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Abstract

We introduce a model-based approach to heterogsrsstem design that enables the automatic gemeraitifault

trees for analyzing system reliability propertie3.his approach extends our previous work that esdeie the
generation of fault trees from a dataflow modeh this new context, heterogeneous systems are c&dpof

interacting discrete-time components, such as ectrehic feedback controller, and continuous-timenponents,
such as a plant. More recent work in computeréhidelt-tree generation methods is based on funatimodels of
the system to produce a system fault tree autoallgtic Yet, most of these approaches were not agptd

heterogeneous systems. Furthermore, these appsoaeshinued to rely on intuition to create faudigs. Since in
this approach fault tree generation is disjointfrthe system modeling, consistency problems mae avhen the
structure and behavior of the system model is cotiately reflected. Our approach is differencsinve use a
model of the system specified as a set of mathealatiquations to derive the system fault modes wdtihately

produce fault trees for heterogeneous systems.

Introduction

Increasing complexity of real-time feedback consgétems coupled with time-to-market pressures paompted

system engineers and reliability experts to assessafety and reliability properties early in thesign cycle at the
system level. In this context, complex engineersygtems are heterogeneous. Heterogeneous systerisn

components that interact according to rules thay differ from component to component. For examjatean

electromechanical system, there are mechanical coemis that interact according to Newton's laws, there are
electronic components that interact according tochaff's laws. Consequently, different formalisimsve been
developed to specify system behavior within theBpective domains for modeling, simulation, andyesi® For

example, in the case of an analog electrical systdsutrical circuits are often used to specifyliledavior.

Fault tree analysis is used to measure, estimatepeedict dependability characteristics of a systd®ependability
includes reliability and safety properties. Farde analysis focuses on one undesired event avilps a graphical
structure, called &ault treg which illustrates the sequences of events tteat te the occurrence of that undesired
event. This paper considers the generation oft fimeks, but we must mention that other dependgpldata
structures exist, such as Markov chains, evens trediability block diagrams, and Bayesian netvgoidr capturing
the reliability properties of a system. A fauleéris in general constructed manually from desjgecidication
documents and intuition by highly skilled and expeced subject-matter experts. Due to increaseteisy
complexity, constructing fault trees manually cantlme-consuming, and the fault tree constructiooc@ss may
introduce inconsistencies with the system intertulthvior.

In this paper, a methodology is described thatrlyes the advances of computer-assisted designdadlfault tree
analysis for investigating properties and explorthg design space of complex engineering systemsgathe
reliability dimension. The method specifies a hegeneous system in a model that may be used tdaamsystem
behavior. From this model, a fault tree reliapitiiata structure is generated. The resulting taedt is then used as
input into existing reliability tools for generagimuantitative and qualitative metrics.



Fault Trees

A reliable and dependable system should providimiénded behavior in a correct and timely manriére inability

of a system to provide this performance is refeteds afailure. Activities in any system can lead to a defect,
omission, incorrectness, or otHfeaw that enters into, or develops within that systefinen, a fault is a flaw, and a
set of faults may lead to a system failure. Ong teaassess a system failure is usirigudt tree

Events Fault events in a fault tree are eitlderived eventsr basic events A top evenis an undesirable derived
event that one wishes to evaluate in a fault tfEee top event is specifiepriori, and it is the root of the fault tree.
Derived events can always be “explained” (modekesl)a logical combination of other everBasic eventare
atomic events that may not be derived any furthence, they are the leaves of the fault tree.theronvords, a basic
event is an input failure event for the systemtfande. Determined at the discretion of the analyasic events
typically correspond to the atomic components gystem

Gates The fault tree relates input and output faulergs with logical symbols. Symbols that encodechalg
relationships are referred to gates Gates can take as inputs basic events or oat@uits of other gates (derived
events). Common gates with Boolean logic semairidsde theAND andOR gates. Other gates may be used in a
fault tree, such as a conditional logic relatiopshiVe consideAND andOR gates only in this paper.

Fault Tree ConstructionThere is no precise universal method for cowsitng a fault tree. However, over the years
a general procedure to guide fault tree constrodims been developed (ref. 1). One of the fiegisstn constructing

a fault tree is to identify a top event and therimtaries of the system structure and behavior. tAfs®p events and
the level of resolution for the analysis are idiéedi. Then, the system analyst determines thest@mt of interest
and all possible events leading to its occurrendext, the first level of events that immediatebntribute to a top
event is linked to it in the fault tree using aitogate. Then the second level of contributindtfauents is identified
and linked to the fault tree using logic gatesnally, this process is repeated until basic evefhthe system are
identified. In practice, fault trees are constedctnanually following this procedure.

Related Work

There have been attempts at generating fault aetsnatically. Approaches are typically differémtthe type of
input data structure used to systematically geeetfs¢ fault tree and the way failure modes arebated to the
system components. Failure modes determine howpaeoemts in a system fail. Fault tree analysisifiscdlt
because the input data structures used for gengrtite tree are typically not the system design etsod Many
design models do not contain enough informationhsas failure modes and error propagation, to sugpe fault
tree construction. Instead, such information appeareports that are used to build data strusttn@m which fault
trees are generated.

For example, in (refs. 2, 3, 4), labeled directedpfs are constructed to describe explicitly thesesand-effect
relationships between process variables and prasessonment. The graphs are constructed mantralty design
documents and knowledge of the system behavioesd lgraphs are then transformed into a fault thee method
developed by Fussell (ref. 5), each component ielactrical system schematic has a small faulttinagis used to
embed failure modes of the component. The systant free is composed from the individual faulteseof the
components. Thus, the approaches above produdedsttactures that are not easy to build, reusd, leep
consistent with the system design models; fault esodre described by a small set of discrete vakmed,the
intermediate data structures can become comptaitiig applicability for large systems.

More promising approaches focused on integratirmyigh detail in the models used for designing amaikiting the
system, for example into block diagram schematicsl@ehavioral models. These models describe betktthctural
dependencies and the behavior of components isytsiem. However, many of the methods are domaiciipe
and they do not generally apply to a complex sys#emexample is the method developed by De Vrie§ @) for
analog electrical circuits which quantifies faulbdes. In contrast, methods such as the ones eepiorteferences 7
and 8 address digital systems where each compaméin¢ system model is annotated with a small $elistrete
fault modes without quantifying the fault. For exae) in these approaches, a parameter of a compasen



qualitatively labeled as “too high” or “too low” drdoes not quantify the fault in terms of a rediiga Furthermore,
fault events for the system fault tree are devaldpam the fault modes that are annotated on thepoment models.

Our approach is different since:

e the use of a model-based design paradigm mairttaénsystem specification, while providing a suffiaily
accurate model of behavior interactions betweeiouaphysical domains;

- fault trees may be generated from this specificatiwore accurately and with higher confidence than
manual methods. Rather than relying on expertiesviedge, fault events are determined by lookinthat
type of modeling components in the system model,

< our fault tree generation procedure may be applietynthesizing fault trees automatically for thegmse
of design exploration along the reliability dimeosi

Model-Based Fault Tree Generation

A model is generally represented as a set of iotéig symbols. The set of symbols and rules foerpreting a
composition of those symbols is knownrasdel of computatiofref. 9). One of the challenges of modeling any
system is choosing the right level of abstractiod the model of computation that expresses releaspects of a
system. Numerous design tools and languages faielmg various abstractions and behaviors of hgereous
systems include Simulink with Stateflow (ref. 1®odelica (ref. 11), Ptolemy (ref. 12), and Metrapdtef. 13).

The approach presented here takes advantage oflingpdapabilities in advanced tools to generataudt ftree
based on a structural and behavioral model of arbgéneous system. We have considered the case wahe
complex engineering system is described as exhgpiliscrete and continuous behaviors across diffetemains
(e.g., electrical, mechanical, and digital,). For exémnponsider an electronic controller interactinighve physical
process (or plant) as in Figure 1.

Figure 1- Electronic Feedback Controller and Plant

Electronic Controller In digital control systems, the outputs of aene¢éntary controller block can be any function
of its inputs. Hence, the relationships betwegmuis and outputs are typically not the transfer atutage of
physical energy. For example, the Fast Fourien3ftam of a set of physical signals can form ameletary control
block. This control block works with (energy-lessiormation signals, or sequences of data. A ttatamodel of
computation calledrault Tolerant Data Flow(FTDF) was used to model an electronic contralereference 14.
The new method presented in this paper extendBBd method to consider the plant during the geimraf the
fault tree. This allows expressing time-depends@nts such as a variable’s rate of change betieeplant and
the digital controller. This paper focuses on tiethod for generating a fault tree for the pla@ur method for
generating a fault tree for the digital controtb@n be found in reference 15.




Physical ProcessThis section details the approach taken in phiger to model the physical process of a complex
engineering system for the purpose of systemafig@herating a fault tree. The elementary objéctghysical
process are:

< adynamical systerthat exhibits continuous-time behavior as presttiby the laws of physics,

« the interconnections between physical objectsdhaly real physical energy.

The physical process typically encompasses diffeir@eracting energy domains, such as mechanigalallic,
electrical, and magnetic. The behavior of a dyeahsystem is characterized by continustzge variablessuch as
velocity, and componerarameters such as a vehicle’s mass. In particular, we idenshe system dynamics,
which can be formulated as an initial-value OrdnBifferential Equation (ODE) problem (ref. 12).h& general
form is given in equations 1, 2, and 3.

X = f(x, u, t) (1)
y =g(xu,t (2)
X0 =% ®)

where,t € ®,, t 2 t,, a real number, is continuous time. At any titme(t) € ®", ann-tuple of real numbers, is the
state of the systemu(t) € ®" is them-dimensional input of the system(t) € & is thel-dimensional output of the

system;x(t) € ®" is the derivative ok with respect to time, i.e. X'(t) = dx(t)/dt Given a known input waveform

u(t), and initial conditionx () = Xo, the solution to system dynamics (eqn. 1) is &estamveformx(t) in then-
dimensional space such that at all tinzety, the derivative of the waveform(t) is givenby f(x(t), u(t), t)

In general, there are two common specificationsJB®ESs, the conservation-law model and the sigreal thlock-

diagram model (ref. 16). The conservation-law magmeralizes different energy domains ifimv and across

variables. Energy conservation laws govern the Wiehaf those variables in a unified mathematicainfiework.

Examples that use the conservation-law model dpatign include Bond Graphs (ref. 17) and equivaksmalog

circuits (ref. 18). ODEs may also be specifiedtigh a signal flow graph model. The signal flowmr model is a
directed graph where edges represent input or bstgoals, and nodes compute a function that mamst isignals
to output signals, as shown in Figure 2.
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Figure 2 — Conceptual Signal Flow Graph

The signals in Figure 24, X', x, andy, are continuous waveforms flowing from one blogkhe next. Since time is
shared by all blocks, it is not considered an inpiit any fixed timet, if the values(t) andu(t) are givenx’(t) and
y(t) can be found by evaluating (i.e. simulatidx), u, t)andg(x, u, t) For the purpose of fault-tree generation, the
signal flow model is of greater use because it jole an intuitive way of capturing the causalityatienship
between model components, integrating other maafet®mputations, and offering flexibility to thestgm analyst
for modeling different abstraction levels.

System Model SpecificationIn this paper, we chose to identify four diffiereypes of blocks that are commonly
used in signal flow graphs and that are usefulunapproach to generating fault trees of dynamstesys. Across
different design tools, like Ptolemy and Matlabe thyntax of these blocks may differ slightly; hoervthe
mathematical relationship between input and oudrtals is the same.
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Figure 3 — Signal Flow Graph Symbols

Coefficient blocks When a system variable is multiplied by a caéffit, this function is represented by a
coefficient block, as shown in Figure 3(a). Thegufe includes the mathematical operation represeby the block
and its input and output variables, as do all bdook Figure 3. The directed edges into and outhef block
represent signal flow, and they are not necessegjiyesentative of physical connections. The $atoefficient
blocks in the signal flow grapkg, is denoted byBc.

Summation blocks A summation block is used when a variable isa¢do the sum of two or more other system
variables; the relationship between its outputiapdt signals is shown in Figure 3(b). The sesuwhmation blocks
in Gis Bs.

Integration blocks An integration block is used when a system Vdeids the time-integral of another system
variable. Its functional relationship between itput and output signals is shown in Figure 3(¢c)he set of
integration blocks iIG is B.

Input blocks Input blocks are system variables that are mpouthe dynamic system. These blocks have ndsnpu
and they represent external variables to the syst&tme mathematical relationship between its inud output
signals are shown in Figure 3(d). The set of ifpatks inG is Bg.

We can formally represent the signal flow grapla arected graptG = (V, E) where the set of verticeg,= Bc U
Bs U B, U By, and a directed edge,= (v, V'), represent signal flow whese € V is a source node; € Vis a

destination node, argle E.

Fault Trees and System Models

Fault Model A fault event, and consequently a fault treeg Enapshot of the system captured at a speciiit jyo
time. In this paper, we only consider the faultd@iofor which any eveng € {0, 1}, a Boolean value. Hence, if an

evente = 0, the event has not occurred at the given poititne, and conversely, & = 1, the event is said to have
occurred. Essentially, we enumerate the possitdaroence of faults for each parameter and variabiiee model.

No combination of occurrences is considered becaitheour current fault model we do not quantifulfa. Hence,
we must assume that a single fault may propagatmasked to the next level up in our tree. As aillteshe
corresponding fault tree will only conta®R gates. For example, if three forcefg, (, f3), are acting on a point in
the system model then a branch in the tree woulé haOR gate and underneath tldR gate there would be three
events. The parent event occurs as soon as dpO8&f, ORf; fails. Clearly, if the combinatiofh ANDf; is true,
so is the formuld, ORf, ORf;, so we do not need to use aki\D gates.

Fault Tree Generation Procedur&his section describes how to traverse systealftithe system mode(;, and
generate fault events for the system fault tFee, The general steps are outlined in Figure 4
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Figure 4 — Systematic Fault Tree Generation Method

First, we select a specific edge on the system htodéefine the top evengr. The signal of the selected edge is
placed at the root of the fault tree as the tojmevé is traversed backward to the next source noddf v is an
integral block, a derived event that describeste-dapendent fault is added to the tree, e.g. tdeldts”. If the
rate-dependent fault cannot be developed furthdre¢éomes a basic event. vifis a coefficient block, then each
parameter describing the coefficient block is addee basic event to the tree. For example, dfedficient block is
described as a function of two constant parametesadc, then two events would be entered into the treeuan
ORgate asrh faults” and ¢t faults” respectively. If is a summation block, then a derived event istetktor each
edge incident to , and the backward traversal continues along eazitiént edge until an input block is visited or
until all nodes inG have been visited. When an input block is visitie variable is added to the tree as a basic
event.

Case Study: Armature Dynamics of a Pulse-Width Maigd Solenoid Valve

The case study is a pulse-width modulated solewaliek. In particular, we focus on modeling thectieal circuit
and armature motion. The system model is shoviigare 5.

Nonlinear differential equations govern the dyna€the solenoid valve. In particular, a simplifidescription of
the armature dynamics is given in equation 4.

mx” = R+ Ao Ps— Ksx — G X’ (4)
5= 0.5 B Aluo (5)

B p/A (6)

@ = 1IN (Vsoi — Isol R) (7)

The armature is subject to several forces that cloame different physical domains, the mechanicadgnetic, and
hydraulic ones. The net force on the armaturegigetomx”. The hydraulic force is the product between the
orifice areaA,, and the supply pressuf®, The spring force acting on the subsystem isrghsethe spring constant
Ks times the armature displacementand the damping coefficie, times the armature velocity. The solenoid
force is given byFs,. Fsq can be further defined by equation 5, where the density,B, is a function of the flux,

¢, and area of the air gap, between the steel armature and the inductor efethctrical circuit. The electrical
circuit is described by equation 7, whexg is the input voltage to the circuit, is the currentR is the resistance,



andN is the number of loops in the inductor of the witc Many more parameters influence the systengdebut
to reduce space, we only highlight the main equatiand their parameters. The parameters are lunmped
coefficient blocks in the system model shown inurgg5. These parameters &g:=f (C,, m), G=f (Ks, m), G =
f(Ao, m), G=F(m), G=1(A uo) G = (R, N), G=f(A), andGe = f (N).

e, =x"fails

G5, 7P, x" L X'
J |

8

Figure 5 — A Signal Flow Graph of Armature Dynamics

Results The procedure we used for systematically geimgrat fault tree is applied to the system modefigure 5.
The resulting fault tree is given in Figure 6. Tthee was developed manually, and it took 45 mmteconstruct
the tree from our procedure. In contrast to pcattinethods, it only took a single iteration toigeshe tree because
we followed a structured system model that capttitesvariables and parameters of interest. Thi fiee that is
produced by our method results in a hierarchicz twith fault events that may be refined to expadeditional
model parameters and variables.

Looking at the resulting fault tree, one can cleade the dependency relationship between variapfgameters,
and their effects on the top event. The tree alowt only to determine which basic events may keathe top
event, but also how the fault propagates throughstfstem. Input blocks and parameters are basitt®gince no
additional information is given regarding their w@é or mathematical composition. Variables arévedrevents
produced by input blocks. If numerical values Yariables are calculated, it is then possible tiindecach fault
event more precisely, such as “a variable-param@tiuct is outside its nominal range”, where a imamrange
may contain a maximum and minimum real number.
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Figure 6 — Generated Fault Tree

Conclusions

We presented a method for generating fault trestesatically that extends our previous work ongame topic.
Since the fault tree encodes the cause-and-e#ftattanship between components, the method presenteides an
intuitive way of interpreting fault events at vargilevels of abstraction. The system model, whigly be described
by a set of differential equations, is given asgna flow graph. The graph may be integrated with previous
work to analyze the dependencies between subsystems

With the results presented here, we are able tergémn fault trees for dynamical systems with a digevel of
confidence. The method is systematic, and asuitrésprovides structure to intuitive methodsgehnerating fault
trees. This also means that the procedure mautbenated, much like our previous work in referehbe

Future Work

As we detailed in Section “Fault Trees and Systeoddls”, one must define what a "fault event" is in theegi
context. We identified two main levels of detaidtitan be represented in the model and in the smoreling fault
tree. Clearly, other levels are also possible, ddipg on the amount of information, the specifiplagation, or the
designers’ judgment.

In thefirst level the object of this paper, the only informatioreagi to us is a topological system model. A fault
event simply indicates that for a given variablgoarameter a potential fault may occur. We dospetify why the



fault occurs, nor do we quantify the deviation ba state or on the value of parameters. We jusivkhat a fault
"may" occur.

If the user provides more information in the mode$n we can yield more details in the fault tré@asecond level
of detail the user may specify redundancy explicitbr example inserting objects similar to mukipérs in the data
flow. Once the traversal algorithm visits the ripléixer-like object, it will know that only one dffie input arcs will
be used to produce the output, hence they are deditin In reference 15, the designers use spetBFFractors and
communication media to specify similar redundamdgrimation. Fault events are still defined aspb&ential for a

variable or parameter to fail. As in our previousrkv(ref. 15),AND gates will appear because of redundancy. We
are working on an extension of this paper to addiies second level of detalil.
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