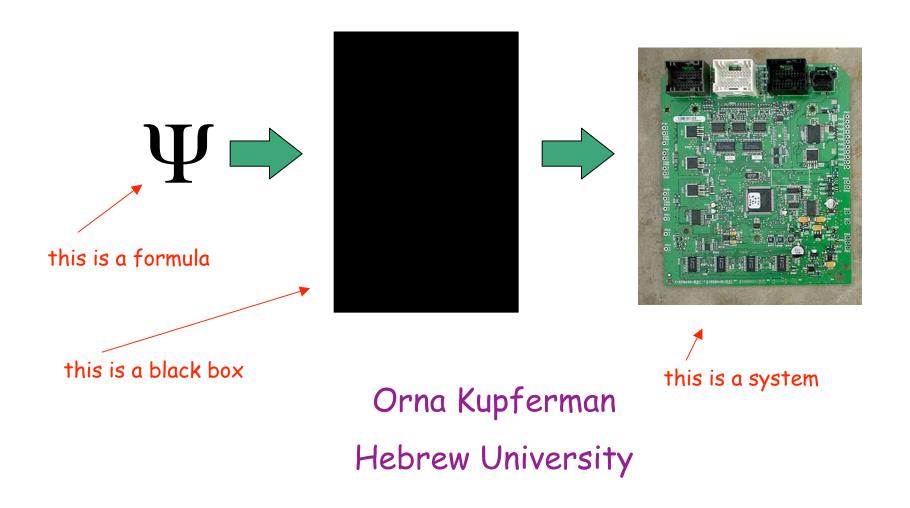
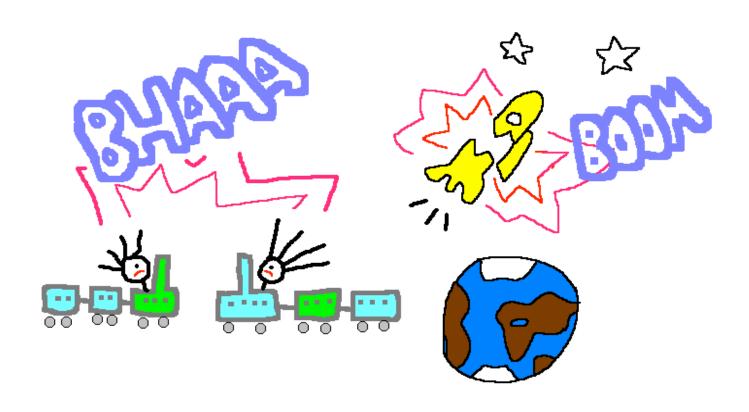
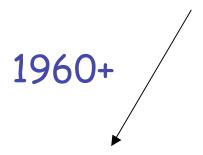
From Formulas to Systems



Is the system correct?



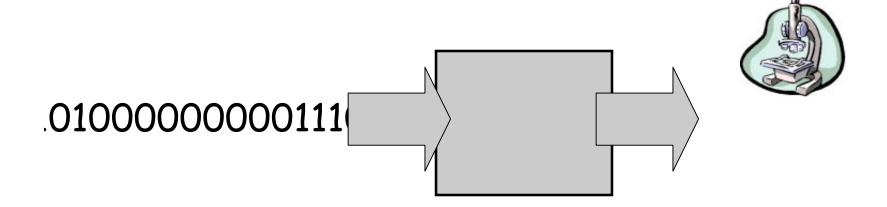
Is the system correct?



Simulation-based Verification

Simulation-based Verification

Execute the system in parallel with a reference model...



...with respect to some input sequences.

Is the system correct?

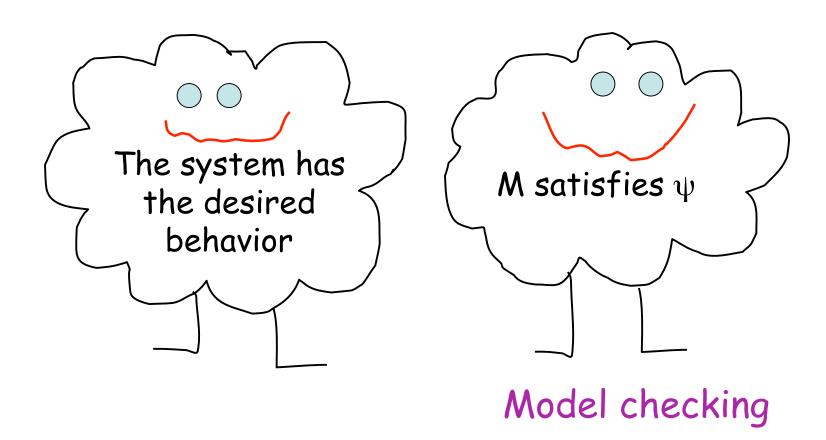
Simulation-based Verification

Formal

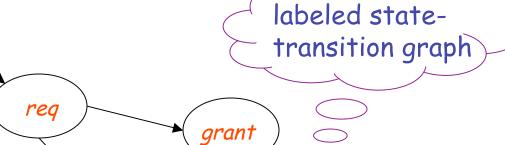
Formal Verification:

System → A mathematical model M

Desired behavior \rightarrow A formal specification ψ



A mathematical model of the system:



A formal specification of the desired behavior:

"every request is followed by a grant" "only finitely many grants"

• • •

Temporal logic

- •Atomic propositions: AP={p,q,...}
- Boolean operators: ¬, ∧, ∨,...
- Temporal operators:

$$\psi_1$$
=G (req \rightarrow F grant)
 ψ_2 =GF grant
 ψ_3 = req U (\neg req \vee grant)

It Works!

symbolic methods, compositionality, abstraction

It's hard to design systems:



Synthesis:

Input: a specification ψ .

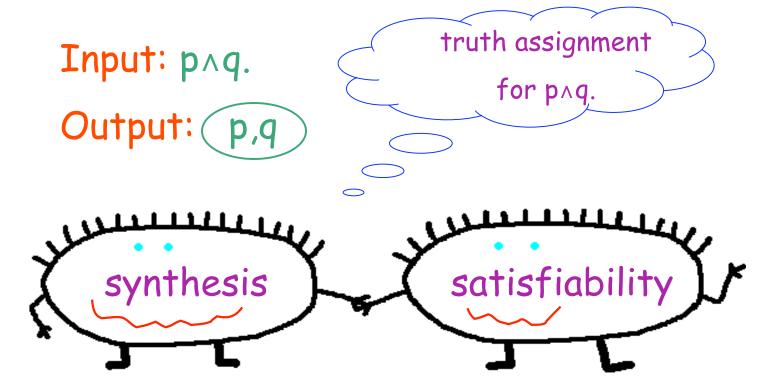
Output: a system satisfying ψ .

WOWIII

Synthesis:

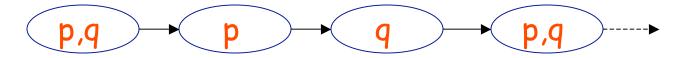
Input: a specification ψ .

Output: a system satisfying ψ .



Satisfiability of temporal logic specifications:

A computation of the system: $\pi \in (2^{AP})^{\omega}$



A specification: $L \subseteq (2^{AP})^{\omega}$

specifications → languages

The automata-theoretic approach:

An LTL specification ψ .

[VW86]

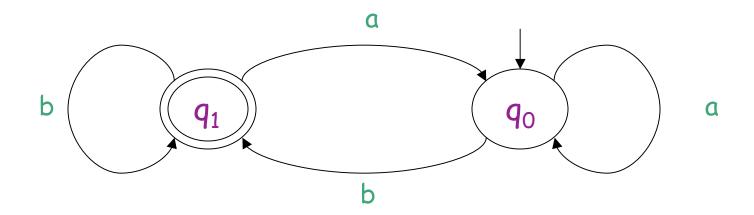
An automaton $A\psi$.

$$L(A\psi)=\{ \pi : \pi \text{ satisfies } \psi \}$$

Specifications describe infinite computations ⇒ we need automata on infinite words.

Büchi 1962: reduce decidability of monadic second order logic to the nonemptiness problem of automata on infinite words.

Büchi automata

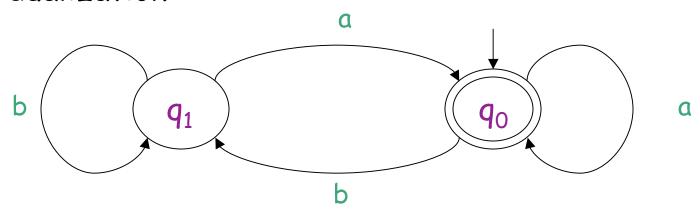


finite words: the run ends in an accepting state L(A)=(a+b)*b

infinite words: the run visits an accepting state infinitely often $L(A)=(a*b)^{\omega}$

Büchi automata

dualization:



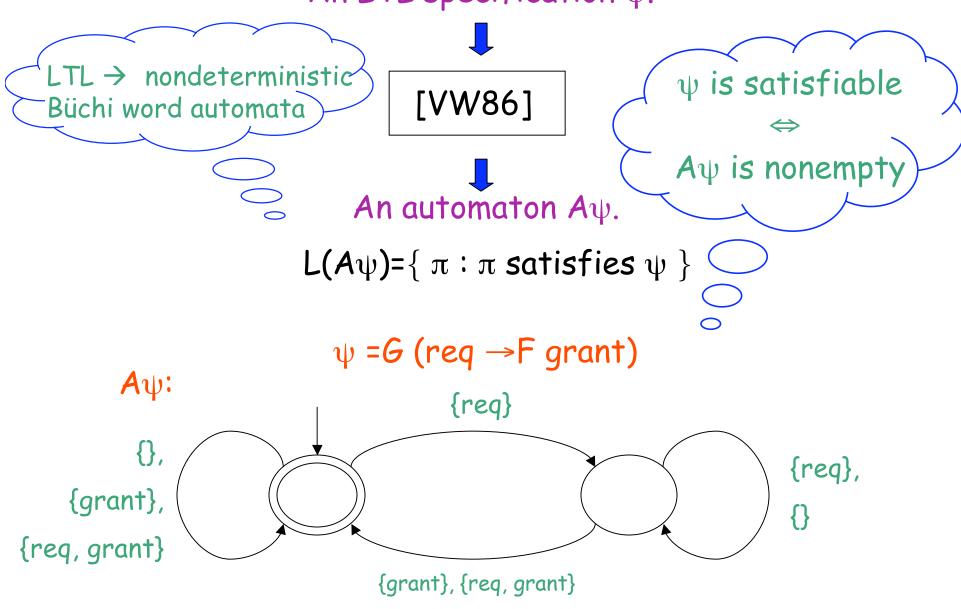
finite words: the run ends in an accepting state L(A)=(a+b)*b $L(\tilde{A})=\epsilon+(a+b)*a=(a+b)*$

infinite words: the run visits an accepting state infinitely often $L(A)=(a*b)^{\omega}$ $L(\widetilde{A})=(b*a)^{\omega} \neq (a+b)^{\omega} \setminus L(A)$

Büchi dualization: co-Büchi (visit α only finitely often)

The automata-theoretic approach:

An LTL specification ψ .



An example:

user 1

user 2

- 1. Whenever user i sends a job, the job is eventually printed.
- 2. The printer does not serve the two users simultaneously.
- 1. $G(j1 \rightarrow Fp1) \land G(j2 \rightarrow Fp2)$
- 2. $G((\neg p1) \lor (\neg p2))$

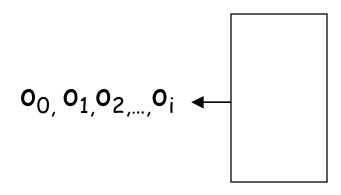
Let's synthesize a scheduler that satisfies the specification ψ ...

Satisfiability of ψ such a scheduler exists? NO! A model for ψ help in constructing a scheduler? NO! -j1-j2-p1-p2

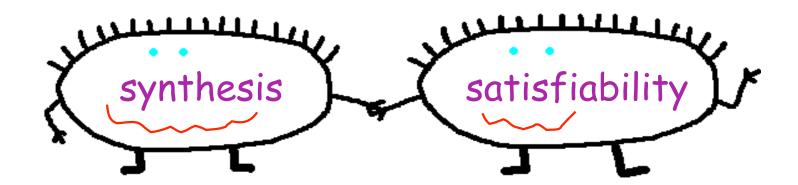
A model for ψ : a scheduler that is guaranteed to satisfy ψ for some input sequence.

Wanted: a scheduler that is guaranteed to satisfy ψ for all input sequences.

Closed vs. open systems

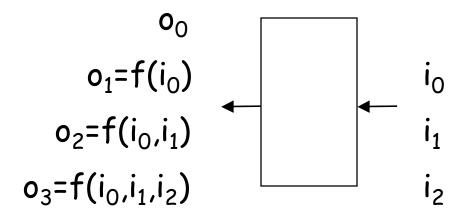


all input sequences=some input sequence



Closed vs. open systems

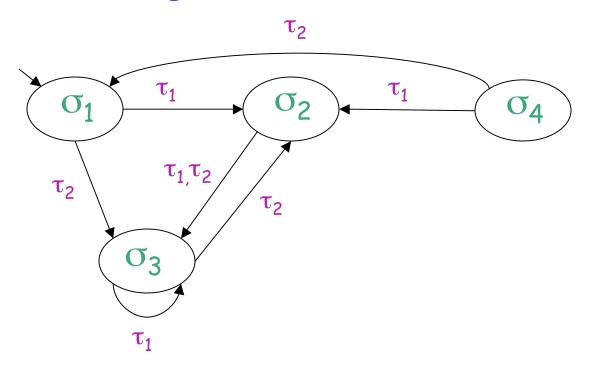
Open system: interacts with an environment!



An open system: $f(2I)^* \rightarrow 20$

 $f:(2^{I})^* \rightarrow 2^{\circ}$ is a regular strategy if for all $\sigma \in 2^{\circ}$, the set of words $w \in (2^{I})^*$ for which $f(w) = \sigma$ is regular.

Regular strategies > Finite-state transducers

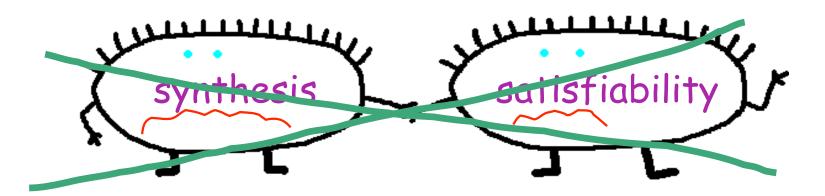


Closed vs. open systems

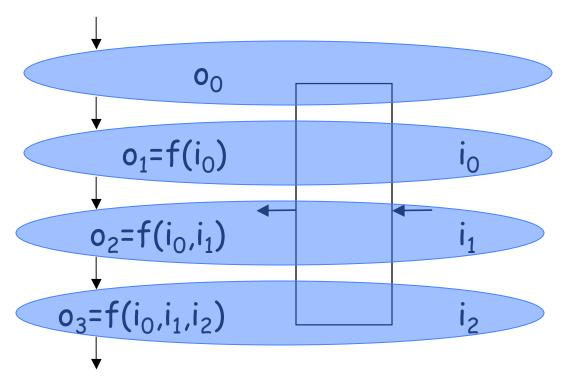
Open system: $f:(2^{I})^* \rightarrow 2^{O}$

In the printer example: $I=\{j1,j2\}$, $O=\{p1,p2\}$

 $f:(\{\{\},\{j1\},\{j2\},\{j1,j2\}\})^* \rightarrow \{\{\},\{p1\},\{p2\},\{p1,p2\}\}$

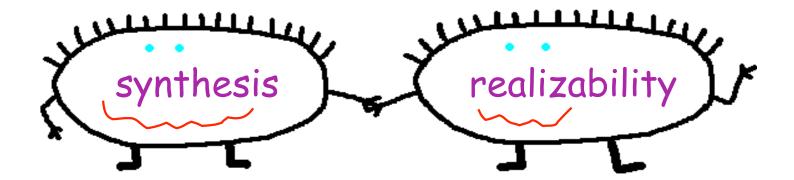


A computation of f:



$$(f(\epsilon)) \rightarrow (i_0, f(i_0)) \rightarrow (i_1, f(i_0, i_1)) \rightarrow (i_2, f(i_0, i_1, i_2)) \rightarrow ...$$

The specification ψ is realizable if there is $f:(2^{I})^* \rightarrow 2^{O}$ such that all the computations of f satisfy ψ .



 ψ is satisfiable \leftarrow ψ is realizable?

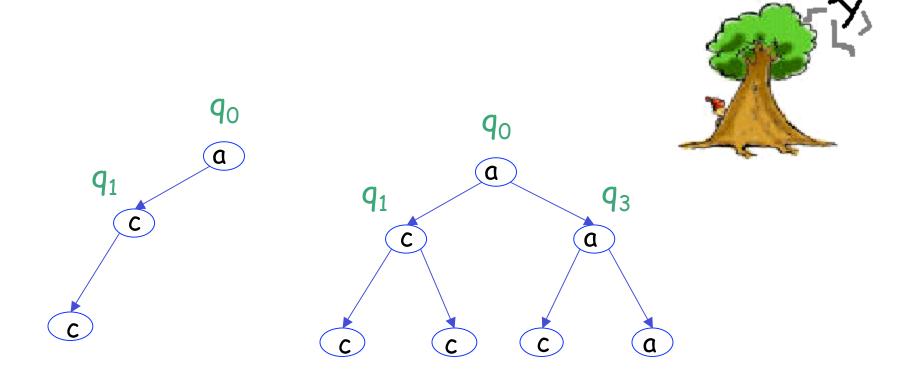
Yes! (for all \rightarrow exists)

 ψ is satisfiable \rightarrow ψ is realizable?

NO!

Key idea: use automata on infinite trees

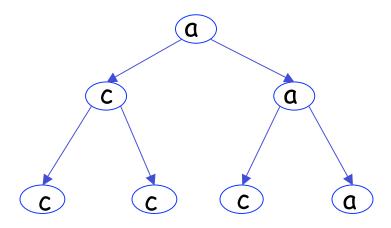
Tree Automata



Word automata: $M(q_0,a)=\{q_1,q_2\}$

Tree automata: $M(q_0,a)=\{\langle q_1,q_3\rangle, \langle q_2,q_1\rangle\}$

Trees:



Two parameters:

D: a set of directions (binary trees: D={1,r}).

 Σ : a set of labels ($\Sigma = \{a,c\}$).

 $f: D^* \to \Sigma$

Σ-labeled D-trees

In the realizability story:

 $D = 2^{I}$ (all possible input sequences)

$$f: (2^{I})^* \rightarrow 2^{I \cup O}$$

 $\Sigma = 2^{I \cup O}$ (label by both input and output). $f: (2^{I})^* \rightarrow 2^{O}$

Given an LTL specification ψ over $I \cup O$:

- 1. Construct a tree automaton $A\psi$ on $2^{I\cup O}$ -labeled 2^{I} -trees such that $A\psi$ accepts exactly all the trees all of whose paths satisfy ψ .
- 2. Obtain from $A\psi$ a tree automaton $A'\psi$ on 2^O -labeled 2^I -trees that reads the I-component of the alphabet form the direction of the nodes.

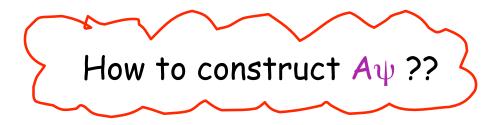
A tree accepted by $A'\psi$:

f: $(2^{\text{I}})^* \rightarrow 2^{\text{O}}$ whose computation tree satisfies $\psi!$

3. Check $A'\psi$ for emptiness.

(with respect to regular trees)

1. Construct a tree automaton $A\psi$ on $2^{I\cup O}$ -labeled 2^{I} -trees such that $A\psi$ accepts exactly all the trees all of whose paths satisfy ψ .



- Determinize the nondeterministic word automaton for ψ and expand it to a tree automaton.

expand:
$$M_{+}(q,a) = \langle M(q,a), M(q,a) \rangle$$

 $M(q_{0},a)=\{q_{1}\}$
 $M_{+}(q_{0},a)=\{\langle q_{1},q_{1}\rangle\}$

Do we really have to determinize the word automaton for ψ ?

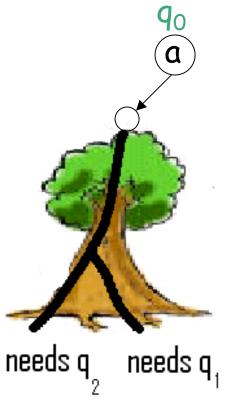
expand:
$$M_{\dagger}(q,a) = M(q,a) \times M(q,a)$$

$$M(q_0,a)=\{q_1,q_2\}$$

$$M_{\dagger}(q_0,\alpha)=\{\langle q_1,q_1\rangle,\langle q_1,q_2\rangle,\langle q_2,q_1\rangle,\langle q_2,q_2\rangle\}$$

Does not work! We have to determinize!

The same guess should work for all paths in the same subtree.



3. Check $A'\psi$ for emptiness.

Solving nonemptiness of parity tree automata...

Do we really have to use a richer acceptance condition??

Yes, deterministic Büchi is too weak.

Büchi acceptance: visit α infinitely often

No deterministic Büchi automaton for L(A) [Landweber 76]

3. Check $A'\psi$ for emptiness.

Solving nonemptiness of parity tree automata...

Do we really have to use richer acceptance condition??

Yes, deterministic Büchi is too weak.

parity acceptance: much more complicated...

$$\alpha: Q \rightarrow \{1,...k\}$$

the minimal color that is visited infinitely often is even ... and complex.

That is too bad!!!

- -The determinization construction is very complicated.
 - hard to understand
 - hard to implement

[Safra 1988]

- complicated data structure (no symbolic implementation)

- -Solving parity emptiness is not a big pleasure either.
 - deeply nested fixed points
 - complicated symbolic implementation

Model checking: tools! A success story!!

Synthesis: no tools, no story.

Kupferman Vardi 2005: avoid determinization

Given an LTL fromula ψ :

1. Construct a nondeterministic Büchi word automaton $A_{\neg\psi}$ that accepts all computations satisfying $\neg\psi$.

Easy [VW86]

- 2. Run the dual universal co-Büchi word automaton on the (2^{I}) -tree.
- 3. Check emptiness of the universal co-Büchi tree automaton.

Easy, translate it to a nondeterministic Büchi tree automaton

Easy, running a universal automaton on a tree is sound and complete.

The magic:

universal co-Büchi tree automata → nonterministic Büchi tree automata

k depends on the size of the automaton.

Based on an analysis of accepting runs of co-Büchi automata

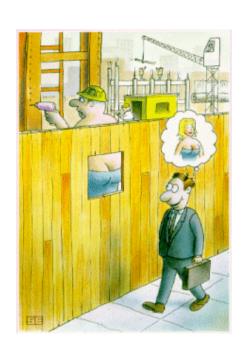
A run is accepting iff the vertices of its run DAG can get ranks in {0,...,k} so that ranks along paths decrease and odd ranks appear only finitely often.

The nondeterministic automaton: guesses a ranking, checks decrease, checks infinitely many visits to even ranks.

Richer Settings:

1. Synthesis with incomplete information

2. Synthesis of a distributed system



3. Specifications in branching temporal logic

The synthesis challenge:

- Complexity
 (doubly-exponential in the specification)
- 2. Compositional and incremental synthesis
- 3. Richer specification formalisms
- 4. Measuring the quality of a specification

