
http://chess.eecs.berkeley.edu/

February 21, 2008 Center for Hybrid and Embedded Software Systems

Case Study: Traffic

Light System in SR

Conclusion and

Future Work

In this work, we offer design with

verification by translating component

models into the mathematical models

needed for verification. This work opens

interesting problems for future study in

parametric safety analysis and rate control

analysis.

Specification and Formal Verification of
Real Time Systems under Ptolemy II

Chihhong Cheng

Edward A. Lee
{patrickj,eal}@eecs

We construct a simplified traffic light

system in the SR domain, where the

system contains of one car light and one

pedestrian light. Our design should

make it impossible to have the car light

and pedestrian light be green at the

same time (this might lead to accidents).

We use a model checker to test whether

our design satisfies the specification.

Formula: !EF (CarLightNormal.state =

Cgrn & PedestrianLightNormal.state

= Pgreen)

Case Study: Buffer

Overflow Detection

in DE
Buffer overflow detection has been

an important issue in the design of

embedded systems. Our conversion

process enables us to configure

parameters of buffer size for each

component, and use model checkers

to detect the undesired behavior.

Also we can describe more

interesting properties using TCTL [2].

BackgroundBackgroundBackgroundBackground
In the context of embedded software
design, one challenge is to mediate
the gap between design facilitation
and verification complication. We
found that existing theories and
practices in verification are powerful,
but when applying formal
techniques, it would greatly release
the burden of system designers if
detailed and complex mathematical
models used for verification are
hidden; construction of such models
may be time consuming and error
prone.

Goals and Goals and Goals and Goals and AchievementsAchievementsAchievementsAchievements
We provide an automatic mapping from higher level components (actors) commonly used
to lower level mathematical models; the conversion preserves behavior semantics. With
this methodology, the productivity of designers as well as the correctness of designs can
be maintained simultaneously.

Automatic conversion from Automatic conversion from Automatic conversion from Automatic conversion from

FSMActorsFSMActorsFSMActorsFSMActors to to to to KripkeKripkeKripkeKripke Structures Structures Structures Structures

in the SR domainin the SR domainin the SR domainin the SR domain

FSMActors can be viewed as extended state

machines, which enable the existence of

inner variables. We are to convert multiple

FSMActors in the SR (Synchronous Reactive)

domain into Kripke structures accepted by

model checker NuSMV [3]. We can also deal

with ModalModels with state refinements.

IncorporatingIncorporatingIncorporatingIncorporating FSMActorsFSMActorsFSMActorsFSMActors with Other with Other with Other with Other

Actors in Actors in Actors in Actors in LibrariesLibrariesLibrariesLibraries under the DE under the DE under the DE under the DE

domaindomaindomaindomain

The DE (Discrete Event) domain is one of the

most useful MoCs capturing the behavior of

real time systems. We study the parts of the

actors that can not be represented by simple

FSMs; we are able to characterize their

interplay using the theory of Timed Automata

[1].

Models with

Higher Level
Components

Mathematical
Formal Models

Implementation

Implementation

From

From

To

To

Mathematical
Formal Models

Implementation
Models with
Higher Level
Components

Complicated
to construct

models

Correctness
guaranteed
partially

Our FocusOur FocusOur FocusOur Focus

1

*

t==1

!SEC

t:=0

t==3

!SEC

Buffer size = 1 with overflow detection

Buffer size = 2 with overflow detection

1
t==1

!SEC

0

?SIG

t:=0

X
?SIG

01

t1<= 3

!SEC

00

?SIG

t1:=0

10

11

X

?SIG

?SIG t2:=0

t2<= 3 !SEC

?SIG

t1:=0

t1<= 3

!SEC

t2<= 3 !SEC

MODULE CarLightNormal(Sec_isPresent)

VAR

state : {Credyel,Cgrn,Cinit,Cred,Cyel};

count : { ls,0,1,2,gt };

ASSIGN

init(state) := Cinit;

next(state) :=

case

state=Cinit & count=ls :{ Cred };

state=Cinit & count=0 :{ Cred };

…

…

FSMActors in Ptolemy II

.smv format of the equivalent
FSMActor

References

[1] R. Alur and D.L. Dill, A Theory of Timed Automata.

Theoretical Computer Science, 1994. 126(2): p. 183-235.

[2] R. Alur, C. Courcoubetis, and D. L. Dill, “Model
checking for realtime systems,” in Proc. 5th Annu. IEEE
Symp. Logic in Computer Science, 1990, pp. 414–425.

[3] A. Cimatti, et al. Nusmv 2: An opensource tool for

symbolic model checking. in Computer Aided Verification.

2002: Springer-Verlag.

MODULE CarLightNormal(Sec_isPresent)

VAR

state : {Credyel,Cgrn,Cinit,Cred,Cyel};

count : { ls,0,1,2,gt };

ASSIGN

init(state) := Cinit;

next(state) :=

case

state=Cinit & count=ls :{ Cred };

state=Cinit & count=0 :{ Cred };

…

Model Checker

Property Holds?

Automatic Generation

Automatic
Generation

Yes

No

Modify the system
based on counter
example traces

Refinement, implementation

Model Checker

2

2

3

2

2

Buffer Size

PedestrainLightNormal_DPgo

PedestrainLightNormal_DPstop

BBNondeterministicDelay_Pstop

BBTimedDelay_Pgo

CarLightNormal_Sec

Port name

