printf, strlen(0))

8. Limit pre-processor

9. Limit pointer usage (one
level of indirection, no func
pointers)

10.All compiler warnings are
errors

src: http://spinroot.com/gerard/pdf/P10.pdf

From convention to enforcement

© 2015 Galois, Inc. All rights reserved.

Safe Low-Level Programming

● Option #1: model-based development

© 2015 Galois, Inc. All rights reserved.

As Mike Whalen put it...

© 2015 Galois, Inc. All rights reserved.

RC Receiver

Modem

Gyro + Accel

Compass

Barometer

GPS

UART
Driver

Timer
Driver

Input
Decoder

I2C, SPI
Drivers

UART
Driver

Sensor
Fusion

Packet
Decode

Stabilization

GCS
Comms

Auto
Flight Modes

Motors

Packet
Encode

Motor
Mixing

UART
Driver

Modem

UART
Driver

Decrypt/
Auth.

Encrypt/
Sign

Sensor fusion

Device
drivers

Mode
Management &
Fault recovery

Control systems

Crypto

Networking

© 2015 Galois, Inc. All rights reserved.

Software Stack (AUTOSAR)

Application Layer

Runtime Environment

Complex
Drivers

ECU Abstraction
Layer

Services Layer

Hardware

Hardware
Abstraction Layer

Model-Based Design
(Simulink/Stateflow)

(C/C++)

Basic Software Layer

© 2015 Galois, Inc. All rights reserved.

Safe Low-Level Programming

● Option #1: model-based development

● Option #2: a posterori verification

© 2015 Galois, Inc. All rights reserved.

Safe Low-Level Programming

● Option #1: model-based development

● Option #2: a posterori verification

● Option #3: synthesis from a specification language

Or... model-based design for embedded systems

© 2015 Galois, Inc. All rights reserved.

Haskell

● Strong, static, polymorphic type checking and inference

● Pure, higher-order language—no side effects

● Functional programming for modularity: program composition
is function composition

Why Functional Programming Matters by John Hughes (1990)

© 2015 Galois, Inc. All rights reserved.

What if...

Can we have the high-level abstractions and type-safety of
functional programming in embedded systems programming?

Approaches:

● Design a new FP-inspired language/compiler from scratch?
No:

● Would take too long

● No library support

● Take the Haskell/Ocaml compiler and pair it down? No:

● The runtime system is 50KLOCs of C/C--

● Issues with timing, code size, etc.

© 2015 Galois, Inc. All rights reserved.

Embedded Domain-Specific Language

Language is “just” a powerful Haskell library

EDSL language: ~10KLOCs
C backend: ~1.5KLOCs

● Building a new specification language is
hard!

● Reduce the effort:
● Syntax & Parser
● Type Checker
● Macro language is type-safe and Turing-

complete

EDSL libs

Haskell
(Host Language)

© 2015 Galois, Inc. All rights reserved.

Compiling and Running an EDSL

© 2015 Galois, Inc. All rights reserved.

Who's Used EDSLs?

● Eaton: garbage truck controllers

● Boeing: component configuration

● Ericsson: DSP

● Xilinx: FPGA synthesis

● Soostone: high-speed trading

● ...

© 2015 Galois, Inc. All rights reserved.

Ivory

● Haskell-based EDSL for embedded
software

● High-level functional programming for
low-level programming

● Major features:

● Verification tool integration (SMT, ACL2, AADL)

● Haskell as a macro language

● Improved safety for low-level programming

Code

© 2015 Galois, Inc. All rights reserved.

Ivory: What We Added (compared to C)

● Effects

● Allocation effects: This program can't (stack) allocate memory

● Escape effects: No break is allowed in this program

● Return effects: This program contains no return statement

● References (guaranteed non-null pointers)

● Array map/fold combinators

● Safe string operators (don't depend on null termination)

● Safe bit-data manipulation

© 2015 Galois, Inc. All rights reserved.

Ivory: What's Missing (from C)

● Arbitrary heap allocation

● The stack: world's simplest collector

● Arbitrary loops

● Pointers (replaced with references)

● Implementation-defined size-types

● Side-effecting expressions

● Most undefined behavior

© 2015 Galois, Inc. All rights reserved.

Ivory Example

arrayExample :: Def('[Ref s (Array 4 (Stored Uint8))
 , Uint8
] :-> ())
arrayExample = proc "arrayExample"
 $ \arr x -> body
 $ arrayMap
 $ \ix -> do
 v <- deref (arr ! ix)
 store (arr ! ix) (v + x)

Loop over an array adding x to each element:

Type automatically
inferred

Guaranteed dereference arr at ix

Store v+x at index ix

Map over the elements of the array

© 2015 Galois, Inc. All rights reserved.

Ivory's C-Like Syntax

Loop over an array adding x to each element:

void mapProc(G*uint8_t[4] arr, uint8_t x) {
 map ix {
 let v = arr ! ix;
 *v = *v + x;
 }
}

void mapProc (uint32_t arr[], int len, uint32_t x) {
 for(int ix = 0; ix < len; ix++) {
 uint32_t v = arr[ix];
 arr[ix] = v + x;
 }
}

Concrete
Syntax

C

© 2015 Galois, Inc. All rights reserved.

Syntax Matters!

● Working with Boeing to rewrite their comms stack in Ivory

● Stanag 4586 Levels of Interoperability

● Fairly direct translation of the C++ (~1kloc)

© 2015 Galois, Inc. All rights reserved.

Type-Safe Macro Languages (1)
Language Extensions as Macros

data Cond eff = Cond IBool (Ivory eff ())
(==>) = Cond
cond [] = return ()
cond (Cond b f : cs) = ifte_ b f (cond cs)

 ifte (x >? 100)

 (store result 10)

 (ifte (x >? 50)

 (store result 5)

 (ifte (x >? 0)

 (store result 1)

 (store result 0)))

cond
 [x >? 100 ==> store result 10
 , x >? 50 ==> store result 5
 , x >? 0 ==> store result 1
 , true ==> store result 0
]

Type safe & for free

© 2015 Galois, Inc. All rights reserved.

Type-Safe Macro Languages (2)
AST Computations

src: https://en.wikipedia.org/wiki/File:AutomaticDifferentiationNutshell.png

© 2015 Galois, Inc. All rights reserved.

Automatic Differentiation

u → u
v
 = <u, u'>

● uv + vv = <u + v, u' + v'>

● sin(uv) = <sin u, u'*cos(u)> (chain rule)

● ...

© 2015 Galois, Inc. All rights reserved.

Type-Safe Macro Languages (2)
AST Computations

class Num a where
 (+) :: a → a → a
 ...

jacobianMatrixAD :: (..., Num a) => …

instance Num IvoryExp where
 (+) e0 e1 = PlusExp e0 e1
 ...

Upshot: inertial navigation
● defined in 100s of LOCs
● generates 10x C LOCs

src: https://leagueofextraordinarytechnicians.wikispaces.com/I
nertial+Navigation+Systems+-+Operation+%26+Testing

© 2015 Galois, Inc. All rights reserved.

Type-Safe Macro Languages (3)
Driver Constraints

src: http://www.bittiming.can-wiki.info/

legalTimings clk bitrate =
 [t | baud_prescalar ← [1..1024]
 , constraints...
]

© 2015 Galois, Inc. All rights reserved.

Integrated modelling, testing, verification

Ivory

Symbolic Simulator
(SMT)

Theorem Proving
(ACL2)

Property-based
testing

(QuickCheck)

© 2015 Galois, Inc. All rights reserved.

Safe Concurrency

© 2015 Galois, Inc. All rights reserved.

The Complexity of Concurrency

Datalink

Radio UART

Decrypt

GCS Receive

© 2015 Galois, Inc. All rights reserved.

From Procedures to Architectures

Problems:

● We've got safe procedures, but what about concurrency?

● Glue code: boilerplate C for system calls, IPC, task
initialization

© 2015 Galois, Inc. All rights reserved.

From Procedures to Architectures

● Assume an underlying scheduler, locking, message passing

● “Just” Ivory macros so has all the type-safety guarantee

 of Ivory—and no new code generator!

● Also generate architectural descriptions

● Our architecture EDSL is called Tower

© 2015 Galois, Inc. All rights reserved.

Concurrency Model

● Lock free thread concurrency

No locks specified by user (implemented by backends)

● Shared-state concurrency

© 2015 Galois, Inc. All rights reserved.

Monitors

● Monitor: thread-safe object:

● Shared state S

● Collection of handlers

● Monadic, composable

● Handler: Given

● Incoming channel I over alphabet Σ

● Outgoing channels O1 … On over alphabets Σi, respectively

● a handler function h: S x Σ → S x Σ1 x … Σn

● Channels:

● Active: clocks, signals

● Passive: data types

© 2015 Galois, Inc. All rights reserved.

Tower Semantics

simpleExample = do

 (tx, rx) <- channel
 per0 <- period (1`ms`)
 per1 <- period (10`ms`)

 …
 handler per0 “t0” $ do
 … Ivory code …
 emit tx 42

 handler per1 “t1” $ do
 … Ivory code …
 emit tx 99

 monitor "m” $ do
 s <- state ...
 handler rx “foo” $ do
 … Ivory code …
 … update s …

task t0:
{
 lock;
 *chan_t0 = 42;
 Ivory code...
 unlock;
 foo(chan_t0);
}

Tower Specification

foo(chan) {
 lock;
 Ivory code...
 s = *chan;
 unlock;
}

1ms 10ms

t1

foo

t0

Uniprocessor implementation

task t1:
{
 lock;
 *chan_t1 = 99;
 Ivory code...
 unlock;
 foo(chan_t1);
}

1 ms task call
library
function

10 ms task

https://leagueofextraordinarytechnicians.wikispaces.com/I

© 2015 Galois, Inc. All rights reserved.

Implementation Constraints

● No channel cycles

● All monitor computation in a mutex

● Up to the programmer to keep monitors small—critical
sections

● No nested locks—allows simple priority ceiling

● Task WCET is sum of closure of handler WCET

© 2015 Galois, Inc. All rights reserved.

Backends

Ivory/Tower

FreeRTOSPOSIX AADL

seL4eChronos

SAL

“Trusted Build”

© 2015 Galois, Inc. All rights reserved.

Common tools: Formal Methods Workbench

Trusted

Build

Architecture Translation

seL4

eChronos

A

B

C
Assump�on: Input < 20

Guarantee: Output < 2*Input

Assump�on: Input < 20

Guarantee: Output < Input + 15

Assump�on: none

Guarantee: Output = Input1 + Input2

Assump�on: Input < 10

Guarantee: Output < 50

Architecture Analysis

Architecture Models

OSATE

Resolute
Assurance Case

AGREE

Behavioral Analysis

Lute

Structural
Analysis

Kind/JKind

Src: Rockwell Collins

© 2015 Galois, Inc. All rights reserved.

SMACCMPilot

© 2015 Galois, Inc. All rights reserved.

SMACCMPilot Architecture

RC Receiver

Modem

Gyro + Accel

Compass

Barometer

GPS

UART
Driver

Timer
Driver

Input
Decoder

I2C, SPI
Drivers

UART
Driver

Sensor
Fusion

Packet
Decode

Stabilization

GCS
Comms

Auto
Flight Modes

Motors

Packet
Encode

Motor
Mixing

UART
Driver

Modem

UART
Driver

Decrypt/
Auth.

Encrypt/
Sign

© 2015 Galois, Inc. All rights reserved.

© 2015 Galois, Inc. All rights reserved.

Red Team Analysis:
Baseline System

● 3DR Radios have no security; injection and sniffing are trivial

● 3DR radios allow remote reboot into firmware update mode

● MavLink channel operates near saturation, trivial to overload
channel causing effects on Mission Planner

● MavLink protocol allows read/write of internal memory

● Mission Planner DoS

● 3DR firmware retrieved from unsecure server by Mission
Planner

© 2015 Galois, Inc. All rights reserved.

Red Team Analysis:
SMACCMPilot

● ~2 months with code and vehicle (whitebox analysis)

● Main tools: code inspection, wisdom, fuzz testing

● Main result: could not penetrate the network/vehicle

● Minor issues found:

● Replicated debugging channel left in deployed system (physical access)

● Triggered a code-level assertion

© 2015 Galois, Inc. All rights reserved.

Security for Systems

● Do the easy stuff

● Regression tests, fuzz testing, nightly builds, static analysis

● Do the easy stuff, part II

● Filter the network inputs

● Handle all possible errors

● “Hard core” formal verification isn't useful if it's surrounded by
a pile of untrusted code (microkernels aren't enough)

● Mitigations are hard

● What to do with undefined behavior?

● How to recover?

● Integrate tools/models into the build

© 2015 Galois, Inc. All rights reserved.

ivorylang.org

© 2015 Galois, Inc. All rights reserved.

smaccmpilot.org

© 2015 Galois, Inc. All rights reserved.

Questions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	GALOIS SYNTHESIS
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 41
	Slide 42
	Slide 43
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 54
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 72
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 80
	Slide 81
	Slide 83

