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Embedded Security: Where Are We At?
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Embedded Programming 1970s - 2015

Typical tools:
● Programming: C/C++
● Building: GNU Make/GCC
● Debugging: GDB
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From Embedded Systems
to Cyber Physical Systems

src: Kathleen Fisher, http://www.cyber.umd.edu/sites/default/files/documents/symposium/fisher-HACMS-MD.pdf
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Hacking Cars

New York Times
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Example Attacks

Comprehensive Experimental Analyses of Automotive Attack Surfaces, Stephen 
Checkoway et al.
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Who Needs Attackers?

LA Times

Code issues:
● Buffer overflows
● Unsafe casts
● Race conditions
● Recursion (makes stack analysis difficult)
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Aren't These Solved Problems?

● Virtualization & sandboxes

● E.g., Xen, Chrome Native Client

● High-level languages, powerful type systems

● E.g., Ocaml, Haskell

● Sound verification tools

● E.g., Frama-C, Coq
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Nope.
● Small, cheap hardware

● <1MB flash, <1MB RAM, <32-bit architecture, 10s of MHz speed

● No virtual memory

● Must control memory usage, timing

● “Hello World” in Haskell on x86_64 requires ~1MB RAM usage, ~1MB exec

● Can't even fit an OS sometimes

● Unpredictable scheduling/garbage collection

● Too complex for post-hoc verification

● Model of libc, ASM

● Concurrency
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Heterogenous Embedded Systems:
What are the properties?
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Consider an autopilot:
Not just different properties,
different kinds of properties
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Air Team Platforms

/* The STM32F405 has 1024Kb of FLASH beginning at address 0x0800:0000 and

 * 192Kb of SRAM. SRAM is split up into three blocks:

 *

 * 1) 112Kb of SRAM beginning at address 0x2000:0000

 * 2) 16Kb of SRAM beginning at address 0x2001:c000

 * 3) 64Kb of TCM SRAM beginning at address 0x1000:0000

 *

 * When booting from FLASH, FLASH memory is aliased to address 0x0000:0000

 * where the code expects to begin execution by jumping to the entry point in

 * the 0x0800:0000 address range.

 *

 * HWF4: In the original linker script, the first 0x4000 of flash was

 * reserved for the bootloader. For now, we'll place the application

 * at the start of flash until we start using a boot loader again.

 */

MEMORY

{

/* flash (rx) : ORIGIN = 0x08004000, LENGTH = 1008K */

  flash (rx) : ORIGIN = 0x08000000, LENGTH = 1024K

  sram (rwx) : ORIGIN = 0x20000000, LENGTH = 128K

  ccsram (rwx) : ORIGIN = 0x10000000, LENGTH = 64K

}

/* Top of the user mode stack. */

_estack = 0x20020000; /* top of 128KiB of SRAM */

/* Error in the linker if heap and stack don't fit. */

_min_heap_size = 0;

_min_stack_size = 0x400;

OUTPUT_ARCH(arm)

ENTRY(Reset_Handler)

/*

 * Ensure that abort() is present in the final object. The exception handling

 * code pulled in by libgcc.a requires it (and that code cannot be easily avoided).

 */

/* EXTERN(abort) */

/* The STM32F405 has 1024Kb of FLASH beginning at address 0x0800:0000 and

 * 192Kb of SRAM. SRAM is split up into three blocks:

 *

 * 1) 112Kb of SRAM beginning at address 0x2000:0000

 * 2) 16Kb of SRAM beginning at address 0x2001:c000

 * 3) 64Kb of TCM SRAM beginning at address 0x1000:0000

 *

 * When booting from FLASH, FLASH memory is aliased to address 0x0000:0000

 * where the code expects to begin execution by jumping to the entry point in

 * the 0x0800:0000 address range.

 *

 * HWF4: In the original linker script, the first 0x4000 of flash was

 * reserved for the bootloader. For now, we'll place the application

 * at the start of flash until we start using a boot loader again.

 */

MEMORY

{

/* flash (rx) : ORIGIN = 0x08004000, LENGTH = 1008K */

  flash (rx) : ORIGIN = 0x08000000, LENGTH = 1024K

  sram (rwx) : ORIGIN = 0x20000000, LENGTH = 128K

  ccsram (rwx) : ORIGIN = 0x10000000, LENGTH = 64K

}

/* Top of the user mode stack. */

_estack = 0x20020000; /* top of 128KiB of SRAM */

/* Error in the linker if heap and stack don't fit. */

_min_heap_size = 0;

_min_stack_size = 0x400;

OUTPUT_ARCH(arm)

ENTRY(Reset_Handler)

/*

 * Ensure that abort() is present in the final object. The exception handling

 * code pulled in by libgcc.a requires it (and that code cannot be easily avoided).

 */

/* EXTERN(abort) */

Boeing Unmanned 
Little Bird (AH-6)

AR.drone & 
ArduCopter
(SMACCMcopter)

New electronics to 
host provably secure 
software

src: Rockwell Collins
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Architecture-Driven Assurance

src: Rockwell Collins
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Multiple airframes

New hardware

eChronos FreeRTOS Multiple OSes
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~100klocs autopilot,
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Languages for Secure Embedded Systems
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The Problem(s) With C

● Memory unsafe

● Undefined behavior everywhere!

● Dereferencing, arithmetic, casting, etc.

● Implementation-defined behavior everywhere!

● Type sizes, signed/unsigned types, bit-fields, type-punning, etc.
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Even Defined C is Problematic

Distilled ArduPilot bug discovered by Galois:
...
uint8_t a = 10;
uint8_t b = 250;
printf("Answer: %i, %i", a-b > 0, (uint8_t)(a-b) > 0);
...

Answer: 0, 1
Assuming int > uint8_t
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JPL's “Power of 10” Rules

1. Simple control flow (no 
setjmp, longjmp, etc)

2. Loops with fixed upper 
bounds

3. No dynamic memory (after 
allocation) 

4. Short functions

5. >= 2 assertions per function

6. Data objects in smallest 
scope

7. Check return vals/args

(e.g., printf, strlen(0))

8. Limit pre-processor

9. Limit pointer usage (one 
level of indirection, no func 
pointers)

10.All compiler warnings are 
errors

src: http://spinroot.com/gerard/pdf/P10.pdf

From convention to enforcement
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Safe Low-Level Programming

● Option #1: model-based development
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As Mike Whalen put it...
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Software Stack (AUTOSAR)

Application Layer

Runtime Environment
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Safe Low-Level Programming

● Option #1: model-based development

● Option #2: a posterori verification
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Safe Low-Level Programming

● Option #1: model-based development

● Option #2: a posterori verification

● Option #3: synthesis from a specification language

Or... model-based design for embedded systems
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Haskell

● Strong, static, polymorphic type checking and inference

● Pure, higher-order language—no side effects

● Functional programming for modularity: program composition 
is function composition

Why Functional Programming Matters by John Hughes (1990)
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What if...

Can we have the high-level abstractions and type-safety of 
functional programming in embedded systems programming?

Approaches:

● Design a new FP-inspired language/compiler from scratch? 
No:

● Would take too long

● No library support

● Take the Haskell/Ocaml compiler and pair it down? No:

● The runtime system is 50KLOCs of C/C--

● Issues with timing, code size, etc.
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Embedded Domain-Specific Language

Language is “just” a powerful Haskell library

EDSL language: ~10KLOCs
C backend: ~1.5KLOCs

● Building a new specification language is 
hard!

● Reduce the effort:
● Syntax & Parser
● Type Checker
● Macro language is type-safe and Turing-

complete

EDSL libs

Haskell
(Host Language)
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Compiling and Running an EDSL
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Who's Used EDSLs?

● Eaton: garbage truck controllers

● Boeing: component configuration

● Ericsson: DSP

● Xilinx: FPGA synthesis

● Soostone: high-speed trading

● ...
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Ivory

● Haskell-based EDSL for embedded 
software

● High-level functional programming for 
low-level programming

● Major features:

● Verification tool integration (SMT, ACL2, AADL)

● Haskell as a macro language

● Improved safety for low-level programming

Code
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Ivory: What We Added (compared to C)

● Effects

● Allocation effects: This program can't (stack) allocate memory

● Escape effects: No break is allowed in this program

● Return effects: This program contains no return statement

● References (guaranteed non-null pointers)

● Array map/fold combinators

● Safe string operators (don't depend on null termination)

● Safe bit-data manipulation
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Ivory: What's Missing (from C)

● Arbitrary heap allocation

● The stack: world's simplest collector

● Arbitrary loops 

● Pointers (replaced with references)

● Implementation-defined size-types

● Side-effecting expressions

● Most undefined behavior
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Ivory Example

arrayExample :: Def('[ Ref s (Array 4 (Stored Uint8))
                     , Uint8
                     ] :-> ())
arrayExample = proc "arrayExample"
  $ \arr x -> body
  $ arrayMap
  $ \ix -> do
      v <- deref (arr ! ix)
      store (arr ! ix) (v + x)

Loop over an array adding x to each element:

Type automatically
inferred

Guaranteed dereference arr at ix

Store v+x at index ix

Map over the elements of the array
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Ivory's C-Like Syntax

Loop over an array adding x to each element:

void mapProc(G*uint8_t[4] arr, uint8_t x) {
  map ix {
    let v = arr ! ix;
    *v = *v + x;
  }
}

void mapProc (uint32_t arr[], int len, uint32_t x) {
  for(int ix = 0; ix < len; ix++) {
    uint32_t v = arr[ix];
    arr[ix] = v + x;
  }
}

Concrete
Syntax

C
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Syntax Matters!

● Working with Boeing to rewrite their comms stack in Ivory

● Stanag 4586 Levels of Interoperability

● Fairly direct translation of the C++ (~1kloc)
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Type-Safe Macro Languages (1)
Language Extensions as Macros

data Cond eff = Cond IBool (Ivory eff ())
(==>) = Cond
cond [] = return ()
cond (Cond b f : cs) = ifte_ b f (cond cs)

 ifte (x >? 100)

  (store result 10)

  (ifte (x >? 50)

    (store result 5)

    (ifte (x >? 0)

      (store result 1)

      (store result 0)))

cond
  [ x >? 100 ==> store result 10
  , x >? 50  ==> store result 5
  , x >? 0   ==> store result 1
  , true     ==> store result 0
  ]

Type safe & for free
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Type-Safe Macro Languages (2)
AST Computations

src: https://en.wikipedia.org/wiki/File:AutomaticDifferentiationNutshell.png
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Automatic Differentiation

u → u
v
 = <u, u'>

● uv + vv = <u + v, u' + v'>

● sin(uv) = <sin u, u'*cos(u)> (chain rule)

● ... 
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Type-Safe Macro Languages (2)
AST Computations

class Num a where
  (+) :: a → a → a
  ...

jacobianMatrixAD :: (..., Num a) => …

instance Num IvoryExp where
  (+) e0 e1 = PlusExp e0 e1
  ...

Upshot: inertial navigation
● defined in 100s of LOCs
● generates 10x C LOCs

src: https://leagueofextraordinarytechnicians.wikispaces.com/I
nertial+Navigation+Systems+-+Operation+%26+Testing
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Type-Safe Macro Languages (3)
Driver Constraints

src: http://www.bittiming.can-wiki.info/

legalTimings clk bitrate =
  [ t | baud_prescalar ← [1..1024]
      , constraints...
  ]
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Integrated modelling, testing, verification

Ivory

Symbolic Simulator
(SMT)

Theorem Proving
(ACL2)

Property-based
testing

(QuickCheck)
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Safe Concurrency
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The Complexity of Concurrency

Datalink

Radio UART

Decrypt

GCS Receive
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From Procedures to Architectures

Problems:

● We've got safe procedures, but what about concurrency?

● Glue code: boilerplate C for system calls, IPC, task 
initialization 
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From Procedures to Architectures

● Assume an underlying scheduler, locking, message passing

● “Just” Ivory macros so has all the type-safety guarantee

 of Ivory—and no new code generator!

● Also generate architectural descriptions

● Our architecture EDSL is called Tower
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Concurrency Model

● Lock free thread concurrency

No locks specified by user (implemented by backends)

● Shared-state concurrency
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Monitors

● Monitor: thread-safe object:

● Shared state S

● Collection of handlers

● Monadic, composable

● Handler: Given

● Incoming channel I over alphabet Σ

● Outgoing channels O1 … On over alphabets Σi, respectively

● a handler function h: S x Σ → S x Σ1 x … Σn

● Channels:

● Active: clocks, signals

● Passive: data types
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Tower Semantics

simpleExample = do

  (tx, rx) <- channel
  per0 <- period (1`ms`)
  per1 <- period (10`ms`)

   …
    handler per0 “t0” $ do
       … Ivory code …
       emit tx 42

    handler per1 “t1” $ do
      … Ivory code …
      emit tx 99 

   monitor "m” $ do
     s <- state ...
    handler rx “foo” $ do
      … Ivory code …
      … update s  … 

task t0:
{
  lock;
  *chan_t0 = 42;
  Ivory code...
  unlock;
  foo(chan_t0);
}

Tower Specification

foo(chan) {
  lock;
  Ivory code...
  s = *chan;
  unlock;
}

1ms 10ms

t1

foo

t0

Uniprocessor implementation

task t1:
{
  lock;
  *chan_t1 = 99;
  Ivory code...
  unlock;
  foo(chan_t1);
}

1 ms task call
library
function

10 ms task

https://leagueofextraordinarytechnicians.wikispaces.com/I
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Implementation Constraints

● No channel cycles

● All monitor computation in a mutex

● Up to the programmer to keep monitors small—critical 
sections

● No nested locks—allows simple priority ceiling

● Task WCET is sum of closure of handler WCET
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Backends

Ivory/Tower

FreeRTOSPOSIX AADL

seL4eChronos

SAL

“Trusted Build”
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Common tools: Formal Methods Workbench

Trusted

Build

Architecture Translation

seL4

eChronos

A

B

C
Assump�on: Input < 20

Guarantee: Output < 2*Input

Assump�on: Input < 20

Guarantee: Output < Input + 15

Assump�on: none

Guarantee: Output = Input1 + Input2

Assump�on: Input < 10

Guarantee: Output < 50

Architecture Analysis

Architecture Models

OSATE

Resolute
Assurance Case

AGREE

Behavioral Analysis

Lute

Structural 
Analysis

Kind/JKind

Src: Rockwell Collins
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SMACCMPilot
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SMACCMPilot Architecture
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Red Team Analysis:
Baseline System

● 3DR Radios have no security; injection and sniffing are trivial

● 3DR radios allow remote reboot into firmware update mode

● MavLink channel operates near saturation, trivial to overload 
channel causing effects on Mission Planner

● MavLink protocol allows read/write of internal memory

● Mission Planner DoS

● 3DR firmware retrieved from unsecure server by Mission 
Planner
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Red Team Analysis:
SMACCMPilot

● ~2 months with code and vehicle (whitebox analysis)

● Main tools: code inspection, wisdom, fuzz testing

● Main result: could not penetrate the network/vehicle

● Minor issues found:

● Replicated debugging channel left in deployed system (physical access)

● Triggered a code-level assertion
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Security for Systems

● Do the easy stuff

● Regression tests, fuzz testing, nightly builds, static analysis

● Do the easy stuff, part II

● Filter the network inputs

● Handle all possible errors

● “Hard core” formal verification isn't useful if it's surrounded by 
a pile of untrusted code (microkernels aren't enough)

● Mitigations are hard

● What to do with undefined behavior?

● How to recover?

● Integrate tools/models into the build
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ivorylang.org



© 2015 Galois, Inc. All rights reserved.

smaccmpilot.org
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Questions
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