
Determinism in Event-Triggered Distributed Systems
with Time Synchronization*

Edward A. Lee, Slobodan Matic

Electrical Engineering and Computer Sciences
University of California, Berkeley
{eal, matic}@eecs.berkeley.edu

Abstract

We study event processing in locally distributed real-
time systems. The objective is to use event-triggered
communication together with a time-synchronization
protocol, in particular, IEEE 1588 over Ethernet, to
achieve the similar level of determinism as in statically
scheduled time-triggered systems. Given a distributed
application with component properties and input event
rate characterization, we discuss an analytic procedure
that bounds performance parameters. These parameters
are also necessary for deterministic implementation of
the application. The procedure is experimentally
evaluated on a setup with standard software and
networking components.

1. Introduction

One of the main problems in the design of networked
systems of embedded computers that control physical
processes is to map a desired behavior on a distributed
computing platform under given physical constraints.
The typical constraints bound the time needed for
computation and communication over shared resources.
The deterministic and timely response is often required
to achieve fault-tolerance. For instance, replica
determinism demands the redundant nodes to take the
same decision at about the same time.

Most software architectures and communication
protocols used in deterministic real-time systems are
time-triggered, i.e., all actions are initiated by temporal
events that follow a global statically computed schedule.
The time-triggered approach is preferred for its
compositionality, because component integration does
not introduce new performance dependencies. However,

*This work was supported in part by the Center for Hybrid and

Embedded Software Systems (CHESS) at UC Berkeley, which receives
support from the National Science Foundation (NSF award #CCR-
0225610), the State of California Micro Program, and the following
companies: Agilent, Bosch, DGIST, General Motors, Hewlett Packard,
Infineon, Microsoft, National Instruments, and Toyota.

it becomes inefficient with increasing system complexity,
especially if the network traffic is irregular. On the other
hand, event-triggered approach, where a communication
action can be started by a non-temporal event, is
preferred for flexibility and, often, implementation
simplicity. In this paper, we concentrate on the event-
triggered approach, where the schedule unfolds
dynamically during runtime, depending on the
occurrences of different events.

We focus on the Ethernet as the underlying network,
although the definitions and analytic procedures can be
applied to other local networks. In recent years, there
were several successful approaches in industry to replace
different field-bus and information networks with the
Ethernet [1]. This technology has considerably evolved
to reduce and eliminate collisions by introducing
switched Ethernet solutions and dual duplex links. The
application-to-application delays on small networks were
reported to be less than a millisecond even with link
utilization above 95%. However, real-time behavior and
determinism are still a concern, since Ethernet in its
basic form is event-triggered and asynchronous with
respect to network access. Therefore, most solutions
either enhance the switch architecture or adapt the node
network driver. Some of the relevant techniques include
PROFINET [2] (time-slotting), EtheReal [3] (enhanced
switch scheduling), Powerlink [4] (master-slave), and
TTEthernet [5] (time-triggered switch).

Within the context of time-triggered systems Kopetz
[6] defines timely and deterministic transmission channel
with the following three properties: 1) the message delay
is bounded and the bounds are a priori known, 2) the
receive order of messages is the same as the send order,
and 3) the receive order of messages sent simultaneously
is a priori known. In this work, we study similar
requirements for timely and deterministic input-output
behavior of event-triggered distributed systems. Here the
requirements address timing and order of event
processing only, and allow for more flexibility in the
event communication order.

The future cyber-physical systems will consist of
hundreds of information processing components and the

marys
Text Box
2007 International IEEE Symposium on Precision Clock Synchronization (ISPCS)
for Measurement, Control and Communication
Vienna, Austria, October1-3, 2007.

global control of the information traffic will be unlikely
to succeed. In this study, the common global time will be
used to process the events locally, but not to control the
access to the network in the static manner. Our
experimental setup consists of nodes containing clocks
synchronized using the IEEE 1588 protocol. By using
node and network resources only minimally, this
synchronization protocol achieves the common notion of
time with tens of nanoseconds precision. In addition, a
real-time operating system is needed to achieve software
preemption and interrupt latencies in the order of tens of
microseconds. The estimation of upper bounds of
synchronization and other event processing latencies is
important not only for performance, but also to enforce
deterministic behavior, since the event scheduler
decisions depend on these bounds. One of the objectives
of the paper is to study pros and cons of real-time
deterministic event-triggered systems built on open
source software, standardized protocols and off-the-shelf
communication components. In that respect our approach
is similar to the one presented in [7]. In such solutions, a
careful static analysis replaces run-time mechanisms in
order to achieve timely behavior or to avoid traffic
overloads.

The structure of the paper is as follows. Sec. 2
characterizes the notion of deterministic input/output
behavior as used in the rest of the paper. Sec. 3 gives
details about our experimental setup and a simple
motivating distributed application which serves for the
evaluation of the technique as presented in Sec. 5. In
Sec. 4 we study a procedure for performance bounds
estimation which is necessary for the correct application
implementation. Sec. 6 concludes the paper and gives
pointers for the future work.

2. Time and Event Order Determinism

Rather than formally defining the notion of
determinism that we focus on in this paper, we introduce
it by referring to an already existing one in the realm of
time-triggered systems.

In a time-triggered system each action is started when
a certain temporal event happens, i.e., when a certain
predefined time-instant is reached. An action can be as
varied as sensor sampling, message sending, task
execution, etc. In case of a distributed system this
assumes time-synchronization, i.e., the common notion
of time among nodes. Also, the communication
subsystem, a bus or a network, typically knows message
transmission instants. So, transmissions are triggered
autonomously by the communication subsystem, and not
by the nodes or environment.

Since there typically exist multiple independent flows
(channels) in the system, the time and message-order
determinism has to be guaranteed. Kopetz [6] defines the
following three conditions as the requirements for timely
deterministic communication in dependable time-

triggered systems. Fig. 1 graphically represents the
conditions.

The first requirement addresses bounded
communication delay. If a message is sent at a time
instant t, then it will be received in the time interval
[t+dmin, t+dmax], where dmin and dmax are communication
delay bounds that are known in advance. If a system
requires small communication jitter, as is often the case
in time-triggered approaches, then values dmin and dmax
should be close to each other. The second requirement
defines the receive order of messages. The order of
message receive time instants is the same as the order of
message send time instants. Note that this is a rather
strict requirement since such a communication system
imposes a global order among messages that may easily
come from independent traffic flows. This requirement is
typically enforced by some type of static allocation of
communication slots, like in TDMA-like protocols.
Finally, we have the determinism requirement for
simultaneous messages, i.e., for messages with equal or
extremely close send time instants. The assumption here
is that the nodes are time-synchronized. If send time
instants of several messages are equal within
synchronization accuracy, then the order of message
receive time instants is fixed and known in advance. This
entire definition of timely deterministic communication
can be extended for multicast communication channels.

Figure 1. Deterministic time-triggered
network.

2.1. Event-triggered system

In an event-triggered system, an action is started
when a certain non-temporal event happens, e.g. when
the environment changes its state and generates an
interrupt. Thus, signals that control these actions may
originate out of the computer system, and message
transmissions may be triggered explicitly by the
applications that run on the system nodes. This,
however, automatically means that an unpredictable
environment, e.g. unbounded number of interrupts,
results in a non-deterministic behavior. So, to avoid this,

a mechanism that bounds the uncertainty in event
occurrence is necessary, e.g. traffic shaping.

In an event-triggered system, the communication
subsystem is not specified with precise communication
time instants. Even though there is a certain level of
flexibility in communication, we still want to have
deterministic input-output behavior for processing of
each event. Thus, although similar to the previous
definition, the following definition of a timely
deterministic event-triggered system (Fig. 2) is less
restrictive.

Figure 2. Deterministic event-triggered
system.

If an event occurs at a time t, then it will be processed

in the time interval [t+dmin, t+dmax]. In terms of input-
output behavior this requirement reads as follows, if an
input (sensing) event occurs at t, the output (actuation)
event will be processed in [t+dmin, t+dmax]. Again, dmin and
dmax are estimated and bounded in advance. Second, the
order of event processing is the same as the event
occurrence order. So, the message receive order is not
directly important. Third, if two events are simultaneous,
that is, if occurrence instants of several events are the
same, then the order of event processing is known in
advance. So, if a difference in occurrence times of the
two events falls within synchronization accuracy, the
system cannot tell which event occurred first, so it has to
react in a predefined order (e.g. safety reasons).

The tradeoffs in selection between time-triggered and
event-triggered approach are widely discussed in the
literature [8]. For instance, time-triggered approach is
preferred for its compositionality. In such an approach,
the interface of each node with the rest of the distributed
system is a set of preassigned time instants or time-slots.
The integration of a set of nodes into a complete system
does not lead to any change of the temporal properties of
the node. Thus, the temporal properties of every host
with respect to its interface can be tested in isolation.
Also, it is often noted that error detection is much easier
if the actual behavior of a node can be compared to some

a priori knowledge of the expected behavior. So,
message omissions can be detected at the receiver side.

This, however, means that time-triggered solutions
are often more complex to implement than event-
triggered solutions because more global information is
needed to be shared among nodes. In addition, event-
triggered approach is preferred for its flexibility.
Flexibility implies that the full behavior of a node is not
restricted a priori, e.g. not restricted to single time
instants but to certain time intervals. This may lead to
significant performance advantages, for instance
bandwidth efficiency or buffer space, especially if
network traffic is aperiodic. The rest of the paper
describes one such solution developed out of standard
computation and communication components. We
present the analysis that is needed to ensure that such a
system satisfies the definition of the deterministic event-
triggered system discussed above.

3. Motivating Example and Implementation

Our experimental setup consists of Agilent demo
nodes [9] communicating via switched Ethernet network
and containing synchronized clocks (Fig.3). Each node
consists of an FPGA device and an embedded processor.
Each FPGA device performs the IEEE 1588 time-
synchronization protocol [10]. The protocol is suitable
for local networks comprising of several subnets and
only minimally uses bandwidth, computing and memory
resources. In the hardware-based FPGA solution the
packets of the synchronization messages are captured
and time-stamped low in the protocol stack to reduce the
jitter, thus increasing the precision of the
synchronization.

A real-time version of the Linux kernel that runs on
each processor is needed to achieve software preemption
and interrupt latencies in the order of tens of
microseconds. In this project we used real-time kernel
patch Xenomai [11] which runs the conventional Linux
kernel as the idle task, i.e., only when all real-time tasks
are inactive. To reduce the unpredictable effects of
standard Linux kernel services Xenomai enables
interrupt shielding, i.e., it allows immediate handling of
interrupts (or even running user-level threads) regardless
of Linux kernel attempts to lock out or disable interrupts.

We experimented with the small star network
topology using COTS Fast Ethernet switches. The basic
protocol is the UDP/IP protocol and the common global
time is not used to control the access to the network. On
each node a network driver interacts directly with the
network card and performs traffic shaping that is
required to ensure the nodes do not flood the network.
The network driver threads are given the highest
priorities in the system preventing interference from
other applications and achieving minimal scheduler-
induced delays.

Figure 3. Experimental setup.

The synchronization protocol enables a methodology

for measurement and control that is based on the
common global time. Sensors can timestamp their data
locally and actuators can generate actions at the precise
time instants. In addition, we can have synchronized data
sampling and synchronized actuation. The processing of
an event is based on its timestamp, and not on the
unpredictable receipt time of the message that delivers
the event. Although the scheduler has some flexibility, it
has to ensure that events be safely processed with respect
to the occurrence order, i.e., the order imposed by the
time-stamps of events.

Consider a simple distributed application shown on
Fig. 2. There are two nodes 1 and 2 that serve both for
sensing and actuation, and the distributed controller node
3. All three nodes contain clocks synchronized using
IEEE 1588 protocol and are directly connected through a
single switch. On every input event that is sent from any
node, the controller has to send back to the same node
the reaction, e.g. a control action. Since in our setup each
node has only one binary output port (TTL level signal),
in this example the control action is simply the time
instant of the output pulse. A constant control delay
between input and output events, i.e., as small as
possible delay jitter, can be, but is not a necessary
objective in this example.

When an event at time t1 occurs, the node 1 time-
stamps it, and sends it to the controller node with some
flexibility. This event-triggered control system should
process events as early as possible, but, more
importantly, it has to ensure determinism with respect to
event occurrence order. So, the controller has to wait for
a certain amount of time before it processes that event
and before it sends the output back. It has to make sure
that no other events on node 2 occurred before t1, but the
packet with this event has not arrived yet. Let P be the
synchronization precision, i.e., the maximum difference
of clock values for all node pairs and at all times. So, it
has to wait until its clock does not show time t1’ = t1 +
d2M + P, where d2M is the maximum communication delay
from node 2. The time t1’ is the upper bound on the
arrival time of a packet from node 2 that also occurred at

t1. Only after t1’ the controller node can process the event
and be sure that no other event from 2 occurred before
the event on 1. When this timing constraint is satisfied, it
encodes the control action as a certain delay D and sends
back the packet with time-stamp t1+D. However, if it
also received a message from node 2 before time t1’, it
has to decide which event should be processed first. To
satisfy the simultaneity requirement, this step includes a
priori order if the time stamps are sufficiently close to
each other.

Figure 4. Simple distributed application
with the corresponding timeline.

4. Performance Modeling

The input-output response time D from the previous
example is directly related to the largest communication
delay. So, both the application correctness with respect
to the event order and application performance depend
on the upper bound of the communication delay dM.

If two nodes are connected by a switch, the
communication delay, i.e., the total application-to-
application delay, can be separated in three parts: the
software delay, the frame transmission delay, and the
switch delay. Similar to the example and our
implementation, in this analysis we assume that an event
occurrence triggers an interrupt after which a message
that contains the time stamp is sent over the network. So,
the upper bound on the software delay ds, is determined
by the upper bounds of interrupt dint and network ddrv
driver latency, ds= dint+ddrv. The frame transmission delay
dfrm is the time to transmit the frame over a link. If the
total size of the frame is N bytes and the link bandwidth
is B, then dfrm=N/B. The switch delay (the upper bound
denoted with dsw) consists of the switch multiplexing
delay (dmux) and switch queuing delay (dque). The former
delay is the time needed for a frame to cross the switch
even though the switch is empty, where the latter delay is
the time in which a frame waits in a switch queue to be
processed.

When real numbers are taken into account, the
communication delay bound dM=ds+dfrm+dsw often

IN2
OUT2

2

IN1
OUT1

1

3SWITCH

t1

IN1

t1,proc

t1 t1+D OUT1

t1+D

1 3 13

decisively depends on the switch delay dsw which, in case
of uncontrolled network access, is not constant and
depends on the network load, topology, etc. One way to
bound such delay is to use Network Calculus [12], a
theoretical framework developed for performance
analysis in networks of components. Each component
represents a set of computing or communication
processes. This theory takes into account a
characterization of the resources (resource model) and
the possible input event sequences of a component (input
event model) to calculate its output event model. Event
can either be a communication event, e.g. a request for
packet transmission, or a computation event, e.g. a
request for task execution.

The event and resource models are typically given
with two cumulative functions of the time interval δ. For
each δ, the event arrival function a(δ) is the maximum
number of events that can occur (arrive) at an input of
the component in any time interval of length δ. Likewise,
for each delta, the resource service function s(δ) is the
minimum number of events that is guaranteed to be
processed in any time interval of length δ. The network
calculus theory introduces several operators on the two
functions which are used to calculate the output event
model or the maximum processing delay of a
component.

Fig. 5 illustrates the computation of the maximum
switch delay dsw for the example with two event flows.
Here we closely follow a similar analysis presented in
[7]. Basic switch functionality is assumed in this model.
When a packet arrives at the switch, its output port is
determined and a direct transmission is attempted. If
another packet is being sent at the time, the packet is
stored in a queue. The event flow k that comes from
node k is described with an arrival function ak(δ) which
bounds the number of bytes transmitted from node k in
any interval of time δ. We assume that on each
originating node some form of traffic shaping is applied
to the flows. In particular, by the adjustment of certain
networking system variables, one can set parameters σk
and ρk such that the switch arrival function ak(δ) be the
linear function ak(δ)=σk+ρk⋅δ. In such a solution, σk
represents the burst - the maximum number of bytes
requested to be sent at a single time instant. Similarly, ρk
is the maximum allowed long-term average rate of the
flow k. When one takes into account the link k
transmission rate Ck, and the maximum size M of a
packet in bytes (for Ethernet M=1514), the resulting
arrival function is the minimum of two linear functions,
ak(δ) = min{Ck⋅δ + M, σk+ρk⋅δ}. In this simple model,
both flows have the same priority, and thus the same
switch queuing delays. So, the total arrival curve is the
sum of the arrival curves at individual ports, as shown in
Fig. 5. The traffic described with such a function can be
generated with a token bucket traffic shaper on each
node. Even standard Linux kernels have the support for
such shapers. To lower the CPU load, in most practical

implementations traffic control is performed only
periodically on each traffic shaping interval Ts, i.e., the
bucket is filled once every Ts time units. This interval
can be increased at the cost of larger bursts and larger
delays. In any case, once the reserved average rate for a
link k is set to ρk, the burst can be determined from
σk=ρk⋅Ts+M (see [7] for details).

The service function provides a means to express the
availability of the component to process the data on its
inputs. In particular, for a switch, s(δ) is a lower bound
on number of bytes that can be transmitted from the
switch in time δ. A good model for s(δ) is so called
bounded-delay resource model that takes into account
the inherent time in which the resource might not be
available. For a switch, that amount of time is exactly
equal to dmux, the delay of a packet incurred even when
there is no queuing. In this case the value of the service
function s(δ) is 0 for δ<dmux, and C⋅(δ-dmux) for δ>=dmux,
where C is the capacity of the output link.

According to the network calculus the maximum
event processing delay of a component is given by the
maximum horizontal difference between arrival and
service curves (see Fig. 5). This approach gives the
upper bounds that are correct, but not necessarily tight.
After all function expressions are taken into account, and
with certain justifiable approximations [7] the switch
delay bound is given with dsw = (σ1+σ2)/C+dmux.

 δ

Figure 5. Switch delay estimation.

5. Experimental Evaluation

In this section we discuss the results of our
experiments with the setup presented in Sec. 3
implementing the distributed application from Fig. 4. We
first compute the bound of the communication delay dM

and compare it with the measured values. In the second
part we give some experimental evidence that the
requirements for the timely deterministic event-triggered
system given in Sec. 2 are satisfied in this setup.

 For the communication delay measurements both
node 1 and node 2 send frames of N=1000 bytes every T
time units. The experiments were repeated tens of
thousands of times for three different values of T (1ms,
0.5ms, 0.2ms). The arrival times were registered on node
3 and the maximum value of the measured delay is
shown in Tab. 1 under column dM. Fig. 6 shows a
histogram of the measured delay for T=1ms.

For the estimation of the delay bound dM we follow
the procedure from Sec. 4 and first estimate each partial
delay. Fig. 7 shows the histogram of the measured
interrupt latency. The interrupt latency was measured in
experiments with very high CPU utilization by
comparing the event time stamp registered by the FPGA
hardware with the corresponding interrupt routine start
time instant. From Fig. 7 we conclude that dint=55µs. In
this analysis we further assume that the network driver
delay is twice the value of the traffic shaping interval Ts
in order to take into account also the receiver side delay.
Since Ts was set to 100µs we have ddrv=200µs. The Fast
Ethernet link bandwidth B is 100Mb/s, so
dfrm=N/B=80µs. The switch multiplexing delay bound
was estimated to be dmux=60µs in a series of experiments
in which we compared the delays between the two nodes
connected with and without the switch. Finally, the
switch delay dsw and the total communication delay dM
are calculated using the expressions from Sec. 4 and the
corresponding values are given in Tab. 1.

The last column of the table shows the relative
difference between estimated and measured values of the
communication delay. Such numbers are expected since
all steps taken during estimation, including the network
calculus procedures, result in conservative upper bounds.
The difference increases as rates of flows decrease. This
only means that the rare worst cases that the analysis has
to take into account are even less likely to occur in the
experiments with smaller traffic rates.
T[ms] ρk[MB/s] σk[B] dsw[µs] dM[µs] dM[µs] ∆[%]

1 1 1614 318 653 510 22
0.5 2 1714 334 669 550 18
0.2 5 2014 382 717 610 15

Table 1. Estimated and measured delay.

The figures 9-12 show that all three requirements

(time, order and simultaneity) discussed in Sec. 2 can be
achieved with less than a microsecond accuracy which is
close to the synchronization accuracy. The histogram of
the synchronization precision P is shown in Fig. 8. The
precision was measured in an experiment in which one
node directly triggers the other node. It is clear that the
deviations between the clocks in this network with a
conventional switch are less than a microsecond.

Fig. 9 and 10 illustrate bounded delay time and event
ordering requirements. The figures show periodic
instances of event pulses (wider pulses represent input

events). In this example, the input events on both nodes
are generated with the period T=1ms. The delay D (Fig.
4) is set to 950µs, so that the output event for the
previous cycle could be shown on the same scope plot
preceding the next input event for 1000-950=50µs. All
figures show exactly this delay with 0.1µs accuracy.

Fig. 11 and 12 illustrate simultaneity requirement. In
this example, events on node 1 have higher processing
priority when occurring at the same time (within very
small pre-specified interval) as events on node 2. As
shown on Fig. 12, even if the input event on node 2
occurs about 2µs before the input event on node 1, the
controller node 3 has to process it later and additionally
delay the output on node 2.

360 380 400 420 440 460 480 500 520
0

50

100

150

200

250

300

350

400

450

Time [us]

C
ou

nt

Figure 6. Communication delay dM histogram.

20 25 30 35 40 45 50 55
0

10

20

30

40

50

60

70

80

90

Time [us]

C
ou

nt

Figure 7. Interrupt latency histogram.

-800 -600 -400 -200 0 200 400 600 800
0

10

20

30

40

50

60

Time [ns]

C
ou

nt
s

Figure 8. Time-sync. precision histogram.

Figure 9. Time and order requirements.
IN1 before IN2.

Figure 11. Simultaneity requirement.
IN1 before IN2.

6. Conclusion

In this paper we focused on locally distributed
systems that have to process events in the strict order of
their occurrence and with certain timing guarantees. We
implemented and evaluated such a system that uses open
software with real-time extensions and standard
networking components equipped with a time
synchronization protocol. An important part in this
solution is the estimation of the communication delay
bounds that are directly used for the event scheduling
decisions. We were able to accomplish the level of event
processing determinism typically associated with the
time-triggered approaches, keeping the flexibility and

Figure 10. Time and order requirements.
IN1 after IN2.

Figure 12. Simultaneity requirement.
IN1 after IN2.

simplicity at the same time. However, we noticed that
with the decrease of the traffic load the estimated upper
delay bounds become conservative, which may result in
performance degradation. Also, this approach does not
address fault-tolerance run-time mechanisms. Thus,
achieving timely behavior requires components behave
the way they are specified in the delay estimation step.

Two extensions of this work are worth mentioning for
future research. One direction is studying the effects of
more complex network topologies where the issues of
time synchronization become more important. There
exist research results in applying the network calculus
theory for cases beyond simple star topology [13].

This paper considers only a very simple type of
distributed applications. Each node runs a single event
processing task and the network traffic is simple. More
complex applications require more complex local event
scheduler. The relevant dependency relation and other
theoretical concepts were developed within the
Programming Temporally Integrated Distributed
Embedded Systems project [14]. However, there are
several concurrency issues to be resolved for
implementations of such solutions, including various
combinations of interrupt preemption and prioritization,
safe event queue operation, and locks on thread
rescheduling during nested interrupt handlers.

 References

[1] M. Felser, “Real-Time Ethernet - Industry Perspective”,
Proceedings of the IEEE, vol. 93, no. 6, pp. 1118–1129, 2005.
[2] http://www.profinet.com/
[3] H. Hoang, M. Jonsson, U. Hagström, A. Kallerdahl,
“Switched Real-Time Ethernet with Earliest Deadline First
Scheduling − Protocols and Traffic Handling”, in Proc. IPDPS,
2002, pp. 94-99.
[4] http://www.ethernet-powerlink.org/
[5] K. Steinhammer, P. Grillinger, A. Ademaj, and H.
Kopetz, “A Time-Triggered Ethernet (TTE) Switch”, in Proc.
DATE, 2006, pp. 794–799.
[6] H. Kopetz, A. Ademaj, P. Grillinger, and K.
Steinhammer, “The Time-Triggered Ethernet Design”, in Proc.
ISORC, 2005, pp. 25–36.
[7] J. Loeser and H. Haertig, “Low-Latency Hard Real-
Time Communication over Switched Ethernet”, in Proc.
ECRTS, 2004, pp. 13–22.
[8] H. Kopetz, Design Principles for Distributed Embedded
Applications, Springer, 1997.
[9] Agilent Technologies, IEEE 1588 Demonstration Kit,
2005.
[10] J.C. Eidson, Measurement, Control and Communication
Using IEEE 1588, Springer, 2006.
[11] P. Gerum, “Xenomai – Implementing a RTOS emulation
framework on GNU/Linux”, 2005
[12] J.Y. Le Boudec, P. Thiran, Network Calculus, LNCS vol.
2050, Springer Verlag, 2001.
[13] J.P. Georges, E. Rondeau, T. Divoux, “Evaluation of
Switched Ethernet in an Industrial Context by Using the
Network Calculus”, in Proc. WFCS, 2002, pp. 19-26.
[14] Y. Zhao, J. Liu, and E. A. Lee, “A Programming Model
for Time-Synchronized Distributed Real-Time Systems”,
in Proc. RTAS, 2007, pp. 259–268.

