Abstract: The initial 1-2 minutes of operation of an automotive spark-ignition engine, commonly called as the "coldstart" period, produces more than 75-80% of the hydrocarbon (HC) emissions in a typical drive cycle. Model-based controller development requires accurate, yet simple, models that can run in real-time. Simple, intuitive models are developed to predict both tailpipe hydrocarbon (HC) emissions and exhaust temperature during coldstart. Each of the models is chosen to be sum of first order linear systems based on the experimental data and ease of parameter identification. Inputs to these models are AFR, spark timing and engine crankshaft speed. A reduced order thermodynamic model for the catalyst temperature is also developed. The parameters are identified using least squares technique. The model estimates for the coldstart are compared with the experimental results with good agreement. Submitted to Fifth IFAC Symposium on Advances in Automotive Control

Keywords: Coldstart, Engine Thermal Model, Catalyst Model

1. INTRODUCTION

As regulations on emissions for automotive engines become more stringent, the reduction of hydrocarbon (HC) emissions during coldstart continues to pose a relevant challenge for the industry. Developing simple models which can run in real-time is necessary to design controllers using the model-based paradigm.

A lot of interest has been shown in modeling and analysis of engine and catalyst subsystems for coldstart analysis. The initial work on physically based dynamic engine models that account for the

throttle dynamics and intake manifold dynamics can be traced back to (Powell 1979) and (Dobner 1983). It was further modified by (Moskwa and Hedrick 1987) and (Cho and Hedrick 1989). Recent work on engine subsytems modeling can be found in (Tunestal and Hedrick 2001), (Balluchi et al. 2001), (Shaw and Hedrick 2002), (Zavala et al. 2006), (Sanketi et al. 2006b), (Shaw and Hedrick 2002) and references therein developed models for engine-out exhaust gas temperature (T_{exh}) and raw HC (HC_{raw}). In this paper, simple, intuitive models for T_{exh} and HC_{raw} are developed. Each of these is modeled as a sum of first order linear systems based on the experimental data and ease of parameter identification. Inputs to these models are air to fuel ratio (AFR), spark

1 czavala@me.berkeley.edu
timing and engine crankshaft speed (ω_e). AFR, spark and changes in ω_e are related to the combustion stability. (See Sec. 2.1 and 2.2).

Modeling and analysis of catalysts is also important for coldstart controller design. These range from very complex ones to simplified ones which are more suitable for closed-loop control. Some of the important contributions are (Ohsawa et al. 1998), (Shen et al. 1999), (Chan and Hoang 1999), (Jones et al. 2000), (Brandt et al. 2000), (Fiengo et al. 2002), (Shaw et al. 2002), (Brandt et al. 2000), (Fiengo et al. 2002), (Shaw et al. 2002), (Koltsakis and Tsinoglou 2003), (Sanketi et al. 2006a) and references therein. The catalyst model presented here is an improved version of the model developed in (Sanketi et al. 2006a). A thermodynamic energy balance is used to model the catalyst temperature (T_{cat}). Further, thermal diffusivity calculation is used to reduce the order of the catalyst temperature model. (See Sec. 2.3).

The contribution of this paper lies in developing new simplified models for HC_{raw}, T_{exh} and T_{cat}. Our goal is to develop a simplified model-based controller for coldstart. A MIMO sliding controller for coldstart designed using these models is presented in another paper submitted to the same symposium.

2. MODEL OF PLANT

The model presented here has been developed based on the influence of the AFR, engine speed and spark timing on T_{exh} and HC_{raw}. AFR and spark timing directly affect the combustion process. In addition, changes in engine speed affect the cylinder pressure and hence, the quality of combustion. Experiments indicated that the engine speed was having a more noticeable influence on HC_{raw} and T_{exh} as compared to the intake air flow rate. Also, each of the chosen inputs can be modified easily to observe the effect on T_{exh}, which simplifies the process of modeling, The T_{exh}, HC_{raw} and T_{cat} submodels have been simulated together with an engine model presented in (Cho and Hedrick 1989) and (Sanketi et al. 2006b).

2.1 Exhaust Temperature Model

Through experiments, it was observed that T_{exh} was responding almost like a first order linear system to each of the input variables. Hence, the output was modeled as a set of three first order linear systems running in parallel that relate the three variables mentioned before to T_{exh}. The block diagram shown in Fig.1 illustrates the idea. It should be noted that however, the inputs have been offset around certain nominal value

\[w_e \rightarrow \frac{1}{\tau_1 s + k_1} \]

\[AFR \rightarrow \frac{1}{\tau_2 s + k_2} \]

\[\Delta_{spark} \rightarrow \frac{1}{\tau_3 s + k_3} \]

Fig. 1. Block Model for Exhaust temperature model

The experiments shown in Fig.2 through 5 illustrate the effect of inputs on exhaust temperature- T_{exh} in the model and saturations have been applied, too. Negative actuation has also to be ruled out. Though this model does not follow any physics-based combustion modeling, it is intuitive; and it is simple and suitable for engine controller design.

Figures 2 through 5 illustrate the effect of inputs on T_{exh}. Retarding the spark, increasing the engine speed and a richer AFR lead to an increase in T_{exh}. T_{exh} is slower in response to AFR and engine speed as compared to the spark timing. Also, the effect of spark timing was found to be more prominent than that of others. The parameters of the model were obtained for the coldstart period using least squares.
Fig. 4. Experiments showing the effect of inputs on exhaust temperature- RPM

Fig. 5. Experiments showing the effect of inputs on exhaust temperature- AFR

Fig. 6. Comparison between measured and computed exhaust temperature for a coldstart run

Fig. 7. Comparison between measured and computed exhaust temperature for several coldstart runs

Fig. 8. Block Model for hydrocarbon emissions

2.2 Hydrocarbon Emissions Model

The raw hydrocarbon emissions HC_{raw} was also modeled as a sum of first-order linear systems, very similar in concept to that of T_{exh}. It makes sense since both HC_{raw} and T_{exh} are products of the same process. As in the case of T_{exh}, three linear subsystems describe the interaction between AFR, engine speed and spark timing with the hydrocarbon emissions. However, the input offsets are different than those used for the T_{exh} model. Fig.8 illustrates the concept of the model.

Figures 9 through 12 illustrate the effect of inputs on HC_{raw}. Retarding the spark above certain value, decreasing the engine speed and a richer AFR lead to an increase in HC_{raw}. HC_{raw} is much faster in response to AFR as compared to the engine speed and the spark timing. Also, the effect of AFR was found to be more prominent than others. The parameters of the model were obtained for the coldstart period using least squares.

Fig.13 shows the comparison between the model and the experimental hydrocarbon emissions for a coldstart run and Fig.14 shows the comparison of the model and experimental hydrocarbon
Fig. 9. Experiments showing the effect of inputs on raw emissions—HC_{raw}.

Fig. 10. Experiments showing the effect of inputs on raw emissions—AFR.

Fig. 11. Experiments showing the effect of inputs on raw emissions—RPM.

Fig. 12. Experiments showing the effect of inputs on raw emissions—Spark.

Fig. 13. Comparison between measured and computed hydrocarbon for one coldstart run.

Fig. 14. Comparison between measured and computed hydrocarbon for several coldstart runs.

effects in ppm over several experiments. The largest errors occur during the transients close to the peak of the emissions which is the period when the signal changes more rapidly, whereas the errors are lower at steady state. Overall, the mean error was 388.7233 ppm with a standard deviation of 959.3685 ppm.

2.3 Catalyst Model

This part describes the physics that governs the catalyst warm up including the water condensation and evaporation effect. The simplified catalyst model has a structure similar to that described in (Sanketi et al. 2006a). Here, a thermal diffusivity calculation is used to show that the gas comes in equilibrium with the solid before it leaves the catalyst, thus making unnecessary the use of different states for the catalyst solid temperature and the gas temperature.

A single cell of the catalytic converter is analyzed. The time scale required for the gas and the honeycomb mass to come in equilibrium is given by

$$t_{\text{diff}} = \frac{d^2}{\alpha}$$ \hspace{1cm} (1)

where, the characteristic length d for diffusion is equal to half the cell side length and α is thermal diffusivity of the gas. This was compared with
the time required for the gas to travel through the catalyst, which was calculated using the average exhaust gas flow rate in a typical coldstart. The calculations were performed at three different temperatures spanning the coldstart. The results are shown in Table 1.

Table 1. Time for travel and diffusion time scale

<table>
<thead>
<tr>
<th>No.</th>
<th>Gas Temp. (K)</th>
<th>Time Travel (s)</th>
<th>Diffusion Time Scale (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>350</td>
<td>0.1114</td>
<td>0.0559</td>
</tr>
<tr>
<td>2</td>
<td>550</td>
<td>0.0709</td>
<td>0.0269</td>
</tr>
<tr>
<td>3</td>
<td>700</td>
<td>0.0557</td>
<td>0.0183</td>
</tr>
</tbody>
</table>

From table 1, it can be seen that the time taken by the gas to travel through the catalyst is two to three times the time scale for the gas to come into equilibrium with the catalyst solid mass. Hence, for our analysis, we can assume that the gas and the solid mass of the catalyst are at the same temperature and modeling the catalyst requires only one temperature state instead of two.

2.4 Model Equations

The catalyst temperature depends on the heat obtained from the feedgas flowing into the catalyst, the amount of heat generated due to oxidation of pollutants from the feedgas (Q_{gen}) and the heat transfer to the surroundings (Q_{out}). In addition to these heat transfers, heat is lost due to evaporation of the moisture in the catalyst (Q_{ev}). This moisture is accumulated in the initial few seconds of operation due to condensation of vapor on the cold surface of the catalytic converter. When the temperature reaches the saturation temperature of the condensed vapor, the vapor starts evaporating. Due to the heavy heat loss in evaporation, the catalyst temperature remains almost constant or increases at a very low rate. Thus, there is a plateau in the temperature profile. The catalyst temperature dynamics can be summarized as follows.

During the plateau:

$$\dot{T}_{cat} = \frac{1}{m_{gas}C_p + MC_p}[\dot{\bar{h}}_{ev} + \dot{Q}_{gen} - \dot{Q}_{ev}]$$

otherwise

$$\dot{T}_{cat} = \frac{1}{m_{gas}C_p + MC_p}[\dot{\bar{h}}_{ev} + \dot{Q}_{gen} - \dot{Q}_{out}]$$

$$\dot{Q}_{ev} = \dot{\bar{m}}_{ev}\Delta h_{ev}$$

where, $\dot{\bar{m}}_{ev}$ is the exhaust gas flow rate, M is the solid mass of the catalyst, m_{gas} is the mass of the gas inside the catalyst, $\dot{\bar{h}}_{ev}$ is the mass rate of evaporation and Δh_{ev} is the enthalpy of evaporation at the corresponding saturation temperature. It is not straightforward to find Q_{ev} directly. Hence, it is calculated implicitly using a method that is similar to that used in (Sanketi et al. 2006a). It employs a parameter adaptation algorithm that uses the T_{cat} measurement to find Q_{ev} through Q_{out}. Readers are encouraged to read (Sanketi et al. 2006a) for details.

Fig.15 shows the comparison of the model versus experimental data for an engine coldstart run. Fig.16 shows the comparison between the model and the experimental values for exhaust temperature over several coldstart experiments. Overall, the mean error was 10.4227 C with a standard deviation of 22.2439 C.

3. CONCLUSIONS

Simplified control-oriented models of engine-out hydrocarbon emissions (HC_{raw}), exhaust temperature (T_{exh}), and catalyst temperature (T_{cat}) were presented. HC_{raw} was modeled as a sum of first order linear systems with three different inputs namely, air-fuel ratio AFR, spark timing and engine speed ω_c. Such a model structure was based
on the experimental data and ease of parameter identification. The structure of the T_{exh} model was chosen similar to that of HC_{raw}. A reduced order thermodynamic model for the catalyst temperature was developed using thermal diffusivity analysis. The parameters were identified using least squares methodology. The model estimates during the warm-up agreed well with the experimental results. A MIMO sliding controller for coldstart designed using these models is presented in another paper submitted to the same symposium.

4. ACKNOWLEDGEMENTS

Authors acknowledge the financial support provided by CONACYT (Consejo Nacional de Ciencia y Tecnología de Mexico) and by the Center for Hybrid and Embedded Software Systems (CHESS) at UC Berkeley, which receives support from the National Science Foundation (NSF award #CCR-0225610), the State of California Micro Program, and the following companies: Agilent, Bosch, DGIST, General Motors, Hewlett Packard, Infineon, Microsoft, National Instruments, and Toyota.

REFERENCES

