
Representing Swarm Behaviors
Chris Shaver, Marjan Sirjani

University of California Berkeley, Reykjavik University



The Context



Swarm Applications
Swarm Applications are distributed across a collection of diverse computational devices. Many of
these devices are sensors, embedded systems, and mobile entities.

1 / 37



Swarm Applications : Features
Concurrent Execution
Message Sending
Dynamic Configurability
Dynamic Process Creation
Code Mobility
Semantic Heterogeneity

2 / 37



Swarm Processes
Swarm Processes are collections of behaviors that describe what happens in a Swarm Application.

3 / 37



Swarm Processes
Questions :

How do we describe these processes?
How do we deal with complex features such as code mobility and topological dynamicity?
How do we deal with heterogeneity?
How do we specify, verify, and synthesize?
What is the logic of these processes?

4 / 37



An MoCC for The Swarm
What will this consist of?

A representation/model for behaviors.
A formal description of swarm processes in terms of these behaviors.
A language to describe swarm applications.
A formal semantics connecting this language to swarm process representations.
An assertional language that forms observational atomic propositions about swarm processes.
A logic language (with quantifiers, like LTL) to formulate swarm application
requirements/contracts.
Verification/synthesis tools.

5 / 37



Example: Home Automation



Home Automation

6 / 37



Registering a Device



Registering a Device

7 / 37



Registering a Device

8 / 37



Registering a Device

9 / 37



Registering a Device

10 / 37



Registering a Device

11 / 37



Registering a Device

12 / 37



Registering a Device

13 / 37



Configuring an Application



Configuring a Device

14 / 37



Configuring a Device

15 / 37



Configuring a Device

16 / 37



Configuring a Device

17 / 37



Configuring a Device

18 / 37



Configuring a Device

19 / 37



Configuring a Device

20 / 37



Configuring a Device

21 / 37



Configuring a Device

22 / 37



Configuring a Device

23 / 37



Existing Models



Traces / Interleavings
There is a plethora of literature using traces to develop concurrent semantics. But,

tailored to a fixed collection of concurrent processes.
exhaustively overdetermined and processes must be closed over symmetries.
often assumes a knowledge of states.
processes often require prefix closures to account for observational states.
more broadly, observational states are conflated with process states.

And yet, LTL makes this a very supported approach.

24 / 37



Event Systems / True Concurrency
Event Systems are worked on by Winskell et al. and provide a more direct, more ontological model
for what happens in a process. It is more attractive that the atomic element is an event, but,

based on partial orders, hence transitively closed.
compositions are awkward, because of transitive closure.
relatedly, dependencies are not directly described in an ontological form.

25 / 37



A New Concurrent Representation



Events are unique instances of something happening in a behavior.

an operation being performed on a machine.
a message being sent or received
a reaction to other events: interrupts, application events, etc...
a physical quantity being measured as having a certain
measurement
a process being created

Events and Dependencies

26 / 37



Dependencies indicate conditions or information upon which an
event depends as a consequence of another event.

an operation depending on the conclusion of the previous
operation in a sequential process
a message received depending on a message having been sent
a sensor reaction depending on a physical quantity passing a
certain threshold
a read-blocked operation depending on the reception of a
message
an event-handler firing depending on the appearance of an event
a read from a message queue depending on the previous read
from the same queue

Events and Dependencies

27 / 37



Ontological Event Graphs describe
fragments what happened in a Swarm
Process, ontologically, independent of the
perspective. They consist of events and
dependencies. Dependencies can either be
connected to an event or open ended
(indicated by the star), suggesting and
incoming or outgoing connection to
preceding or following events.

Ontological Event Graphs

28 / 37



OEG Composition
OEGs can be composed in parallel or sequentially by attaching open dependencies. This can be
typed, of course.

29 / 37



OEG Prefixes

30 / 37



Perspective



Observations

31 / 37



Epistemological Event Graphs

32 / 37



Epistemological Event Graphs

33 / 37



For any two observational states, there are
always exist paths to bring them into a
common confluent observational state. This
is like the Church-Rosser property!

Confluence

34 / 37



Example: Home Automation



Here, an OEG can be given for a fragment
of behavior associated with the actions in
the configuration example. Orange
arrows are control dependencies, green
arrows are communication, and purple
arrows are initialization. Red boxes are
allocation events.

Configuring an Application

35 / 37



Conclusions



Progress on this work.
Currently working on the mathematical details.
Planning software tools to generate and manipulate OEGs and EEGs
More examples!?
Develop languages of assertion and logic formulas.
Connecting with language design work: ReActors.

36 / 37



Thanksabunch!

37 / 37


