
Stefan Resmerita

Patricia Derler

Wolfgang Pree

C. Doppler Lab Embedded Software Systems
cs.uni-salzburg.at

The TDL Experimental Domain

in Ptolemy

© 2004, name(s)2

Contents

 Timing Definition Language (TDL) in a nutshell

 Implementation of the TDL Ptolemy domain

 Conclusions and further work

© 2004, name(s)3

TDL in a nutshell

© 2004, name(s)4

What is TDL?

 A high-level textual notation for defining the timing behavior of a
real-time application.

 Conceptually based on Giotto, in particular its
Logical Execution Time (LET) abstraction.

 TDL = Giotto + syntax + cleanups
+ component architecture
+ control engineering enhancements.

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

© 2004, name(s)5

develop once

3 dSpace

mabx

TT

Ethernet

deploy on any

platform

C

2 Renesas
. . .

FlexRay-based communication

Giotto/TDL vision:

. . .

© 2004, name(s)6

TDL syntax by example

start mode main [period=5ms] {

task

[freq=1] inc(); // LET=5ms/1=5ms

actuator

[freq=1] a1 := inc.o;

mode

[freq=1] if exitMain(s1) then freeze;

}

mode freeze [period=1000ms] {}

}

s1 inc [5ms] a1

Sender (mode main)

time

5 ms

Logical Execution Time (LET)

module Sender {

sensor boolean s1 uses getS1;

actuator int a1 uses setA1;

public task inc {

output int o := 10;

uses incImpl(o);

}

© 2004, name(s)7

Module import

module Receiver {

import Sender;

…

task clientTask {

input int i1;

…

}

mode main [period=10ms] {

task [freq=1] clientTask(Sender.inc.o); // LET = 10ms / 1 = 10ms

…

}

}

s1 a1

Sender

clientTask [10ms] a1

Receiver

inc [5ms]

© 2004, name(s)8

TDL: Additional Features

 Fast tasks

 Different LET and period of invocation for a task

Flexible placement of the LET within the period

Specified by slot selection

Example:

time

Task1

LET = 2,Per. = 8

Offset = 0

Task2

LET = 3, Period = 8

Offset = 4

41 2 3 5 6 7 80

S
lo

t
0

© 2004, name(s)9

TDL Modeling and Simulation

TDL:VisualCreator

Simulink:

© 2004, name(s)10

Why Ptolemy?

 Experiment with heterogeneous models involving TDL

components

 Rapid testing of new TDL developments

 Existence of computational models closely related to

TDL

Reuse of functionality

Reuse of graphical user interface

© 2004, name(s)11

The Experimental TDL

Domain in Ptolemy

© 2004, name(s)12

General

• Based on modal models of the finite state machine
domain

• Reuse of existing concepts
– Modes with different behaviors

– Only one active mode

– Transitions between modes

– Graphical representation

• Main changes
– Order of execution

– Deterministic choice of transitions

– Mode switches only at certain points during execution

– Output ports are not updated after every firing

– Guarded task executions and port updates

© 2004, name(s)13

TDL Module

TDL Module Actor

• Contains modes

TDL Mode
Controller

• Mirrors ports in
refinements

TDL Module
Director

• Generates and executes
schedule

TDLModule

-_init()

ModalModel

FSMActor

TDLActor

- newRelation()

TDLController

- newPort()

ModalDirector

TDLModuleDirector

-prefire()
-fire()
-newReceiver()
-transferInputPorts()
-transferOutputPorts()
-buildSchedule()

Modal-
Controller

© 2004, name(s)14

TDL Module

TDL Module Actor

• Contains modes

TDL Mode
Controller

• Mirrors ports in
refinements

TDL Module
Director

• Generates and executes
schedule

TDLModule

-_init()

ModalModel

FSMActor

TDLActor

- newRelation()

TDLController

- newPort()

ModalDirector

TDLModuleDirector

-prefire()
-fire()
-newReceiver()
-transferInputPorts()
-transferOutputPorts()
-buildSchedule()

Modal-
Controller

© 2004, name(s)15

TDL Module

TDL Module Actor

• Contains modes

TDL Mode
Controller

• Mirrors ports in
refinements

TDL Module
Director

• Generates and executes
schedule

TDLModule

-_init()

ModalModel

FSMActor

TDLActor

- newRelation()

TDLController

- newPort()

ModalDirector

TDLModuleDirector

-prefire()
-fire()
-newReceiver()
-transferInputPorts()
-transferOutputPorts()
-buildSchedule()

Modal-
Controller

© 2004, name(s)16

TDL Schedule

Mode Schedule Generation

The TDL module director creates a static schedule in 2 steps:
1. LET Schedule: general Schedule for LET based tasks
2. TDL-specific Schedule: actuators, fast tasks, mode switches

LETModeScheduler

-getModeSchedule()

TDLModeScheduler

-getModeSchedule()

LETTask

-let
-invocationPeriod

© 2004, name(s)17

LET Schedule Example

0 1 2 3 4 5 6 7 8

8 is the least common multiple

of all invocation periods

Time Scheduled actions Example

0=8 Update tasks output ports T2_out

Update tasks input ports T1 _in T2_in T3_in

Execute tasks T1 T2 T3

T1 : let = 2

invocation period = 4

T2: let = 4

invocation period = 4

T3: let = 3

invocation period = 8

Time Scheduled actions Example

1 Update tasks output ports

Update tasks input ports

Execute tasks

Time Scheduled actions Example

2 Update tasks output ports T1_out

Update tasks input ports

Execute tasks

Time Scheduled actions Example

3 Update tasks output ports T3_out

Update tasks input ports

Execute tasks

Time Scheduled actions Example

4 Update tasks output ports T2_out

Update tasks input ports T1_in T2_in

Execute tasks T1 T2

Time Scheduled actions Example

5 Update tasks output ports

Update tasks input ports

Execute tasks

Time Scheduled actions Example

6 Update tasks output ports T1_out

Update tasks input ports

Execute tasks

Time Scheduled actions Example

7 Update tasks output ports

Update tasks input ports

Execute tasks

Time Scheduled actions Example

Update tasks output ports

Update tasks input ports

Execute tasks

© 2004, name(s)18

TDL Schedule

general LET based schedule
TDL specific parts of the schedule

Time Scheduled actions

0 Update LET tasks output ports

Update actuators

Test mode switches

Fast tasks:
- Update input ports
- Execute fast tasks
- Update output ports
- Update connected actuators

Update LET tasks input ports

Execute LET tasks

0 + t Update LET tasks output ports

…

© 2004, name(s)19

TDL Mode

TDL Mode

• Group TDL tasks

TDL Transition

• Switch between TDL
modes

TDL Receiver

• All receivers inside the
TDL module

• Based on Giotto
Receiver

TDLMode

-period

State

TDLTransition

- frequency

Transition

AbstractReceiver

TDLReceiver

- token

-hasRoom()
-put()
-update()

© 2004, name(s)20

TDL Mode

TDL Mode

• Group TDL tasks

TDL Transition

• Switch between TDL
modes

TDL Receiver

• All receivers inside the
TDL module

• Based on Giotto
Receiver

TDLMode

-period

State

TDLTransition

- frequency

Transition

AbstractReceiver

TDLReceiver

- token

-hasRoom()
-put()
-update()

© 2004, name(s)21

TDL Mode

TDL Mode

• Group TDL tasks

TDL Transition

• Switch between TDL
modes

TDL Receiver

• All receivers inside the
TDL module

• Based on Giotto
Receiver

TDLMode

-period

State

TDLTransition

- frequency

Transition

AbstractReceiver

TDLReceiver

- token

-hasRoom()
-put()
-update()

© 2004, name(s)22

TDL Mode

TDL Refinement

• A TDL mode has exactly one TDL
refinement

TDL Task Actor

• A TDL refinement contains only TDL
tasks

• TDL tasks can only be SDF actors

TDLRefinement

- newPort()

Refinement

TDLRefinementPort

-frequency
-initialValue
-fast

RefinementPort

TDLTask

-frequency
-fast

-newPort()

TypedCompositeActor

TDLTaskOutputPort

- initialValue

TypedIOPort

© 2004, name(s)23

TDL Mode

TDL Refinement

• A TDL mode has exactly one TDL
refinement

TDL Task Actor

• A TDL refinement contains only TDL
tasks

• TDL tasks can only be SDF actors

TDLRefinement

- newPort()

Refinement

TDLRefinementPort

-frequency
-initialValue
-fast

RefinementPort

TDLTask

-frequency
-fast

-newPort()

TypedCompositeActor

TDLTaskOutputPort

- initialValue

TypedIOPort

© 2004, name(s)24

TDL Director

TDL Director

• Must be top-level director for models containing TDL module actors

• Mostly the same as the DE director with special handling of TDL module actors

TDLDirector

- fire()

DEDirector

© 2004, name(s)25

TDL Schedule

Time Scheduled actions

0 Update LET tasks output ports

Update actuators

Calculate mode switches

Fast tasks:
- Update input ports
- Execute fast tasks
- Update output ports
- Update connected actuators

Update LET tasks input ports

Execute LET tasks

0 + t Update LET tasks output ports

…

general LET based schedule
TDL specific parts of the schedule

© 2004, name(s)26

TDL Schedule

Time Scheduled actions

0 Update LET tasks output ports

Update actuators

Calculate mode switches

Fast tasks:
- Update input ports
- Execute fast tasks
- Update output ports
- Update connected actuators

Update LET tasks input ports

Execute LET tasks

0 + t Update LET tasks output ports

…

© 2004, name(s)27

TDL Schedule

Time Scheduled actions

0 Update LET tasks output ports

Update actuators

Calculate mode switches

Fast tasks:
- Update input ports
- Execute fast tasks
- Update output ports
- Update connected actuators

Update LET tasks input ports

Execute LET tasks

0 + t Update LET tasks output ports

…

© 2004, name(s)28

TDL Schedule

Time Scheduled actions

0 Update LET tasks output ports

Update actuators

Calculate mode switches

Fast tasks:
- Update input ports
- Execute fast tasks
- Update output ports
- Update connected actuators

Update LET tasks input ports

Execute LET tasks

0 + t Update LET tasks output ports

…

© 2004, name(s)29

TDL Schedule

Time Scheduled actions

0 Update LET tasks output ports

Update actuators

Calculate mode switches

Fast tasks:
- Update input ports
- Execute fast tasks
- Update output ports
- Update connected actuators

Update LET tasks input ports

Execute LET tasks

0 + t Update LET tasks output ports

…

© 2004, name(s)30

TDL Schedule

Time Scheduled actions

0 Update LET tasks output ports

Update actuators

Calculate mode switches

Fast tasks:
- Update input ports
- Execute fast tasks
- Update output ports
- Update connected actuators

Update LET tasks input ports

Execute LET tasks

0 + t Update LET tasks output ports

…

© 2004, name(s)31

TDL Schedule

Time Scheduled actions

0 Update LET tasks output ports

Update actuators

Calculate mode switches

Fast tasks:
- Update input ports
- Execute fast tasks
- Update output ports
- Update connected actuators

Update LET tasks input ports

Execute LET tasks

0 + t Update LET tasks output ports

…

© 2004, name(s)32

TDL Schedule

Time Scheduled actions

0 Update LET tasks output ports

Update actuators

Calculate mode switches

Fast tasks:
- Update input ports
- Execute fast tasks
- Update output ports
- Update connected actuators

Update LET tasks input ports

Execute LET tasks

0 + t Update LET tasks output ports

…

© 2004, name(s)33

TDL Schedule

Time Scheduled actions

0 Update LET tasks output ports

Update actuators

Calculate mode switches

Fast tasks:
- Update input ports
- Execute fast tasks
- Update output ports
- Update connected actuators

Update LET tasks input ports

Execute LET tasks

0 + t Update LET tasks output ports

…

© 2004, name(s)34

TDL Schedule

Time Scheduled actions

0 Update LET tasks output ports

Update actuators

Calculate mode switches

Fast tasks:
- Update input ports
- Execute fast tasks
- Update output ports
- Update connected actuators

Update LET tasks input ports

Execute LET tasks

0 + t Update LET tasks output ports

…

© 2004, name(s)35

TDL Schedule

Time Scheduled actions

0 Update LET tasks output ports

Update actuators

Calculate mode switches

Fast tasks:
- Update input ports
- Execute fast tasks
- Update output ports
- Update connected actuators

Update LET tasks input ports

Execute LET tasks

0 + t Update LET tasks output ports

…

© 2004, name(s)36

TDL Schedule

Time Scheduled actions

0 Update LET tasks output ports

Update actuators

Calculate mode switches

Fast tasks:
- Update input ports
- Execute fast tasks
- Update output ports
- Update connected actuators

Update LET tasks input ports

Execute LET tasks

0 + t Update LET tasks output ports

…

© 2004, name(s)37

User Interface Changes

Vergil

• Graphical representation of TDL modules

• Enable adding TDL refinements to TDL modes

Configuration
Files

• Adding TDL
actors to
Libraries

• Icon for TDL
module

TDLModuleTableFactory

- createTableau()

TableauFactory

HierarchicalMode-
ControllerFactory

- create()

HierarchicalModeController

AddRefinementAction

StateControllerNodeControllerFactor
y

© 2004, name(s)38

Difficulties Extending Ptolemy

• Many configuration files in different places

• Extending Ptolemy by subclassing
– Private and protected variables/methods in Ptolemy make deriving

difficult

– Lots of code duplication in case of deriving
• 1749 LOC for the TDLDirector to override the fire of the DEDirector

– Hierarchy
• E.g. a TDLTransition is derived from a Transition, however they should be

at the same level

© 2004, name(s)39

TDL in Ptolemy – Open Issues

• Having the same instance of an actor (task) in different
refinements is hard to achieve

TDL Module

TDL Task 1 TDL Task 1

© 2004, name(s)40

LET behavior

tSender inc inc

Receiver clientTask

inc inc

10 ms

5 ms

communication of inc’s

output to clientTask

clientTask

© 2004, name(s)41

Execution on distributed systems

tSender inc inc

Receiver clientTask

inc inc

10 ms

5 ms

clientTask

N1

N2

t

© 2004, name(s)42

Deployment of TDL Code

© 2004, name(s)43

Summary

 Experimental TDL domain
LET Task

TDL Module

TDL Domain Controller

 Further work

Functionality
• TDL extensions

• Code generation

Usability
• Hide library elements that should not be used

• Provide all necessary parameters

Research
• Interaction with other domains

