
Chess Review
October 4, 2006
Alexandria, VA

Edited and presented by

Model-Based Design

Janos Sztipanovits
Vanderbilt University

ITR Review, Oct. 4, 2006"Model Based Design", J. Sztipanovits 2

Model-Based Design

Model-based design focuses on the formal
representation, composition, and
manipulation of models during the design
process.

ITR Review, Oct. 4, 2006"Model Based Design", J. Sztipanovits 3

System Composition Approaches

Component Behavior

Interaction

Scheduling/
Resource Mapping

Modeled on different levels of abstraction:
•Generalized transition systems
(FSM, Time Automata, Cont. Dynamics, Hybrid),
fundamental role of time models

• Precise relationship among abstraction levels
• Research: dynamic/adaptive behavior

Expressed as a system topology :
• Module Interconnection (Nodes, Ports, Connections)
• Hierarchy
• Research: dynamic topology
Describes interaction patterns among components:
• Set of well-defined Models of Computations (MoC)
(SR, SDF, DE,…)

• Heterogeneous, precisely defined interactions
• Research: interface theory (time, resources,..)
Mapping/deploying components on platforms:
• Dynamic Priority
• Behavior guarantees
• Research: composition of schedulers

ITR Review, Oct. 4, 2006"Model Based Design", J. Sztipanovits 4

Tool Composition Approaches

Domain-Specific Design Flows and
Tool Chains:
• ECSL - Automotive
• ESML - Avionics
• SPML - Signal Processing
• CAPE/eLMS

MIC Metaprogrammable Tool Suite:
(mature or in maturation program)
• Metamodeling languages
• Modeling Tools
• Model Transformations
• Model Management
• Design Space Construction and Exploration
• Tool Integration Framework

Semantic Foundations (work in progress):
• Semantic Anchoring Environment (SAE)
• Verification
• Semantic Integration

Domain-Specific Tools;
Design Environments

Metaprogrammable
Tools, Integration
Frameworks

Semantic Foundation

ITR Review, Oct. 4, 2006"Model Based Design", J. Sztipanovits 5

Intersection of System and
Tool Composition Dimensions

Component Behavior

Interaction

Resource Modeling
(Schedule)

Domain-Specific
Tools, Tool Chains

Metaprogrammable
Tools, Environments

Semantic Foundation;

Compositional
Semantics

Metamodels,
Metamodel
Composition &
Metaprogrammable
Tool Chain
Composition

Model
Composition in
Domain-Specific
Design Flows

Semantic Units and
Semantic
Anchoring

ITR Review, Oct. 4, 2006"Model Based Design", J. Sztipanovits 6

Domain Specific Design Flows
and Tool Chains

• Integration of tools into tool chains
– ECSL – Control
– ESML - Avionics
– SPP - Signal Processing
– FCS – Networked Embedded Systems
– SCA – Software Defined Radio

• Integration among tool frameworks:
Metropolis, Ptolemy II, MIC,
Simulink/Stateflow, ARIES, CheckMate,…

• www.escherinstitute.org

ITR Review, Oct. 4, 2006"Model Based Design", J. Sztipanovits 7

Intersection of System and
Tool Composition Dimensions

Component Behavior

Interaction

Resource Modeling
(Schedule)

Domain-Specific
Tools, Tool Chains

Metaprogrammable
Tools, Environments

Semantic Foundation;

Compositional
Semantics

Metamodels,
Metamodel
Composition &
Metaprogrammable
Tool Chain
Composition

Model
Composition in
Domain-Specific
Design Flows

Semantic Units and
Semantic
Anchoring

ITR Review, Oct. 4, 2006"Model Based Design", J. Sztipanovits 8

 ∈=Υ Υ rRrCD |{),(

Semantic Domain:
Set-Valued

Domain models
Interchange Formats

Abstract Syntax
Meta-models

MC

MS

interface Event
structure ModelEvent
implements Event
case ModelEvent1

Structural Semantics

• Modeling & Metamodeling
• Model Data Management
• Model Transformation
• Tool Integration
• Design-Space Exploration

Syntactic Layer

ITR Review, Oct. 4, 2006"Model Based Design", J. Sztipanovits 9

Common Semantic Domain: Hybrid Automata

Domain Models and Tool Interchange Formats: Tool Chains

DESERT

AIRES

OSEK/
Code

ECSL-DP
GME

Simulink
Stateflow

SL/SF
ECSL-DP

ECSL-DP
MOML

ECSL-
DP

AIF

S
L/S

F
D

S
E

E
D

PC

Vehicle Control Platform (VCP)

Abstract Syntax and Transformations: Meta-Models

SL/SF
Meta-Model

ECSL-DP
Meta-Model

AIRES
Meta-Model

CANOE

DESERT
Meta-Model

SFC
Meta-Model

ECSL-DP
SFC

SL/SF
ECSL-DP

ECSL-DP
MOML

ECSL-DP
AIF

SL/SF
DESERT

Metamodeling View of a
Tool Chain

ITR Review, Oct. 4, 2006"Model Based Design", J. Sztipanovits 10

Simulink/StateFlow
(DSMLSL/SF)

Component Model

SW Architecture Model
(DSMLSL/SF,CM)

SL/SF
Functional blocks – SW Component Mapping

Objective: Optimize the SW architecture
by selecting a component model and by
allocating functions to components.
Platform: Heterogeneous Dataflow
Component Model
Tools:
GME, GReAT, C Compiler, WCET Analyzer

CM

Need for Metamodel Composition:

ITR Review, Oct. 4, 2006"Model Based Design", J. Sztipanovits 11

• Goal: Composing modeling languages (not
models)

• Metamodel composition methods in the
Generic Modeling Environment (GME):
– Class Merge
– Metamodel Interfacing
– Class Refinement
– Template Instantiation
– Metamodel Transformations

Solutions for Compositional
Metamodeling

ITR Review, Oct. 4, 2006"Model Based Design", J. Sztipanovits 12

Metamodel Interfacing

Class Merge

Class Refinement

Metamodel Composition Methods

ITR Review, Oct. 4, 2006"Model Based Design", J. Sztipanovits 13

Complex model transformations can be formally
specified in the form of executable graph
transformation rules

G/T semantics is very powerful but the
implementation needs to be tailored for
efficiency

GReAT is an open source, metamodel-based
model transformation language supported
by tools: modeling tool, rewriting engine,
code generator and debugger. It is based
on attributed/typed graph matching, multi-
domain rewriting rules, and explicitly
sequenced rewriting operators.

Highlights of GReAT extensions: shared
spaces, sorting of match results, cross-
products of matches, higher-order
operators (groups)

Applications of GReAT:
• Simulink/Stateflow verifying code generator
• Several model transformation tools in

embedded system toolchains
• Semantic anchoring of domain-specific

modeling languages

Concept: Metamodel-based Transformations

Language: Graph Transforms

Toolsuite: GReAT

Summary of Progress in Model
Transformations

(Karsai et al, 2005-2006)

ITR Review, Oct. 4, 2006"Model Based Design", J. Sztipanovits 14

Model Transformations for Schedule Generation:

Implicit Platform Modeling for Analysis:

Explicit Platform Modeling Language:

Major Applications of Model
Transformations

(Karsai et al, 2005-2006)

ITR Review, Oct. 4, 2006"Model Based Design", J. Sztipanovits 15

Structural Semantics of Models
and Metamodels

We followed a formal logic approach to
structural semantics. A metamodel is mapped to
a set of n-ary function symbols and constraints
over an associated Herbrand Universe.

These are the function symbols and some
constraints for the example metamodel

We use an inference procedure to prove well-formedness or mal-
formedness. This inference mechanism is well-defined an tool independent.

We have constructed an automatic theorem prover that answers
questions about structural semantics (see poster).
(Jackson, Sztipanovits 2006)

ITR Review, Oct. 4, 2006"Model Based Design", J. Sztipanovits 16

Intersection of System and
Tool Composition Dimensions

Component Behavior

Interaction

Resource Modeling
(Schedule)

Domain-Specific
Tools, Tool Chains

Metaprogrammable
Tools, Environments

Semantic Foundation;

Compositional
Semantics

Metamodels,
Metamodel
Composition &
Metaprogrammable
Tool Chain
Composition

Model
Composition in
Domain-Specific
Design Flows

Semantic Units and
Semantic
Anchoring

ITR Review, Oct. 4, 2006"Model Based Design", J. Sztipanovits 17

• Step 1
– Specify the DSML <A, C, Mc> by using MOF-based metamodels.

• Step 2
– Select appropriate semantic units L = < Ai, Ci, MCi, Si, MSi> for the

behavioral aspects of the DSML.
• Step 3

– Specify the semantic anchoring MA = A -> Ai by using UMT.

MA

SiCi

Ai

MCi MSi

SUiCS

A

MC MS

DSML

MOFADSMLi MOFASUiMTLTDSML,SUi

MOF UMT MOF

Mi: MOFADSML→MOFASUi

Transformation
T

MSi: Ai→Si

MS= MSi ○MA Semantic Unit iDSML

Semantic Anchoring of DSML-s

(Chen and Sztipanovits, 2005-2006)

ITR Review, Oct. 4, 2006"Model Based Design", J. Sztipanovits 18

Operational
Semantics

Spec.

Model
Trans. Rules

(MA)

DSML
Metamdoel

(A)

GME
Toolset

GReAT Tool

Mc InstanceGenerate

Domain Model
(C)

Semantic Unit
Metamodel

(Ai)

Model
Checker

Model
Simulator

Test Case
Generator

AsmL ToolsSemantic Unit Spec.

Data Model

Instance

XSLT ASM Semantic ASM Semantic
FrameworkFramework

Metamodeling and Model Transformation Metamodeling and Model Transformation
ToolsTools

Formal Framework for Semantic Units Formal Framework for Semantic Units
SpecificationSpecification

Domain Model
(Ci)

Abstract
Data Model

• Tools for Semantic Unit
Specification
– ASM: A particular kind of

mathematical machine, like
the Turing machine. (Yuri
Gurevich)

– AsmL: A formal specification
language based on ASM.

• Metamodeling and Model
Transformation Tools
– GME: Provide a MOF-based

metamodeling and modeling
environment.

– GReAT: Build on GME for
metamodel to metamodel
transformation.

(Microsoft Research)

Transformation
Engine

Experimental Tool Suite for
Semantic Anchoring

ITR Review, Oct. 4, 2006"Model Based Design", J. Sztipanovits 19

Operational
Semantics

Spec.

Model
Trans. Rules

(MA)

Transformation
Engine

HFSML
Metamodel

(A)

GME
Toolset

GReAT Tool

Mc InstanceGenerate

Domain Model
(C)

FSM
Metamodel

(Ai)

FSM-SU Specification

Data Model

Instance

XSLT
ASM Semantic ASM Semantic

FrameworkFramework

FSM Model
(Ci)

Abstract
Data Model

Example: HFSML -> FSM-SU; 1/3

ITR Review, Oct. 4, 2006"Model Based Design", J. Sztipanovits 20

Operational
Semantics

Spec.

Model
Trans. Rules

(MA)

Transformation
Engine

HFSML
Metamodel

(A)

GME
Toolset

GReAT Tool

Mc InstanceGenerate

Domain Model
(C)

FSM
Metamodel

(Ai)

FSM-SU Specification

Data Model

Instance

XSLT
ASM Semantic ASM Semantic

FrameworkFramework

FSM Model
(Ci)

Abstract
Data Model

structure Event

 eventType as String

class State

 id as String

 initial as Boolean

 var active as Boolean = false

class Transition

 id as String

abstract class FSM

 id as String

 abstract property states as Set of State

 get

 abstract property transitions as Set of Transition

 get

 abstract property outTransitions as Map of <State, Set of Transition>

 get

 abstract property dstState as Map of <Transition, State>

 get

 abstract property triggerEventType as Map of <Transition, String>

 get

 abstract property outputEventType as Map of <Transition, String>

 React (e as Event) as Event?

 step

 let CS as State = GetCurrentState ()

 step

 let enabledTs as Set of Transition = {t | t in outTransitions (CS) where

e.eventType = triggerEventType(t)}

 step

 if Size (enabledTs) = 1 then

 choose t in enabledTs

 step

 // WriteLine ("Execute transition: " + t.id)

 CS.active := false

 step

 dstState(t).active := true

 step

 if t in me.outputEventType then

 return Event(outputEventType(t))

 else

 return null

 else

 if Size(enabledTs) > 1 then

 error ("NON-DETERMINISM ERROR!")

 else

 return null

Example: HFSML -> FSM-SU; 2/3

ITR Review, Oct. 4, 2006"Model Based Design", J. Sztipanovits 21

Operational
Semantics

Spec.

Model
Trans. Rules

(MA)

Transformation
Engine

HFSML
Metamodel

(A)

GME
Toolset

GReAT Tool

Mc InstanceGenerate

Domain Model
(C)

FSM
Metamodel

(Ai)

FSM-SU Specification

Data Model

Instance

XSLT
ASM Semantic ASM Semantic

FrameworkFramework

FSM Model
(Ci)

Abstract
Data Model

Example: HFSML -> FSM-SU; 3/3

ITR Review, Oct. 4, 2006"Model Based Design", J. Sztipanovits 22

Intersection of System and
Tool Composition Dimensions

Component Behavior

Interaction

Resource Modeling
(Schedule)

Domain-Specific
Tools, Tool Chains

Metaprogrammable
Tools, Environments

Semantic Foundation;

Compositional
Semantics

Metamodels,
Metamodel
Composition &
Metaprogrammable
Tool Chain
Composition

Model
Composition in
Domain-Specific
Design Flows

Semantic Units and
Semantic
Anchoring

ITR Review, Oct. 4, 2006"Model Based Design", J. Sztipanovits 23

d1a1 F1

d2a2 F2

d3a3 F3

Component-based Analysis

• Incremental design
– Associative composition

• Independent implementability
– No global checks

F1k(F2kF3)
(F1kF3)kF2

?=

d1a1 F1

d2a2 F2

d3a3 F3

(F1kF3)kF2

º
d1a1 F1

d2a2 F2

d3a3 F3

(F1kF3 kF3’)k (F2kF2’)

(Matic and Henzinger, 2006)

ITR Review, Oct. 4, 2006"Model Based Design", J. Sztipanovits 24

Real-time Interface

requests bounded by a

capacity larger than c

Assumption Guarantee
output latency bounded by d

Output rate function id
id(t) = i(t+d)

Interface predicate
input
output

(Matic and Henzinger, 2006)

ITR Review, Oct. 4, 2006"Model Based Design", J. Sztipanovits 25

Interface Algebra

• Composition operation ||

• Connection operation +

• Refinement relation ·
F’ refines F if
– SF µ SF‘
– for each port valuation of F there exists a valuation of F’ :

k =

F1k F2
F1 F2

c1+c2 · 1

F + SF
S

+ {π1π2}
i1+i12 · a1
i2+id1

12 · a2

(Matic and Henzinger, 2006)

ITR Review, Oct. 4, 2006"Model Based Design", J. Sztipanovits 26

Algebra Properties

Incremental design
– (FkG)kH is defined

) Fk(GkH) is def. Æ (FkG)kH = Fk(GkH)

– (FkG)©S is defined

) (F©S)kG is def. Æ (FkG)©S = (F©S)kG
Independent refinement
– FkG is defined Æ F’ F

) F ’ k G is def. Æ F ’ k G FkG

– F©S is defined Æ F’ F

) F ’ © S is def. Æ F ’ © S F©S

for all j=1,…,n: F’j Fj

E(F’1,…,F’n) E(F1,…,Fn)

¹

¹

¹

¹

¹

¹

(Matic and Henzinger, 2006)

	Model-Based Design
	Model-Based Design
	System Composition Approaches
	Tool Composition Approaches
	Intersection of System and Tool Composition Dimensions
	Domain Specific Design Flows and Tool Chains
	Intersection of System and Tool Composition Dimensions
	Syntactic Layer
	Metamodeling View of a �Tool Chain
	Need for Metamodel Composition:
	Solutions for Compositional �Metamodeling
	Metamodel Composition Methods
	Summary of Progress in Model�Transformations
	Major Applications of Model Transformations
	Structural Semantics of Models �and Metamodels
	Intersection of System and Tool Composition Dimensions
	Semantic Anchoring of DSML-s
	Experimental Tool Suite for �Semantic Anchoring
	Example: HFSML -> FSM-SU; 1/3
	Example: HFSML -> FSM-SU; 2/3
	Example: HFSML -> FSM-SU; 3/3
	Intersection of System and Tool Composition Dimensions
	Component-based Analysis
	Real-time Interface
	Interface Algebra
	Algebra Properties

