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Abstract 

We study event processing in locally distributed real-
time systems. The objective is to use event-triggered 
communication together with a time-synchronization 
protocol, in particular, IEEE 1588 over Ethernet, to 
achieve the similar level of determinism as in statically 
scheduled time-triggered systems. Given a distributed 
application with component properties and input event 
rate characterization, we discuss an analytic procedure 
that bounds performance parameters. These parameters 
are also necessary for deterministic implementation of 
the application. The procedure is experimentally 
evaluated on a setup with standard software and 
networking components.   

1. Introduction 

One of the main problems in the design of networked 
systems of embedded computers that control physical 
processes is to map a desired behavior on a distributed 
computing platform under given physical constraints. 
The typical constraints bound the time needed for 
computation and communication over shared resources. 
The deterministic and timely response is often required 
to achieve fault-tolerance. For instance, replica 
determinism demands the redundant nodes to take the 
same decision at about the same time.  

Most software architectures and communication 
protocols used in deterministic real-time systems are 
time-triggered, i.e., all actions are initiated by temporal 
events that follow a global statically computed schedule. 
The time-triggered approach is preferred for its 
compositionality, because component integration does 
not  introduce new performance dependencies. However,  
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it becomes inefficient with increasing system complexity, 
especially if the network traffic is irregular. On the other 
hand, event-triggered approach, where a communication 
action can be started by a non-temporal event, is 
preferred for flexibility and, often, implementation 
simplicity. In this paper, we concentrate on the event-
triggered approach, where the schedule unfolds 
dynamically during runtime, depending on the 
occurrences of different events.  

We focus on the Ethernet as the underlying network, 
although the definitions and analytic procedures can be 
applied to other local networks. In recent years, there 
were several successful approaches in industry to replace 
different field-bus and information networks with the 
Ethernet [1]. This technology has considerably evolved 
to reduce and eliminate collisions by introducing 
switched Ethernet solutions and dual duplex links. The 
application-to-application delays on small networks were 
reported to be less than a millisecond even with link 
utilization above 95%. However, real-time behavior and 
determinism are still a concern, since Ethernet in its 
basic form is event-triggered and asynchronous with 
respect to network access. Therefore, most solutions 
either enhance the switch architecture or adapt the node 
network driver. Some of the relevant techniques include 
PROFINET [2] (time-slotting), EtheReal [3] (enhanced 
switch scheduling), Powerlink [4] (master-slave), and 
TTEthernet [5] (time-triggered switch). 

Within the context of time-triggered systems Kopetz 
[6] defines timely and deterministic transmission channel 
with the following three properties: 1) the message delay 
is bounded and the bounds are a priori known, 2) the 
receive order of messages is the same as the send order, 
and 3) the receive order of messages sent simultaneously 
is a priori known. In this work, we study similar 
requirements for timely and deterministic input-output 
behavior of event-triggered distributed systems. Here the 
requirements address timing and order of event 
processing only, and allow for more flexibility in the 
event communication order. 

The future cyber-physical systems will consist of 
hundreds of information processing components and the 
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global control of the information traffic will be unlikely 
to succeed. In this study, the common global time will be 
used to process the events locally, but not to control the 
access to the network in the static manner. Our 
experimental setup consists of nodes containing clocks 
synchronized using the IEEE 1588 protocol. By using 
node and network resources only minimally, this 
synchronization protocol achieves the common notion of 
time with tens of nanoseconds precision. In addition, a 
real-time operating system is needed to achieve software 
preemption and interrupt latencies in the order of tens of 
microseconds. The estimation of upper bounds of 
synchronization and other event processing latencies is 
important not only for performance, but also to enforce 
deterministic behavior, since the event scheduler 
decisions depend on these bounds. One of the objectives 
of the paper is to study pros and cons of real-time 
deterministic event-triggered systems built on open 
source software, standardized protocols and off-the-shelf 
communication components. In that respect our approach 
is similar to the one presented in [7]. In such solutions, a 
careful static analysis replaces run-time mechanisms in 
order to achieve timely behavior or to avoid traffic 
overloads.  

The structure of the paper is as follows. Sec. 2 
characterizes the notion of deterministic input/output 
behavior as used in the rest of the paper. Sec. 3 gives 
details about our experimental setup and a simple 
motivating distributed application which serves for the 
evaluation of the technique as presented in Sec. 5. In 
Sec. 4 we study a procedure for performance bounds 
estimation which is necessary for the correct application 
implementation. Sec. 6 concludes the paper and gives 
pointers for the future work. 

2. Time and Event Order Determinism 

Rather than formally defining the notion of 
determinism that we focus on in this paper, we introduce 
it by referring to an already existing one in the realm of 
time-triggered systems. 

In a time-triggered system each action is started when 
a certain temporal event happens, i.e., when a certain 
predefined time-instant is reached. An action can be as 
varied as sensor sampling, message sending, task 
execution, etc. In case of a distributed system this 
assumes time-synchronization, i.e., the common notion 
of time among nodes. Also, the communication 
subsystem, a bus or a network, typically knows message 
transmission instants. So, transmissions are triggered 
autonomously by the communication subsystem, and not 
by the nodes or environment. 

Since there typically exist multiple independent flows 
(channels) in the system, the time and message-order 
determinism has to be guaranteed. Kopetz [6] defines the 
following three conditions as the requirements for timely 
deterministic communication in dependable time-

triggered systems. Fig. 1 graphically represents the 
conditions.  

The first requirement addresses bounded 
communication delay. If a message is sent at a time 
instant t, then it will be received in the time interval 
[t+dmin, t+dmax], where dmin and dmax are communication 
delay bounds that are known in advance.  If a system 
requires small communication jitter, as is often the case 
in time-triggered approaches, then values dmin and dmax 
should be close to each other. The second requirement 
defines the receive order of messages. The order of 
message receive time instants is the same as the order of 
message send time instants. Note that this is a rather 
strict requirement since such a communication system 
imposes a global order among messages that may easily 
come from independent traffic flows. This requirement is 
typically enforced by some type of static allocation of 
communication slots, like in TDMA-like protocols. 
Finally, we have the determinism requirement for 
simultaneous messages, i.e., for messages with equal or 
extremely close send time instants. The assumption here 
is that the nodes are time-synchronized. If send time 
instants of several messages are equal within 
synchronization accuracy, then the order of message 
receive time instants is fixed and known in advance. This 
entire definition of timely deterministic communication 
can be extended for multicast communication channels. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Deterministic time-triggered 
network. 

 
2.1. Event-triggered system 

In an event-triggered system, an action is started 
when a certain non-temporal event happens, e.g. when 
the environment changes its state and generates an 
interrupt. Thus, signals that control these actions may 
originate out of the computer system, and message 
transmissions may be triggered explicitly by the 
applications that run on the system nodes.  This, 
however, automatically means that an unpredictable 
environment, e.g. unbounded number of interrupts, 
results in a non-deterministic behavior. So, to avoid this, 



a mechanism that bounds the uncertainty in event 
occurrence is necessary, e.g. traffic shaping. 

In an event-triggered system, the communication 
subsystem is not specified with precise communication 
time instants. Even though there is a certain level of 
flexibility in communication, we still want to have 
deterministic input-output behavior for processing of 
each event. Thus, although similar to the previous 
definition, the following definition of a timely 
deterministic event-triggered system (Fig. 2) is less 
restrictive.  

 
 
      

       
 
      

      
      
   

 

 
 
 

 
Figure 2. Deterministic event-triggered 
system. 

 
If an event occurs at a time t, then it will be processed 

in the time interval [t+dmin, t+dmax]. In terms of input-
output behavior this requirement reads as follows, if an 
input (sensing) event occurs at t, the output (actuation) 
event will be processed in [t+dmin, t+dmax].  Again, dmin and 
dmax are estimated and bounded in advance. Second, the 
order of event processing is the same as the event 
occurrence order. So, the message receive order is not 
directly important. Third, if two events are simultaneous, 
that is, if occurrence instants of several events are the 
same, then the order of event processing is known in 
advance. So, if a difference in occurrence times of the 
two events falls within synchronization accuracy, the 
system cannot tell which event occurred first, so it has to 
react in a predefined order (e.g. safety reasons). 

The tradeoffs in selection between time-triggered and 
event-triggered approach are widely discussed in the 
literature [8]. For instance, time-triggered approach is 
preferred for its compositionality. In such an approach, 
the interface of each node with the rest of the distributed 
system is a set of preassigned time instants or time-slots. 
The integration of a set of nodes into a complete system 
does not lead to any change of the temporal properties of 
the node. Thus, the temporal properties of every host 
with respect to its interface can be tested in isolation. 
Also, it is often noted that error detection is much easier 
if the actual behavior of a node can be compared to some

a priori knowledge of the expected behavior. So, 
message omissions can be detected at the receiver side.  

This, however, means that time-triggered solutions 
are often more complex to implement than event-
triggered solutions because more global information is 
needed to be shared among nodes. In addition, event-
triggered approach is preferred for its flexibility. 
Flexibility implies that the full behavior of a node is not 
restricted a priori, e.g. not restricted to single time 
instants but to certain time intervals. This may lead to 
significant performance advantages, for instance 
bandwidth efficiency or buffer space, especially if 
network traffic is aperiodic. The rest of the paper 
describes one such solution developed out of standard 
computation and communication components. We 
present the analysis that is needed to ensure that such a 
system satisfies the definition of the deterministic event-
triggered system discussed above.  

3. Motivating Example and Implementation 

Our experimental setup consists of Agilent demo 
nodes [9] communicating via switched Ethernet network 
and containing synchronized clocks (Fig.3). Each node 
consists of an FPGA device and an embedded processor. 
Each FPGA device performs the IEEE 1588 time-
synchronization protocol [10]. The protocol is suitable 
for local networks comprising of several subnets and 
only minimally uses bandwidth, computing and memory 
resources. In the hardware-based FPGA solution the 
packets of the synchronization messages are captured 
and time-stamped low in the protocol stack to reduce the 
jitter, thus increasing the precision of the 
synchronization.  

A real-time version of the Linux kernel that runs on 
each processor is needed to achieve software preemption 
and interrupt latencies in the order of tens of 
microseconds. In this project we used real-time kernel 
patch Xenomai [11] which runs the conventional Linux 
kernel as the idle task, i.e., only when all real-time tasks 
are inactive. To reduce the unpredictable effects of 
standard Linux kernel services Xenomai enables 
interrupt shielding, i.e., it allows immediate handling of 
interrupts (or even running user-level threads) regardless 
of Linux kernel attempts to lock out or disable interrupts.  

We experimented with the small star network 
topology using COTS Fast Ethernet switches. The basic 
protocol is the UDP/IP protocol and the common global 
time is not used to control the access to the network. On 
each node a network driver interacts directly with the 
network card and performs traffic shaping that is 
required to ensure the nodes do not flood the network. 
The network driver threads are given the highest 
priorities in the system preventing interference from 
other applications and achieving minimal scheduler-
induced delays. 
 



 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Experimental setup. 
 
The synchronization protocol enables a methodology 

for measurement and control that is based on the 
common global time. Sensors can timestamp their data 
locally and actuators can generate actions at the precise 
time instants. In addition, we can have synchronized data 
sampling and synchronized actuation. The processing of 
an event is based on its timestamp, and not on the 
unpredictable receipt time of the message that delivers 
the event. Although the scheduler has some flexibility, it 
has to ensure that events be safely processed with respect 
to the occurrence order, i.e., the order imposed by the 
time-stamps of events. 

Consider a simple distributed application shown on 
Fig. 2. There are two nodes 1 and 2 that serve both for 
sensing and actuation, and the distributed controller node 
3. All three nodes contain clocks synchronized using 
IEEE 1588 protocol and are directly connected through a 
single switch. On every input event that is sent from any 
node, the controller has to send back to the same node 
the reaction, e.g. a control action. Since in our setup each 
node has only one binary output port (TTL level signal), 
in this example the control action is simply the time 
instant of the output pulse. A constant control delay 
between input and output events, i.e., as small as 
possible delay jitter, can be, but is not a necessary 
objective in this example. 

When an event at time t1 occurs, the node 1 time-
stamps it, and sends it to the controller node with some 
flexibility. This event-triggered control system should 
process events as early as possible, but, more 
importantly, it has to ensure determinism with respect to 
event occurrence order. So, the controller has to wait for 
a certain amount of time before it processes that event 
and before it sends the output back. It has to make sure 
that no other events on node 2 occurred before t1, but the 
packet with this event has not arrived yet. Let P be the 
synchronization precision, i.e., the maximum difference 
of clock values for all node pairs and at all times. So, it 
has to wait until its clock does not show time t1’ = t1 + 
d2M + P, where d2M is the maximum communication delay 
from node 2. The time t1’ is the upper bound on the 
arrival time of a packet from node 2 that also occurred at 

t1. Only after t1’ the controller node can process the event 
and be sure that no other event from 2 occurred before 
the event on 1. When this timing constraint is satisfied, it 
encodes the control action as a certain delay D and sends 
back the packet with time-stamp t1+D. However, if it 
also received a message from node 2 before time t1’, it 
has to decide which event should be processed first. To 
satisfy the simultaneity requirement, this step includes a 
priori order if the time stamps are sufficiently close to 
each other. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Simple distributed application 
with the corresponding timeline. 

4. Performance Modeling 

The input-output response time D from the previous 
example is directly related to the largest communication 
delay. So, both the application correctness with respect 
to the event order and application performance depend 
on the upper bound of the communication delay dM.  

If two nodes are connected by a switch, the 
communication delay, i.e., the total application-to-
application delay, can be separated in three parts: the 
software delay, the frame transmission delay, and the 
switch delay. Similar to the example and our 
implementation, in this analysis we assume that an event 
occurrence triggers an interrupt after which a message 
that contains the time stamp is sent over the network. So, 
the upper bound on the software delay ds, is determined 
by the upper bounds of interrupt dint and network ddrv 
driver latency, ds= dint+ddrv. The frame transmission delay 
dfrm is the time to transmit the frame over a link. If the 
total size of the frame is N bytes and the link bandwidth 
is B, then dfrm=N/B. The switch delay (the upper bound 
denoted with dsw) consists of the switch multiplexing 
delay (dmux) and switch queuing delay (dque). The former 
delay is the time needed for a frame to cross the switch 
even though the switch is empty, where the latter delay is 
the time in which a frame waits in a switch queue to be 
processed.   

When real numbers are taken into account, the 
communication delay bound dM=ds+dfrm+dsw often 
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decisively depends on the switch delay dsw which, in case 
of uncontrolled network access, is not constant and 
depends on the network load, topology, etc. One way to 
bound such delay is to use Network Calculus [12], a 
theoretical framework developed for performance 
analysis in networks of components. Each component 
represents a set of computing or communication 
processes. This theory takes into account a 
characterization of the resources (resource model) and 
the possible input event sequences of a component (input 
event model) to calculate its output event model. Event 
can either be a communication event, e.g. a request for 
packet transmission, or a computation event, e.g. a 
request for task execution.  

The event and resource models are typically given 
with two cumulative functions of the time interval δ. For 
each δ, the event arrival function a(δ) is the maximum 
number of events that can occur (arrive) at an input of 
the component in any time interval of length δ. Likewise, 
for each delta, the resource service function s(δ) is the 
minimum number of events that is guaranteed to be 
processed in any time interval of length δ. The network 
calculus theory introduces several operators on the two 
functions which are used to calculate the output event 
model or the maximum processing delay of a 
component.  

Fig. 5 illustrates the computation of the maximum 
switch delay dsw for the example with two event flows. 
Here we closely follow a similar analysis presented in 
[7]. Basic switch functionality is assumed in this model. 
When a packet arrives at the switch, its output port is 
determined and a direct transmission is attempted. If 
another packet is being sent at the time, the packet is 
stored in a queue. The event flow k that comes from 
node k is described with an arrival function ak(δ) which 
bounds the number of bytes transmitted from node k in 
any interval of time δ. We assume that on each 
originating node some form of traffic shaping is applied 
to the flows. In particular, by the adjustment of certain 
networking system variables, one can set parameters σk 
and ρk such that the switch arrival function ak(δ) be the 
linear function ak(δ)=σk+ρk⋅δ. In such a solution, σk 
represents the burst - the maximum number of bytes 
requested to be sent at a single time instant. Similarly, ρk 
is the maximum allowed long-term average rate of the 
flow k. When one takes into account the link k 
transmission rate Ck, and the maximum size M of a 
packet in bytes (for Ethernet M=1514), the resulting 
arrival function is the minimum of two linear functions, 
ak(δ) = min{Ck⋅δ + M, σk+ρk⋅δ}. In this simple model, 
both flows have the same priority, and thus the same 
switch queuing delays. So, the total arrival curve is the 
sum of the arrival curves at individual ports, as shown in 
Fig. 5. The traffic described with such a function can be 
generated with a token bucket traffic shaper on each 
node. Even standard Linux kernels have the support for 
such shapers. To lower the CPU load, in most practical 

implementations traffic control is performed only 
periodically on each traffic shaping interval Ts, i.e., the 
bucket is filled once every Ts time units. This interval 
can be increased at the cost of larger bursts and larger 
delays. In any case, once the reserved average rate for a 
link k is set to ρk, the burst can be determined from 
σk=ρk⋅Ts+M (see [7] for details).    

The service function provides a means to express the 
availability of the component to process the data on its 
inputs. In particular, for a switch, s(δ) is a lower bound 
on number of bytes that can be transmitted from the 
switch in time δ. A good model for s(δ) is so called 
bounded-delay resource model that takes into account 
the inherent time in which the resource might not be 
available. For a switch, that amount of time is exactly 
equal to dmux, the delay of a packet incurred even when 
there is no queuing. In this case the value of the service 
function s(δ) is 0 for δ<dmux, and C⋅(δ-dmux) for δ>=dmux, 
where C is the capacity of the output link. 

According to the network calculus the maximum 
event processing delay of a component is given by the 
maximum horizontal difference between arrival and 
service curves (see Fig. 5). This approach gives the 
upper bounds that are correct, but not necessarily tight. 
After all function expressions are taken into account, and 
with certain justifiable approximations [7] the switch 
delay bound is given with dsw = (σ1+σ2)/C+dmux. 
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Figure 5. Switch delay estimation. 
 

5. Experimental Evaluation 

In this section we discuss the results of our 
experiments with the setup presented in Sec. 3   
implementing the distributed application from Fig. 4. We 
first compute the bound of the communication delay dM 

and compare it with the measured values. In the second 
part we give some experimental evidence that the 
requirements for the timely deterministic event-triggered 
system given in Sec. 2 are satisfied in this setup. 



 For the communication delay measurements both 
node 1 and node 2 send frames of N=1000 bytes every T 
time units. The experiments were repeated tens of 
thousands of times for three different values of T (1ms, 
0.5ms, 0.2ms). The arrival times were registered on node 
3 and the maximum value of the measured delay is 
shown in Tab. 1 under column dM. Fig. 6 shows a 
histogram of the measured delay for T=1ms. 

For the estimation of the delay bound dM we follow 
the procedure from Sec. 4 and first estimate each partial 
delay. Fig. 7 shows the histogram of the measured 
interrupt latency. The interrupt latency was measured in 
experiments with very high CPU utilization by 
comparing the event time stamp registered by the FPGA 
hardware with the corresponding interrupt routine start 
time instant. From Fig. 7 we conclude that dint=55µs. In 
this analysis we further assume that the network driver 
delay is twice the value of the traffic shaping interval Ts 
in order to take into account also the receiver side delay. 
Since Ts was set to 100µs we have ddrv=200µs. The Fast 
Ethernet link bandwidth B is 100Mb/s, so 
dfrm=N/B=80µs. The switch multiplexing delay bound 
was estimated to be dmux=60µs in a series of experiments 
in which we compared the delays between the two nodes 
connected with and without the switch. Finally, the 
switch delay dsw and the total communication delay dM 
are calculated using the expressions from Sec. 4 and the 
corresponding values are given in Tab. 1. 

The last column of the table shows the relative 
difference between estimated and measured values of the 
communication delay. Such numbers are expected since 
all steps taken during estimation, including the network 
calculus procedures, result in conservative upper bounds. 
The difference increases as rates of flows decrease. This 
only means that the rare worst cases that the analysis has 
to take into account are even less likely to occur in the 
experiments with smaller traffic rates.  
T[ms] ρk[MB/s] σk[B] dsw[µs] dM[µs] dM[µs] ∆[%] 

1 1 1614 318 653 510 22 
0.5 2 1714 334 669 550 18 
0.2 5 2014 382 717 610 15 

 
Table 1. Estimated and measured delay. 

 
The figures 9-12 show that all three requirements 

(time, order and simultaneity) discussed in Sec. 2 can be 
achieved with less than a microsecond accuracy which is 
close to the synchronization accuracy. The histogram of 
the synchronization precision P is shown in Fig. 8. The 
precision was measured in an experiment in which one 
node directly triggers the other node. It is clear that the 
deviations between the clocks in this network with a 
conventional switch are less than a microsecond. 

Fig. 9 and 10 illustrate bounded delay time and event 
ordering requirements. The figures show periodic 
instances of event pulses (wider pulses represent input 

events). In this example, the input events on both nodes 
are generated with the period T=1ms. The delay D (Fig. 
4) is set to 950µs, so that the output event for the 
previous cycle could be shown on the same scope plot 
preceding the next input event for 1000-950=50µs. All 
figures show exactly this delay with 0.1µs accuracy.    

Fig. 11 and 12 illustrate simultaneity requirement. In 
this example, events on node 1 have higher processing 
priority when occurring at the same time (within very 
small pre-specified interval) as events on node 2. As 
shown on Fig. 12, even if the input event on node 2 
occurs about 2µs before the input event on node 1, the 
controller node 3 has to process it later and additionally 
delay the output on node 2.  
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Figure 6. Communication delay dM histogram. 
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Figure 7. Interrupt latency histogram. 
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Figure 8. Time-sync. precision histogram. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9. Time and order requirements.  
IN1 before IN2.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11. Simultaneity requirement. 
IN1 before IN2. 
 

6. Conclusion 

In this paper we focused on locally distributed 
systems that have to process events in the strict order of 
their occurrence and with certain timing guarantees. We 
implemented and evaluated such a system that uses open 
software with real-time extensions and standard 
networking components equipped with a time 
synchronization protocol. An important part in this 
solution is the estimation of the communication delay 
bounds that are directly used for the event scheduling 
decisions. We were able to accomplish the level of event 
processing determinism typically associated with the 
time-triggered  approaches,  keeping  the  flexibility  and  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. Time and order requirements. 
IN1 after IN2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12. Simultaneity requirement.  
IN1 after IN2. 
 

 
 
simplicity at the same time. However, we noticed that 
with the decrease of the traffic load the estimated upper 
delay bounds become conservative, which may result in 
performance degradation. Also, this approach does not 
address fault-tolerance run-time mechanisms. Thus, 
achieving timely behavior requires components behave 
the way they are specified in the delay estimation step. 

Two extensions of this work are worth mentioning for 
future research. One direction is studying the effects of 
more complex network topologies where the issues of 
time synchronization become more important. There 
exist research results in applying the network calculus 
theory for cases beyond simple star topology [13].    



This paper considers only a very simple type of 
distributed applications. Each node runs a single event 
processing task and the network traffic is simple. More 
complex applications require more complex local event 
scheduler. The relevant dependency relation and other 
theoretical concepts were developed within the 
Programming Temporally Integrated Distributed 
Embedded Systems project [14]. However, there are 
several concurrency issues to be resolved for 
implementations of such solutions, including various 
combinations of interrupt preemption and prioritization, 
safe event queue operation, and locks on thread 
rescheduling during nested interrupt handlers. 
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