New Innovative Technologies for Cyber Physical Societal Scale Systems: Top Down Meets Bottom Up

Edited and presented by
Prof. S. Shankar Sastry,
Director, Center for Information Technology Research in the Interest of Society
Prof of EECS and Bioengineering
University of California, Berkeley

Chess Review
October 4, 2006
Alexandria, VA
Steady Pace of Technology Push

• A period of tremendous advances in the 20th century: automotive, aerospace, nuclear, micro-electronics, communications and computing, the world wide web, photonics, MEMS.

• Technology push continues apace
 - Information Technology
 - Nano-technologies
 - Bio-technologies
 - Convergence of computing and communications
 - Neuronal and other human machine interfaces
Opportunities Abound

- Engineering is now poised to reach outwards to bring technology in at least two different areas in addition to the traditional window into the physical sciences: mathematics, physics, chemistry and statistics:
 - Social Sciences: especially Business, Law, Public Policy
 - Biological Sciences: especially Molecular and Cell Biology, Surgical and Clinical Departments, Neuronal technologies and imaging, Psychology, and Prosthetics, Public Health

- Big challenges are in multi-disciplinary projects

- Aspirations of the engineering community in terms of impact have grown: bigger projects, seeing projects through incubation to uptake by industry and society
Societal Needs

- **New (Renewed) Critical Infrastructures**
 - Transportation
 - Water
 - Electricity
 - Cyber, financial, e-government
 - Oil and Gas

- **Energy (cf. Moniz and Deutsch reports)**
 - Alternative Sources: solar, hydrogen, bio-fuels
 - Decentralized generation and consumption
 - Nuclear fuel
 - Demand Side: HVAC, ...
Societal Needs

• Health Care
 - Rapid bug to drug
 - Better sensing and monitoring
 - Better delivery using ICT
 - Telemedicine/telesurgery
 - Tissue Engineering/Prosthetics

• Homeland Security
 - Less vulnerable and recoverable infrastructures
 - Command and control for reconstituting damaged infrastructures
 - Security with privacy in information exchange and gathering
Societal Needs

- National Security
 - Unmanned vehicles (UXVs)
 - Human centered automation
 - Networked Systems (GIG)
 - Embedded Software and Systems
 - Propulsion
 - Space access, exploration

- Data Storage, Query and Retrieval
 - "Semantic Web"
 - Multi-modal data annotation, query
 - Search beyond Google
 - Data integrity, provenance and privacy
New Challenges from NAE 2020

- Fresh Water Shortages
- Ageing Infrastructure
- Energy Demands
- Global Warming
- New Diseases (pandemics)
- Security
- Globalization
CYBER-PHYSICAL SYSTEMS

- Societal Systems need the best new technologies incorporated into them.
- Societal Systems = Cyber Physical Systems need to be
 - Embedded
 - High Confidence
 • Correct by Construction
 • Fault tolerant
 • Resistant to attack
 - Evolvable (able to accept new technologies)
 • Fusion of bio, info, nano
 - Integration of social, economic and legal considerations
Mote Evolution

<table>
<thead>
<tr>
<th>Mote Type Year</th>
<th>(\text{WeC}) 1998</th>
<th>(\text{René}) 1999</th>
<th>(\text{René}) 2000</th>
<th>(\text{Dot}) 2000</th>
<th>(\text{Mica}) 2001</th>
<th>(\text{Mica2Dot}) 2002</th>
<th>(\text{Mica 2}) 2002</th>
<th>(\text{Telos}) 2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mote</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microcontroller</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>AT90LS8535</td>
<td>ATmega163</td>
<td>ATmega128</td>
<td>TI MSP430</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Program memory (KB)</td>
<td>8</td>
<td>16</td>
<td>128</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAM (KB)</td>
<td>0.5</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active Power (mW)</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>60</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sleep Power (μW)</td>
<td>45</td>
<td>45</td>
<td>75</td>
<td>75</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wakeup Time (µs)</td>
<td>1000</td>
<td>36</td>
<td>180</td>
<td>180</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonvolatile storage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chip</td>
<td>24LC256</td>
<td>AT45DB041B</td>
<td>ST M24M01S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connection type</td>
<td>(\text{T}^2 \text{C})</td>
<td>SPI</td>
<td>(\text{T}^2 \text{C})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size (KB)</td>
<td>32</td>
<td>512</td>
<td>128</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communication</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radio</td>
<td>TR1000</td>
<td>TR1000</td>
<td>CC1000</td>
<td>CC2420</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data rate (kbps)</td>
<td>10</td>
<td>40</td>
<td>38.4</td>
<td>250</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modulation type</td>
<td>OOK</td>
<td>ASK</td>
<td>FSK</td>
<td>O-QPSK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Receive Power (mW)</td>
<td>9</td>
<td>12</td>
<td>29</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transmit Power at 0dBm (mW)</td>
<td>36</td>
<td>36</td>
<td>42</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Consumption</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum Operation (V)</td>
<td>2.7</td>
<td>2.7</td>
<td>2.7</td>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Active Power (mW)</td>
<td>24</td>
<td>27</td>
<td>44</td>
<td>89</td>
<td>38.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Programming and Sensor Interface</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expansion</td>
<td>none</td>
<td>51-pin</td>
<td>51-pin</td>
<td>none</td>
<td>51-pin</td>
<td>19-pin</td>
<td>51-pin</td>
<td>10-pin</td>
</tr>
<tr>
<td>Communication</td>
<td>IEEE 1284 (programming) and RS232 (requires additional hardware)</td>
<td>USB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integrated Sensors</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td></td>
</tr>
</tbody>
</table>
Sensor Web Applications Taxonomy

- Understanding phenomena: Data collection for offline analysis
 - Environmental monitoring, habitat monitoring
 - Structural monitoring
- Detecting changes: Thresholds, phase transitions, anomaly detection
 - Security systems, surveillance
 - Wildfire detection
 - Fault detection, threat detection
- Real-time estimation and control:
 - Traffic control, building control, environmental control
 - Manufacturing and plant automation, power grids, SCADA networks
 - Service robotics, pursuit evasion games, active surveillance, search-and-rescue, capture, telesurgery

"Vistas in Cyber Physical Systems", S. Sastry
Ubiquitous Computing and Comms: instrumenting the world
Next Generation SCADA/DCS: Cyber Control of our Physical Infrastructures

- Our critical physical infrastructures depend on SCADA and DCS. SCADA and DCS depend on the gathering, monitoring, and control of information from distributed sensing devices.
- The advent of advances in wireless network embedded systems for distributed sensing devices and software, present an opportunity for a new generation of secure critical physical infrastructures.

"Vistas in Cyber Physical Systems", S. Sastry
The Demand Response (DR) Project
California Energy Commission (CEC)

What kinds of technology do you need so that your utility can send you a price signal every 15 minutes?

• Small cheap radios (PicoRadios)
• Small cheap sensors to measure temperature etc. that are made by our Berkeley Sensor and Actuator Center
• Small cheap computers not running conventional PC OS but a tiny operating system to run thermostats etc. (TinyOS)
• How to control your appliances from wireless signals
• Try to run all this without batteries (energy scavenging)

Source: Prof. Paul Wright
2. New Meter conveys real-time usage, back to service provider
3. Wireless beacons throughout the house allow for fine grained comfort/control
Privacy Issues in Sensor Webs

• What privacy rules, practices, & technologies promote better security?
• What level of security is necessary to promote privacy and confidentiality?
• How can we achieve appropriate levels of investment in security to ensure appropriate levels of actual security?
• When is necessary to access private information in order to provide security?
 - What technical tools, legal policies, practices are necessary to control or monitor such access?
ICT for Health Care Delivery

- We spend $2 T per year in health care (16% of GDP).
- 10% of population over 60 expected to grow to 25% by 2030.
- 55-60% of hospital health care is labor (source: Kaiser Permanente)
- Huge opportunities to make a difference in continuous monitoring (tele-medicine) for chronic conditions, elder care.
- Electronic Medical Records infrastructure implementation: need to work with (Cal) RHIO (Regional Health Information Offices), Medicare, VA and providers (billing of telemedicine services), and privacy/security.
Healthcare Information Technology

- Rise in mature population
 - Population of age 65 and older with Medicare was 35 million for 2004
- New types of technology
 - Electronic Patient Records
 - Telemedicine
 - Remote Patient Monitoring
- Empower patients:
 - Access to own medical records
 - Control the information
 - Monitor access to medical data
- Regulatory compliance

Table compiled by the U.S. Administration on Aging based on data from the U.S. Census Bureau.

Percentage of Population over 60 years old
Global Average = 21%
United Nations • “Population Aging • 2002”
Unintended Consequences: Electronic Medical Records

Source: Dan Masys Vanderbilt

"Vistas in Cyber Physical Systems", S. Sastry
Privacy and regulatory issues

- Health Insurance Portability and Accountability Act of 1996 (HIPAA)
 - Right to access their medical records
 - Right to request amendments, accounting of disclosures, etc.
 - HIPAA Security Rule (2005): requires healthcare organizations to
 - Protect for person-identifiable health data that is in electronic format

- Complexity of privacy
 - Variable levels of sensitivity: “sensitive” in the eye of multiple beholders
 - No bright line between person-identifiable and “anonymous” data

- Complexity of access rights and policies
 - Simple role-based access control is insufficient
 - Governing principles: “need-to-know” and “minimum disclosure”
Information Technology for Assisted Living in Homes (ITALH)

- Telemedicine is part of our approach
- It also includes smart monitors and sensors
 - Detect and alert the user and/or care providers of
 - Accidents
 - Acute illness
 - Deterioration of condition
 - This will allow the user to remain at home in a safe and secure environment and delay the transition to group care facilities
The ITALH System

"Vistas in Cyber Physical Systems", S. Sastry

ITR Review, Oct. 4, 2006
Smart Sensors in the environment and on the people

- The monitors and sensors include embedded software systems which can autonomously detect events of concern, e.g.:
 - **Wearable sensors**
 - Fall sensors
 - Heart rate or pulse monitors
 - **Stationary sensors**
 - Motion detectors
 - Camera systems

- On their own, we can not expect to have sufficient accuracy, however in combination they will
Components: Gateways

- **Mobile gateway**
 - Using mobile telephones, with Symbian OS and Bluetooth wireless for wearable sensors
 - Data interface and alert activated systems have been developed
 - This allows user to have continuous monitoring away from home as well
 - Currently targeting SMS for signaling, voice for communications, video conferencing in the future
Intelligent infrastructures

- Energy
- Water
- Health Care

- Cyber-infrastructure
- Natural Disasters
- Transportation

For intelligent infrastructures, CHESS provides the leverage for:
- Reusable technology - hardware platforms (motes) Common elements - sensors, MEMS-sensors,
- Common software - TinyOS, TinyDB, Deluge, Drain,...
- Common labs
 - Testbeds at Berkeley (Soda, Etcheverry, Cory)
- Common infrastructure is raising all boats
Intelligent infrastructures

• CHESS advances have reduced the cost, size, and power consumption of micro-sensors and wireless interfaces. Software and database tools are shared between all the sub-projects in “intelligent infrastructure”

• Systems can:
 - Sense phenomena at close range
 - Be embedded into environment
 - Perform monitoring
 - Inferencing: next challenge
 - Control: will need to be “silver bullet”

• These systems are revolutionizing
 - Energy and water management
 - Environmental monitoring
 - Emergency response scenarios
 - Medical services

"Vistas in Cyber Physical Systems", S. Sastry
From Sensor Webs to Cyber Physical Systems

From Monitoring

To Control

"Vistas in Cyber Physical Systems", S. Sastry

ITR Review, Oct. 4, 2006
Concluding Remarks

• Need to build on success in Hybrid and Embedded Systems, Network Embedded Systems, Cyber TRUST systems.

• Cyber physical systems: societal scale systems with high confidence needs: compositional design of complex systems.

• Need to integrate societal considerations: security, usability, economics and privacy considerations into technology agenda.

• Modular curriculum elements needed for industry, engineering and social sciences.