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Abstract. We present a modular framework for building assembly-lan-
guage program analyzers by using a pipeline of decompilers that grad-
ually lift the level of the language to something appropriate for source-
level analysis tools. Each decompilation stage contains an abstract inter-
preter that encapsulates its findings about the program by translating
the program into a higher-level intermediate language. For the hardest
decompilation tasks a decompiler may request information from higher-
level stages in the pipeline. We provide evidence for the modularity of
this framework through the implementation of multiple decompilation
pipelines for both x86 and MIPS assembly produced by gcc, gcj, and
coolc (a compiler for a pedagogical mini-Java language) that share sev-
eral low-level components. Finally, we discuss our experimental results
that apply the BLAST model checker for C and the Cqual analyzer to
decompiled assembly.

1 Introduction

There is a growing interest in applying software-quality tools to low-level rep-
resentations of programs, such as intermediate or virtual-machine languages, or
even on native machine code. We want to be able to analyze code whose source
is either not available (e.g., libraries) or not easily analyzable (e.g., programs
written in languages with complex semantics such as C++, or programs that
contain inline assembly). This allows us to analyze the code that is actually
executed to ignore possible compilation errors or arbitrary interpretations of un-
derspecified source-language semantics. Many source-level analyses have been
ported to low-level code, including type checkers [MWCG99,LY97,CCNS05],
program analyzers [Riv03,BR04], model checkers [BRK 05|, and program ver-
ifiers [CLN ™ 00,BL05]. In our experience, these tools mix the reasoning about
high-level notions with the logic for understanding low-level implementation de-
tails that are introduced during compilation, such as stack frames, calling con-
ventions, exception implementation, and data layout. We would like to segregate
the low-level logic into separate modules, to allow for easier sharing between tools
and for a cleaner interface with the client analyses. To better understand this
issue, consider developing a type checker similar to the Java bytecode verifier but
for assembly language. Such a tool has to reason not only about the Java type
system, but also the layout of objects, calling conventions, stack frames, with
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all the low-level invariants that the compiler intends to preserve. We reported
earlier [CCNS05] on such a tool where all of this reasoning is done simultane-
ously by one module. But such situations arise not just for type checking but
essentially for all analyses on assembly language.

In this paper we propose an architecture that modularizes the reasoning
about low-level details into separate components. Such a separation of low-level
logic has previously been done to a certain degree in tools such as CodeSurf-
er/x86 [BR04] and Soot [VRCG T 99|, which expose to client analyses an API
for obtaining information about the low-level aspects of the program. In this
paper, we adopt a more radical approach in which the low-level logic is packaged
as a decompiler whose output is an intermediate language that abstracts the low-
level implementation details introduced by the compiler. In essence, we propose
that an easy way to reuse source-level analysis tools for low-level code is to
decompile the low-level code to a level appropriate for the tool. We make the
following contributions:

— We propose a decompilation architecture as a way to apply source-level tools
to assembly language programs (Sec. 2). The novel aspect of our proposal
is that we use decompilation not only to separate the low-level logic from
the source-level client analysis, but also as a way to modularize the low-level
logic itself. Decompilation is performed by a series of decompilers connected
by intermediate languages. We provide a cooperation mechanism in order to
deal with certain complexities of decompilation.

— We provide evidence for the modularity of this framework through the imple-
mentation of multiple decompilation pipelines for both x86 and MIPS assem-
bly produced by gcc (for C), gcj (for Java), and coolc (for Cool [Aik96],
a Java-like language used for teaching) that share several low-level com-
ponents (Sec. 3). We compare the size of the modules with a monolithic
assembly-level analysis.

— We demonstrate it is possible to apply source-level tools to assembly code
using decompilation by applying the BLAST model checker [HJM * 02] and
the Cqual analyzer [FTA02] with our gcc decompilation pipeline (Sec. 4).

Note that while ideally we would like to apply analysis tools to machine code
binaries, we leave the difficult issue of lifting binaries to assembly to other work
(perhaps by using existing tools like IDAPro [IDA] as in CodeSurfer/x86 [BR04]).

Challenges. Just like in a compiler, a pipeline architecture improves modular-
ity of the code and allows for easy reuse of modules for different client-analyses.
Fig. 1 shows an example of using decompilation modules to process code that has
been compiled with the GNU Compiler Collection compilers. Each stage recovers
an abstraction that a corresponding compilation stage has concretized. For ex-
ample, we have a decompiler that decompile the notion of the run-time stack of
activation records into the abstraction of functions with local variables (Locals).
We use an object-oriented module (OO) to decompile generic object-oriented
features (e.g., virtual method dispatch). Finally, the additional type inference
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Fig. 1. Cooperating decompilers for the output of gcc and gcj. Shaded boxes
are decompiler modules that produce successively more abstract versions of the
program.

modules are able to produce valid source-level programs (except for eliminating
gotos in the case of Java). We also show that, just like during compilation,
global value numbering and static-single assignment greatly facilitate analysis of
low-level code and package these transformations as a decompiler (SymEval).

The analogy with compilers is very useful but not sufficient. Compilation
is in many respects a many-to-one mapping and thus not easily invertible.
Many source-level variables are mapped to the same register, many source-level
concepts are mapped to the run-time stack, many source-level operations are
mapped to a particular low-level instruction kind. We address this issue by pro-
viding each decompiler with additional information about the instruction being
decompiled. Some information is computed by the decompiler itself using data-
flow analysis. For example, the Locals decompiler can keep track of the value of
the stack and frame pointer registers relative to function entry.

The real difficulty is that some information must be provided by higher-level
modules. For example, the Locals module must identify all calls and determine
the number of arguments, but only the object-oriented module (OO) should
understand virtual method invocation. There is a serious circularity here. A de-
compiler needs information from higher-level decompilers to produce the input
for the higher-level decompiler. We introduce a couple of mechanisms to address
this problem. First, the entire pipeline of decompilers is executed one instruction
at a time. That is, we produce decompiled programs simultaneously at all levels.
This setup gives each decompiler the opportunity to accumulate data-flow facts
that are necessary for decompiling the subsequent instructions and allows the
control-flow graph to be refined as the analysis proceeds. When faced with an
instruction that can be decompiled in a variety of ways, a decompiler can con-
sult its own data-flow facts and can also query higher-level decompilers for hints
based on their accumulated data-flow facts. Thus it is better to think of decom-
pilers not as stages in a pipeline but as cooperating decompilers. The net result
is essentially a reduced product analysis [CC79] on assembly; we explain the
benefits of this framework compared to prior approaches based on our previous
experiences in Sec. 3 and 5.
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static int length(List x) {
int len = 0;
while (x.hasNext()) {
x = x.next();
len++;

}

return len;

}

Fig. 2. A simple Java method.

2 Cooperating Decompilation Framework

For concreteness, we describe the methodology through an example series of
decompiler modules that together are able to perform Java type checking on
assembly language. We focus here on the Java pipeline (rather than C), as the
desired decompilation is higher-level and thus more challenging to obtain. Con-
sider the example Java program in Fig. 2 and the corresponding assembly code
shown in Fig. 3(a). For clarity, we often use register names that are indicative
of the source variables to which they correspond (e.g., r; ) or the function they
serve (e.g., sy for the stack pointer). In this figure, we use the stack and calling
conventions from the x86 architecture where the stack pointer ry, points to the
last used word, parameters are passed on the stack, return values are passed in
ri, and rs is a callee-save register. self pointer (this in Java) is passed as the
first argument. Typically, a virtual method dispatch is translated to several lines
of assembly: a null-check on the receiver object, looking up the dispatch table
and then the method in the dispatch table, passing the receiver object and any
other arguments, and finally an indirect jump-and-link (icall). To ensure that
the icall is a correct compilation of a virtual method dispatch, dependencies
between assembly instructions must be carefully tracked, such as the require-
ment that the argument passed as the self pointer is the same (or at least has
the same dynamic type) as the object from which the dispatch table is obtained
(cf., [LST02,CCNS05]). These difficulties are only exacerbated with instruction
reordering and other optimizations. For example, consider the assembly code for
the method dispatch to x.next() (lines 15-17). Variable x is kept in a stack slot
(mlrs, + 16] at line 15). A small bit of optimization has eliminated the null-
check and the re-fetching of the dispatch table of x, as a null-check was done
on line 6 and the dispatch table was kept in a callee-save register ry, so clearly
some analysis is necessary to decompile it into a method call.

The rest of Fig. 3 shows how this assembly code is decompiled by our system.
In summary, the Locals module decompiles stack and calling conventions to pro-
vide the abstraction of functions with local variables. The SymEval decompiler
performs symbolic evaluation to accumulate and normalize larger expressions to
present the program in a source-like SSA form. Object-oriented features, like vir-
tual method dispatch, are identified by the OO module, which must understand
implementation details like object layout and dispatch tables. Finally, JavaTypes
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(a) Assembly (b) Locals (c) SymEval (d) 00 (e) JavaTypes
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(al2) o, 32)0)
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ri := miry + 28] ri = mirp+28]
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return return ri return o, return o, return o,

Fig. 3. Assembly code for the program in Fig. 2 and the output of successive
decompilers. The function’s prologue and epilogue have been elided. Jumping to
Lexe will trigger a Java NullPointerException.

can do a straightforward type analysis (because its input is so high-level) to re-
cover essentially Java with unstructured control-flow.

As can be seen in Fig. 3, one key element of analyzing assembly code is
decoding the run-time stack. An assembly analyzer must be able to identify
function calls and returns, recognize memory operations as either stack accesses
or heap accesses, and must ensure that stack-overflow and calling conventions are
handled appropriately. This handling ought to be done in a separate module both
because it is not specific to the desired analysis and also to avoid such low-level
concerns when thinking about the analysis algorithm (e.g., Java type-checking).
In our example decompiler pipeline (Fig. 1), the Locals decompilers handle all of
these low-level aspects. On line 17, the Locals decompiler determines that this
instruction is a function call with one argument (for now, we elide the details
how this done, see the Bidirectional Communication subsection and Fig. 4) and
interprets the calling convention to output a function call with one argument
that places its return value in r,, . Also, observe that Locals decompiles reads of
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and writes to stack slots that are used as local variables into uses of temporaries
(e.g., t;) (lines 3, 5, 10, 15, 19, 20, 23). To do these decompilations, the Locals
decompiler needs to perform analysis to track, for example, pointers into the
stack (we write sp(n) for a stack pointer that is equal to r,, on function entry
plus n). For instance, Locals needs this information to identify the reads on
both lines 5 and 10 as reading the same stack slot t, . Sec. 3 gives more details
about how these decompilers are implemented.

Decompiler Interface. Program analyses are almost always necessary to es-
tablish the prerequisites for sound decompilations. We build on the traditional
notions of data-flow analysis and abstract interpretation [CC77], which provides
a systematic framework for the construction of program analyses. Standard ways
to combine abstract interpreters typically rely on all interpreters working on the
same language. Instead, we propose here an approach in which the communi-
cation mechanism consists of successive decompilations. A lower-level analysis
communicates the essence of the information it has discovered as part of the
translated instructions to be analyzed by higher-level analyses.

In the remainder of this section, we present signatures for decompilers and
intermediate languages. To motivate our design, we evolve them slowly begin-
ning from traditional notions of abstract interpretation. A decompiler operates
on instructions from input language and produces instructions in the output lan-
guage. A language definition implements the following (partial) signature, which
includes a type of instructions:

type instr . LANGUAGE

We specify for each type or value declaration whether they belong to the LAN-
GUAGE or DECOMPILER signatures. The type of the flow function (i.e., abstract
transition relation) a decompiler must implement is as follows:

val step : curr X instr;, — instr,,; X succ list DECOMPILER

for some input language instr;, and some output language instr,,;. The type
curr represents the current abstract state at the given instruction, and succ
represents a pair of a program location (loc) and the abstract successor state
for that location, that is,

type abs
type curr = abs

type succ = loc X abs . DECOMPILER

For our purposes, a program location is either the “fall-through” location or
a particular label ¢. For simplicity in presentation, we assume a decompiler
translates one input instruction to one output instruction. Our implementation
extends this to allow one-to-many or many-to-one translations.

As part of the framework, we provide a standard top-level fixpoint engine
that ensures the exploration of all reachable instructions. To implement this
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fixpoint engine, we require in the signature the standard partial ordering and
widening operators [CC77]:

val C : abs X abs — bool

val V : abs X abs — abs . DECOMPILER

The widening operator yields an abstract domain element that is an upper bound
of its inputs such that for any ascending chain By C By C --- | the ascending
chain

AC (AVBy) C ((AVBy)VB;) C ---

stabilizes after a finite number of steps.

For simple examples where the necessary communication is unidirectional
(that is, from lower-level decompilers to higher-level decompilers via the decom-
piled instructions), an exceedingly simple composition strategy suffices where
we run each decompiler completely to fixpoint gathering the entire decompiled
program before running the next one (i.e., a strict pipeline architecture). This
architecture does not require a product abstract domain and would be more
efficient than one. Unfortunately, as we have alluded to earlier, unidirectional
communication is insufficient: lower-level decompilers depend on the analyses of
higher-level decompilers to perform their decompilations. We give examples of
such situations and describe how to resolve this issue in the following subsection.

Bidirectional Communication. In this subsection, we motivate two compli-
mentary mechanisms for communicating information from higher-level decom-
pilers to lower-level ones. In theory, either mechanism is sufficient for all high-
to-low communication but at the cost of efficiency or naturalness. As soon as
we consider high-to-low communication, clearly the strict pipeline architecture
described above is insufficient: higher-level decompilers must start before lower-
level decompilers complete. To address this issue, we run the entire pipeline of
decompilers one instruction at a time, which allows higher-level decompilers to
analyze the preceding instructions before lower-level decompilers produce sub-
sequent instructions. For this purpose, we provide a product decompiler whose
abstract state is the product of the abstract states of the decompilers, but in
order to generate its successors, it must string together calls to step on the de-
compilers in the appropriate order and then collect together the abstract states
of the decompilers.

Queries. Consider again the dynamic dispatch on line 17 of Fig. 3. In order
for the Locals module to (soundly) abstract stack and calling conventions into
functions with local variables, it must enforce basic invariants, such as a function
can only modify stack slots (used as temporaries) in its own activation record
(i.e., stack frame). To determine the extent of the callee’s activation record, the
Locals module needs to know, among other things, the number arguments of the
called function, but only the higher-level decompiler that knows about the class
hierarchy (JavaTypes) can determine the calling convention of the methods that
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Locals SymEval 00 JavaTypes
rsp :sp(—l?)‘ ’rl = m[mft;] + 28]‘ ts : nonnull obj
isFunc(ry)? isFunc(m[m[t.] 4 28])? isMethod(t;, 28)7
—_——— — —_———— — _———— e ————— —
Yes, 1 argument Yes, 1 argument Yes, 0 arguments
DA s PO O i
17icall [r1] icall [r1](t1) icall [m[m[t;]+ 28]](t;) invokevirtual [tz,28]() tg.next()
Assembly Locals IL SymEval IL OO IL Java

Fig. 4. Queries to resolve the dynamic dispatch from line 17 of Fig. 3. Relevant
portions of the abstract states before the icall are shown boxed.

r; can possibly point to. As we have alluded to earlier, we resolve this issue by
allowing lower-level decompilers to query higher-level decompilers for hints. In
this case, Locals asks: “Should icall [r;] be treated as a standard function call;
if so, how many arguments does it take?”. If some higher-level decompiler knows
the answer, then it can translate the icall to a higher-level call with arguments
and a return register and appropriately take into account its possible effects.

In Fig. 4, we show this query process in further detail. We show the decom-
pilers for Locals, symbolic evaluation (SymEval), object-oriented features (OO),
and Java features (JavaTypes), eliding the return value. Precisely how these de-
compilers work is not particularly relevant here (see details in Sec. 3). Focus
on the original query isFunc(rj) from Locals. To obtain an answer, the query
gets decompiled into appropriate variants on the way up to JavaTypes. The an-
swer is then translated on the way down. For the OO module the method has
no arguments, but at the lower-level the implicit this argument becomes ex-
plicit. For JavaTypes to answer the query, it must know the type of the receiver
object, which it gets from its abstract state (shown above the queries). The ab-
stract states of the intermediate decompilers are necessary in order to translate
queries so that JavaTypes can answer them. Such a query (along with tracking
of return addresses) also allows Locals to decompile calls that are implemented
in assembly as (indirect) jumps (e.g., tail calls), which then allows higher-level
decompilers to treat calls uniformly.

To implement queries as shown, we include in the signature LANGUAGE a
type of callback objects (hints) whose implementations are functions provided
by higher-level decompilers. For example, the Calls IL would include a callback
for identifying function calls:

type expr e
type hints = { isFunc: expr — bool } {CaIIsIL : LANGUAGEJ

where expr is the type of machine expressions for Calls IL.

Intuitively, an object of type hints in the output language of a decompiler
provides information about the current abstract states of higher-level decom-
pilers. Such an object is provided as an input to the step function of each
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decompiler; we do this by modifying the curr type:

type curr = hints,,: X abs
val getHints : hints,,; X abs — hintsy, . DECOMPILER

Additionally, each decompiler provides a function getHints to create a callback
object for lower-level decompilers, based on its current abstract state and on the
callback object for the higher-level decompilers. The resulting callback object
may operate in one of two ways. When posed a question by the lower-level de-
compiler, it may obtain the necessary response by examining its current abstract
state. For example, in Fig. 4, the JavaTypes decompiler answers the isFunc ques-
tion directly. The alternative is to decompile the question into a question that
can be posed to the higher-level decompiler by means of the hints,,; object.
The response might have to be translated back to match the responses expected
by the hints;, object. The translation of both the questions and the responses
can be done using the current abstract state, as shown for the Locals, SymEval,
and OO decompilers in Fig. 4.

This architecture with decompilations and callbacks works quite nicely, as
long as the decompilers agree on the number of successors and their program
locations. In this situation, the job of the product domain is straightforward.
In some cases, however, it is convenient to use decompilers that do not always
agree on the successors.

Decompiling Control-Flow. Obtaining a reasonable control-flow graph on which
to perform analysis is a well-known problem when dealing with assembly code
and is often a source of unsoundness, particularly when handling indirect control-
flow. For example, switch tables, function calls, function returns, exception raises
may all be implemented as indirect jumps (ijump) in assembly. We approach this
problem by integrating the control-flow determination with the decompilation;
that is, we make no a priori guesses on where an indirect jump goes and rely on
the decompiler modules to resolve them to a set of concrete program points. In
general, there are two cases where the decompilers may not be able to agree on
the same successors:

1. Don’t Know the Successors. Sometimes a low-level decompiler does not know
the possible concrete successors. For example, if the Locals decompiler can-
not resolve an indirect jump, it will produce an indirect successor indicating
it does not know where the indirect jump will go. However, a higher-level
decompiler may be able to refine the indirect successor to a set of concrete
successors (that, for soundness, must cover where the indirect jump may
actually go). It is then an error if any indirect successors remain unresolved
after the entire pipeline.

2. Additional Successors. A decompiler may also need to introduce additional
successors not known to lower-level modules. For example, an exceptions
decompiler may need to express that a function call has not only the normal
successor at the following instruction, but also an exceptional successor at
the enclosing exception handler.
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1 e
try { 2 call Cm
C.mQ); 3 ...
} 4 Jump Lexit
catch { 5 Leateh :
cee 6 ...
} 7 Lexit:
8

Fig. 5. Compilation of exception handling.

In both examples, a high-level decompiler augments the set of successors with
respect to those of the low-level decompilers. The problem is that we do not have
abstract states for the low-level decompilers at the newly introduced successors.
This, in turn, means that it will be impossible to continue the decompilation at
one of these successors.

To illustrate the latter situation, consider a static method call C.m() inside
the try of a try-catch block and its compilation to assembly (shown in Fig. 5).
The Locals decompiler, and several decompilers after it, produce one successor
abstract state after the call to Cm() (line 2). In order to soundly analyze a
possible throw in C.m(), the decompiler that handles exceptions must add one
more successor at the method call for the catch block at L¢atcn - The challenge is
to generate appropriate low-level abstract states for the successor at L¢atcn . For
example, the exceptions decompiler might want to direct all other decompilers
to transform their abstract states before the static method call and produce an
abstract state for Leaten from it by clobbering certain registers and portions of
memory.

The mechanism we propose is based on the observation that we already have
a pipeline of decompilers that is able to transform the abstract states at all
levels when given a sequence of machine instructions. To take advantage of this
we require a decompiler to provide, for each newly introduced successor, a list
of machine instructions that will be “run” through the decompilation pipeline
(using step) to produce the missing lower-level abstract states. To achieve this,
we extend the succ type (used in the return of step) to also carry an optional
list of machine instructions (of type instr.):

type succ = loc X (abs X ((instr, list) option)) .

As a side-condition, the concrete machine instructions returned by step should
not include control-flow instructions (e.g., jump). We also extend the concrete
machine instruction set with instructions for abstracting effects; for example,
there is a way to express that register r, gets modified arbitrarily (havoc r, ).!

! SQuch instructions are also useful for abstracting x86 instructions for which we cur-
rently do not handle.
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Fig. 6. Communication between decompilers. The primary communication chan-
nel is the instruction stream, but queries and reinterpretations provide means for
higher-level decompilers to communicate information to lower-level decompilers.

Both queries and these reinterpretations introduce a channel of communica-
tion from higher-level decompilers to lower-level ones, but they serve complimen-
tary purposes. For one, reinterpretations are initiated by high-level decompilers,
while queries are initiated by low-level decompilers. We want to use queries
when we want the question to be decompiled, while we prefer to communicate
through reinterpretations when we want the answers to be decompiled. Fig. 6
summarizes these points. In Appendix A, we give the product decompiler that
ties decompilers together (with queries and reinterpretations).

Soundness of Decompiler Pipeline. One of the main advantages of the
modular architecture we describe in this paper is that we can modularize the
soundness argument itself. This modularization increases the trustworthiness of
the program analysis and is a first step towards generating machine-checkable
proofs of soundness, in the style of Foundational Proof-Carrying Code [App01].

Since we build on the framework of abstract interpretation, the proof oblig-
ations for demonstrating the soundness of a decompiler are fairly standard lo-
cal criteria, which we sketch here. Soundness of a decompiler module is shown
with respect to the semantics of its input and output languages given by con-
crete transition relations. In particular, leaving the program implicit, we write
I, 31 ~, I'@Q¢ for the one-step transition relation of the input (lower-level)
machine, which says that on instruction I, and pre-state [, the post-state is I’
at program location ¢ (similarly for the output (higher-level) machine #'). As
usual, we can specify whatever safety policy of interest by disallowing transitions
that would violate the policy (i.e., modeling errors as “getting stuck”). Also, as
usual, we need to define a soundness relation | 3 a between concrete states for
the input machine and abstract states, as well as a simulation relation [ ~ h
between concrete states of the input and output machines.

Note that for a given assembly program, we use the same locations for all
decompilations since we consider one-to-one decompilations for presentation pur-
poses (otherwise, we would consider a correspondence between locations at dif-
ferent levels). Let Lo and #, denote the initial machine states (as a mapping
from starting locations to states) such that they have the same starting locations
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each with compatible states (i.e., dom(£y) = dom(#p) and Lo(¢) ~ Hy(€) for all
¢ € dom(Ly)). Now consider running the decompiler pipeline to completion (i.e.,
to fixed point) and let A, be the mapping from locations to abstract states at
fixed point. Note that A, must contain initial abstract states compatible with
concrete states in £y (i.e., dom(Any) C dom(Ly) and £o(¢) 2 A () for all
£ € dom(Ly)).

We can now state the local soundness properties for a decompiler module’s
step. A decompiler’s step need only give sound results when the query object
it receives as input yields answers that are sound approximations of the ma-
chine state, which we write as h < ¢ (and which would be defined and shown
separately).

Property 1 (Progress). If | ~ h, | 2 a, h 3 q, step((¢,a),I;) = (Iy,A’) and
Iy 8 h~g W @L, then I, 81 ~, 1'@Qf (for some h').

Progress says that whenever the decompiler can make a step and whenever
the output machine is not stuck, then the input is also not stuck. That is, a
decompiler residuates soundness obligations to higher-level decompilers through
its output instruction. Thus far, we have not discussed the semantics of the
intermediate languages very precisely, but here is where it becomes important.
For example, for stack slots to be soundly translated to temporaries by the Locals
decompiler, the semantics of the memory write instruction in Locals IL is not
the same as a memory write in the assembly in that it must disallow updating
such stack regions. To implement a decompiler pipeline that enforces a particular
safety policy encoded in the concrete machine, we could have a module at the end
that simply checks syntactically that all the “possibly unsafe” instructions have
been decompiled away (e.g., for memory safety, all memory read instructions
have been decompiled into various safe read instructions).

Property 2 (Preservation). If | ~ h, | 3 a, h $ ¢q and step((¢,a),I,) =
(Iy, A"), then for every I’ such that I, 8 [ ~», I’Q¢, there exists h';a’ such
that Is ¢ h ~>y h'@QC where I’ ~ b/ and o’ = Ay (€) where I S d’.

Preservation guarantees that for every transition made by the input machine,
the output machine simulates it and the concrete successor state matches one of
the abstract successors computed by step (in Ay ).

3 Decompiler Examples

In this section, we describe a few decompilers from Fig. 1. While each individual
decompiler is relatively straightforward, together they are able to handle the
complexities typically associated with analyzing assembly code. Each decompiler
has roughly the same structure. For each one, the input instruction language is
given by the lower-level decompiler in the pipeline. Each decompiler defines a
type of output instructions instr for expressing the result of decompilation and
a notion of abstract state abs. The abstract state generally is a mapping from
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variables to abstract values, though the kinds of variables may change through
the decompilation.

For each decompiler, we give the instruction of the output language, the lat-
tice of abstract values, and a description of the decompilation function step.
We use the simplified notation step(acurr, lin) = (Tout, Gsucc) t0 say that in
the abstract state acy~ the instruction I, is decompiled to I,,; and yields a
successor state agyee. We write agye.@F to indicate the location of the successor,
but we elide the location in the common case when it is “fall-through”. A miss-
ing successor state ags,.. means that the current analysis path ends. We leave
the query object implicit, using ¢ to stand for it when necessary. Since each
decompiler has similar structure, we use subscripts with names of decompilers
or languages when necessary to clarify to which module something belongs.

Decompiling Calls and Locals. The Locals module deals with stack con-
ventions and introduces the notion of statically-scoped local variables. The two
major changes from assembly instructions () are that call and return instruc-
tions have actual arguments.

instr I, u=1I.|z:=calll(e,...,e,) | x:=icall [¢](e1,...,e,) | returne

The abstract state L includes a mapping I' from variables x to abstract
values 7, along with two additional integers, n;, and np;, that delimit the
current activation record (i.e., the extent of the known valid stack addresses for
this function) with respect to the value of the stack pointer on entry.

abs L= (I;n0;nn)

The variables mapped by the abstract state include all machine registers and
variables t,, that correspond to stack slots (with the subscript indicating the
stack offset of the slot in question). The abstract values are defined by the
following grammar:

abstract values 7 :=T |n|sp(n)|ra]| &l |cs(r)

We need only track a few abstract values 7: the value of stack pointers sp(n), the
return address for the function ra, code addresses for function return addresses
&¢, and the value of callee-save registers on function entry cs(r). These values
form a flat lattice, with the usual ordering (T being the top element).

Many of the cases for the step function propagate the input instruction
unchanged and update the abstract state. We show below the definition of step
for the decompilation of a stack memory read to a move from a variable. For
simplicity, we assume here that all stack slots are used for locals. This setup can
be extended to allow higher-level decompilers to indicate (through some high-
to-low communication) which portions of the stack frame it wants to handle
separately.

I'te:sp(n) nw<n<ny n=0(mod4)

step((I; nio; npi), 7 :=mle]) = (7 :=tn, (L'[r — I'(tn)]; Mio; mni))
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We write I' e : 7 to say that in the abstract state (I";nj,;np;), the expression
e has abstract value 7. The first premise identifies the address as a stack address,
the second checks that the address is within the activation record, while the last
ensures the address is word-aligned. Again for simplicity in presentation, we only
consider word-sized variables here. For verifying memory safety, a key observa-
tion is that Locals proves once and for all that such a read is to a valid memory
address; by decompiling to a move instruction, no higher-level decompiler needs
to do this reasoning. The analogous translation for stack writes appears on, for
example, line 19 in Fig. 3.
The following rule gives the translation of function calls:

I'(zr) =&0 I'(rsp) =sp(n) g¢.isFunc(e) =k n =0 (mod 4)
I'" = scramble(I,n, k)

step ((I'; nio; nie), icall [e])
= (Zyy := icall [e](z1, ..., Tk), <F’[I'sp — sp(n+4)]; nio; na; ) QL)

It checks that the return address is set, ry, contains a word-aligned stack pointer
and is word-aligned, and is a call according to the query. Based on the calling
convention and number of arguments, it constructs the call with arguments and
the return register. The successor state I is obtained first by clearing any
non-callee-save registers and temporaries corresponding to stack slots in the
callee’s activation record, which is determined by scramble using the calling
convention and n and k. Then, r,, is updated, shown here according to the x86
calling convention where the callee pops the return address. In implementation,
we parameterize by a description of the calling convention. There is also an
additional decompilation case for direct calls, which is analogous to indirect
calls.

On a return, the Locals decompiler checks that the stack pointer is reset
correctly and the callee-save registers have been restored. It then re-writes the
return to include the return value register.

I'(rsp) =sp(4) I'(r) =cs(r) (for all callee-save registers r)

step({I"; nio; nhi), return) = return Ty

Stack Overflow Checking. An interesting aspect of the Locals decompiler is that
it is designed to reason about stack overflow. This handling is mandatory for
eventually proving its soundness. There are many possibilities for detecting stack
overflow. Our implementation is for code compiled with gce’s (and gcj’s) built-
in mechanism for detecting stack overflow (-fstack-check). This mechanism
relies on a inaccessible guard page and on stack probes inserted by the compiler
to ensure that no function can accidentally skip over the guard page.

We show below a transition rule that identifies a stack probe and extends
ny, in the abstract state:

I'te1 :sp(n) mny — GUARD_PAGE_SIZE < n < ny,

step((I"; nio; mni), mler] := e2) = (nop, (I';n;mh))
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A probe is a stack access that is below the current n;, but must be within
the size of the guard page (GUARD_PAGE_SIZE). Such an access either aborts the
program safely, or sp(n) is a valid stack address, so n can be used as the new
Ny, . To our knowledge, this mechanism has not been previously formalized for
the purpose of verifying the absence of stack overflow.

Symbolic Evaluator. The SymEval (€) module does the following analysis
and transformations for higher-level decompilers to resolve some particularly
pervasive problems when analyzing assembly code.

1. Simplified and Normalized Expressions. High-level operations get compiled
into long sequences of assembly instructions with intermediate values ex-
posed (as exemplified in Fig. 3), as a direct result of three-address code. To
analyze one instruction at a time, we need to assign types to all intermediate
expressions, but this undertaking quickly becomes unwieldy. Additionally,
arithmetic equivalences are used extensively by compilers (particularly in
optimized code). We want to accumulate larger expression trees and perform
arithmetic simplification and normalization before assigning types. Observe
how SymEval does this work in the example decompilation of line 17 in
Fig. 4.

2. Static Single Assignment (SSA). In contrast to source-level variables, flow-
sensitivity is generally required to analyze registers because registers are
reused for unrelated purposes. To have a set variables suitable for source-
level analyses, the symbolic evaluator yields an SSA-like (or functional-like)
program representation.

3. Global Value Numbering (GVN). The same variable may also be placed in
multiple locations (yielding an equality on those locations). For example, to
check that a reference stored on the stack is non-null, a compiler must emit
code that first loads it into a register. On the non-null path, an assembly-
level analysis needs to know that the contents of both the register and the
stack slot is non-null. So that higher-level decompilers do not have to deal
with such low-level details, the symbolic evaluator presents a single symbolic
value o that abstracts some unknown value but is stored in both the register
and the stack slot (implicitly conveying the equality). Combined with the
above, the symbolic evaluator can be viewed as implementing an extended
form of GVN [AWZ88,GN04].

These issues with analyzing assembly were identified in our prior work [CCNS05],
but we describe here a way to modularize those techniques via decompilation.

The output instruction language for the SymEval decompiler is essentially
the same as that for Locals, except that the operands may contain expression
trees. However, the expression language extends the input expressions (i.e., of
LocalslL) with symbolic values « and memory read expressions.

expr er i=a |mleg] |-
symbolic values «,
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Note that the memory read expression leaves the memory from which the value
is read implicit (i.e., reads are always with respect to the current memory). (In-
cluding memory read expressions in symbolic evaluation is actually an extension
to the ideas described in our prior work [CCNS05].)

The abstract state consists of a finite map X' from variables x to expressions
in its output language e;. To summarize what we track, the concretization of

the abstract state E = (x; = e1,x2 = €a,...,Z, = €,) is
(Bar, a2, .., . x1=€1 Axoa=e€a A - A\ Tp=c¢p)
where a1, s, ..., q,, are the symbolic values that appear in F.

We write e |} ¢’ for the normalization of expression e to ¢’. The details of the
normalization are not particularly relevant, except that we require the following
correctness condition: two expressions e; and e; normalize to syntactically equal
expressions (i.e., e; |} e and es |} €) only if e; and e are semantically equivalent.
Conversely, the precision of normalization determines the equalities we can infer.

With an accumulated value state Y, the decompilation of instructions is
straightforward. For each input expression e,, we substitute for the registers
and temporaries the accumulated expression e; for them in X and normalize;
assignments are then replaced by bindings of a fresh symbolic value. For example,
the decompilation of an icall is as follows:

Y(eo) ey -+ X(en)den (afresh)
step(X, x := icall [eo](e1,...,en)) = (a = icall [egl(e],...,en), %)

where X’ is the value state that reflects the effects of the call (as described

by Locals), for instance, the register state is scrambled except for the callee-

save registers. In the above, we treat X as a substitution, writing X(e) for the

expression where registers and temporaries are replaced by their mapping in Y.

Compare this rule with the example decompilation shown on line 17 in Fig. 4.
To accumulate, for instance, a memory read, we have the following rule:

Y(e) e (afresh)

step(X, 7 :=mle]) = (o = mle'], Y[z — mle]])

Since we compute the normalization for decompilation anyway, we always keep
normalized expressions in the value state. However, not shown here is that we
memoize the assignment of symbolic values to expressions, so equivalent expres-
sions (as determined by normalization) are assigned the same symbolic value.
In the case where the value of this memory read has already been assigned a
symbolic value, then we can omit the output instruction.

Because memory reads expressions are always in terms of the current mem-
ory, on a write to memory, we forget all such expressions and replace them by
symbolic values. This conservative (and simple) modeling of the heap has been
sufficient because while the structure of the memory read is lost on a write,
a “handle” to its value is preserved as a symbolic value. To strengthen this
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modeling, one could imagine using a theorem prover or querying to try to ob-
tain disaliasing information (i.e., e; # ey) in order to preserve some memory
read expressions, or introducing explicit heap variables in read expressions (e.g.,
sel(m, e)) to further postpone alias analysis. However, both these solutions seem
heavyweight compared with having higher-level decompilers strengthen their
type systems to keep whatever necessary shape information about past heaps it
needs.

Both for the symbolic evaluator and higher-level decompilers, we keep with
each subexpression, a symbolic value that denotes it. With this information, we
inductively define an operation T- over expressions that drops memory reads:

def def

Tmle))a =a Tn=n T(e1+e2) = Ter + Teo

where the subscript on expressions indicates the symbolic value that is assigned
to it. Lifting this operation to value states, we define the transition on memory
writes:
Yer) er X(ea) | eh
step(X, mleq] := e2) = (mle]] := €5, 1Y)

Widen and Ordering. Recall that a value state represents a (finite) conjunc-
tion of equality constraints (of a particular form). Symbolic values essentially
provide names for equivalence classes of expressions. To widen value states, we
treat expressions as uninterpreted functions. Then, the widen algorithm is es-
sentially the upper bound operation described in our previous work [CCNS05],
which is a special case of the join for the general theory of uninterpreted func-
tions [GTNO04,CL05]. However, special care must be taken to handle memory
read expressions correctly for both widening and ordering. Read expressions can-
not be compared between abstract states because their memory state may be
different (and because memory is implicit, we cannot tell otherwise). Therefore,
we must also forget all memory read expressions at join points in the control-flow
graph.

To compute the non-trivial widening X'V X5, we first need to forget all mem-
ory read expressions. Let Y denote the result of the widen. The resulting value
state’s domain should be the intersection of the domain of X and X5 with
mappings to expressions that preserve only syntactically equivalent structure.
For the moment, let us denote an expression in the resulting state as the corre-
sponding pair of expressions in the input states. That is, the resulting state is
defined as

D) = ((121) (), (122)(2)) -

Then, we translate these pairs recursively over the structure of expressions to
yield the resulting value state. For expressions e; and eq, if their structures do
not match, then they are abstracted as a fresh symbolic value. Formally, let ™7
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be the translation of these pairs to a single expression:

(o, az)7 '3 where 3 fresh

m(n,n)’ =

(e + €}, ea + €h)T = Tey, €)1+ (e, €5)

Me1,e2) 1= 3 where f fresh (otherwise)

Note that each distinct pair of symbolic values maps to a fresh symbolic value.
Soundness of this operation follows from the join of uninterpreted functions
(see [GTN04,CL05]).

The ordering on abstract states is essentially given by implication of the
equality constraints; however, we can only compare values states without mem-
ory read expressions. Let us first consider deciding ordering on read-free value
states X T X,. That is, we want to decide whether v(X) = v(X3) where v
denotes the concretization function (as standard). We consider the pairs of sym-
bolic values (aq,aq) that result from the analogous procedure as for the widen.
Recall that symbolic values name equivalence classes of expressions. If as is in
only one pair, then the equalities implied by Y5 named by as are also implied
by X (named by a1), so if all as’s (i.e., right projections) appear in at most
one pair, then all the equalities implied by Y5 are also implied by Y;. This
observation gives an algorithm for deciding ¥y T X5. Now, consider deciding
X1 C Xy for arbitrary values states. It is clear that v(X) = v(1X) for all X,
SO we can say

Xy if X C 1% and Yo =15, .

The above widening operator has the stabilizing property because (1) the
first state has a finite number of expressions; (2) dropping memory read expres-
sions can occur at most once; and (3) each iteration can only partition existing
equivalence classes. With a finite number of expressions, there can only be a fi-
nite number of equivalence classes. It is worthwhile to point out why this upper
bound operation is simpler and does not require additional heuristics to ensure
stabilization as compared to the join for the general theory of uninterpreted
functions [GTN04,CL05]. The key observation is that we never push assump-
tions that union equivalence classes (e.g., to reflect a branch condition). This
restriction prevents cyclic dependencies, that is, a constraint o = e where e
contains «.

Decompiling Object-Oriented Features. The OO decompiler (O) recog-
nizes compilations of class-based object-oriented languages, such as Java and
C#. These core object-oriented features are generally compiled in the same way:
an object is a record that contains a pointer to its virtual dispatch table and its
fields. The dispatch table is then a record that contains pointers to its methods.
Therefore, OO can identify virtual method dispatch, field reads, and field writes
based on this compilation strategy. In this section, we describe OO specialized
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to object layout used by gcj; in our implementation, it is parameterized by an
object layout description.

The output instruction language for the OO decompiler includes the in-
structions from the symbolic evaluator, except it is extended for virtual method
dispatch, field reads, and field writes:

instr Ip:= Iz | a =putfield [e,n] | & = invokevirtual [eg,n](e1, ..., €n)
expr epu=eg | getfield [e,n]

Almost all of the heavy lifting has been done by the symbolic evaluator, so OO
is quite simple. The abstract values that we need to track are straightforward:
a type for object references, which may be qualified as non-null or possibly null.
However, the variables for OO are symbolic values instead of machine state
elements.

abs I'u=-|La:T
types 7 ::=T | [nonnull] obj

Typing is also straightforward, except types of fields are obtained through queries.
The decompilation of virtual method dispatch (as on line 17 in Fig. 4) is as
follows:

I'(B) =nonnullobj I'kFei:71 - I'Fem:Tm
g.isMethod(B,n) =71 X +++ X T — T

step(I,a = icall (m[m[B] + n]](B, e1, ..., em))
= (a = invokevirtual [, n](e1,...,em), '[a — T])

It checks that the object reference is non-null and that the dispatch table is
obtained from the same object as the object being passed as the receiver object.
Observe that since the abstract state is independent of the register and memory
state, the successor abstract state is particularly easy to derive. Decompilations
for field reads (getfield) and field writes (putfield) are similar. Note that the
symbolic evaluator enables the use of such simple types and rules, as opposed
to the dependent types used in our prior work [CCNS05] (though we may still
choose to extend the type system to include such dependent types for dispatch
table and methods if this information needs to be tracked across writes or join
points).

One additional bit of interesting work is that it must recognize null-checks
and strengthen an obj to a nonnull obj. For example,

I'=if (ea =0)¢ It eq:obj
step(I,I) = (I, I'[a — nonnull obj])

Because of the symbolic evaluator, OO simply updates the type of a symbolic
value o and need not worry about the equivalences between all the registers or
temporaries that contain .
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Modularization
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Fig. 7. Size of decompiler modules for the coolc pipeline (Decompilers) com-
pared with our previous monolithic assembly-level analyzer (Monolithic).

Java Type Inference. After the decompilations performed by OO, we get
a language roughly-like the JVML but a bit higher-level—there is no operand
stack, but rather symbolic values, which are closer to source-level variables.
The JavaTypes decompiler introduces the Java source types. It obtains the class
hierarchy information and answers the queries of lower-level decompilers with it.
With the class hierarchy, the analysis it performs is exceedingly simple and well-
studied—somewhere between Java bytecode verification and Java type-checking
in complexity. The only place where flow-sensitivity is needed is to handle down
casts (which is like the null-check in OO). In our implementation, most of the
work in JavaTypes is actually not in the analysis, but rather obtaining the class
hierarchy. We obtain the class hierarchy by reading tables in the data segment
generated by gcj that are used to implement reflection, and so we do not require
any additional annotations to recover types.

Implementation and Experience. We have implemented and tested the
above decompiler modules in multiple decompiler pipelines, including three main
ones for assembly generated from: Java programs by gcj, C programs by gcc,
and Cool programs by coolc. All decompiler pipelines start from a very sim-
ple untyped RISC-like assembly language to minimize architecture dependence.
We have parsers for x86 and MIPS that translate to this generic assembly. The
Locals module is parameterized by the calling convention, so we can easily han-
dle several different calling conventions (e.g., standard x86, standard MIPS, or
the non-standard one used by coolc).

Each of the decompiler modules described above is actually quite small (at
most ~600 lines of OCaml). Furthermore, each module is approximately the
same size providing some evidence for a good division of labor. The overhead
(i.e., the definition of the intermediate languages and associated utility func-
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tions) seems reasonable, as each language only required 100—150 lines of OCaml.
The entire coolc pipeline (including the Cool type analysis but not the frame-
work code) is 3,865 lines compared to 3,635 lines for a monolithic assembly-level
analyzer from our previous work [CCNS05], which uses the classic reduced prod-
uct approach. Cool is a fairly realistic subset of Java, including features such
as exceptions, so the CoolTypes module includes the handling of exceptions as
described in Sec. 2. The additional code is essentially in the definition of the
intermediate languages, so what we conclude is that our pipeline approach does
give us a modular and easier to maintain design without imposing an unreason-
able code size penalty with respect to the monolithic version. These results are
shown in Fig. 7, and we can observe visually that the decompiler modules are
indeed approximately equal in size. Additionally, note that 2,159 and 1,515 of
the 3,865 lines of the coolc decompiler pipeline are reused as-is in the gcj and
gcc pipelines, respectively.

Comparing the implementation experience with our previous assembly-level
analyzer, we found that the separation of concerns imposed by this framework
made it much easier to reason about and implement such assembly-level analy-
ses. For example, because of the decompilations, Cool/Java type inference is no
longer intermingled with the analysis of compiler-specific run-time structures.
With this framework, we also obtained comparable stability in a much shorter
amount of time. Many of the bugs in the implementation described in our prior
work [CCNS05] were caused by subtle interactions in somewhat ad-hoc modu-
larization there, which simply did not materialize here. As an example of the
utility of this approach, after the implementation for the class table parser was
complete, one of the authors was able to implement a basic Java type inference
module in 3-4 hours and ~500 lines of code (without the handling of interfaces
and exceptions).

4 Case Studies

To explore the feasibility of applying existing source-level tools to assembly code,
we have used BLAST [HIM*02] (a model checker for C) and Cqual [FTA02] (a
type qualifier inference for C) on decompilations produced by our gcc pipeline.
To interface with these tools, we have a module that emits C from SymEval IL
(though ideally we might prefer to go directly to the tools internal representation
to avoid dealing with the idiosyncrasies of C front-ends). SymEval IL is essen-
tially C, as register reuse with unrelated types have been eliminated by SSA and
expression trees have been recovered. However, while a straightforward transla-
tion from SymEval IL produces a valid C program that can be (re)compiled and
executed, the typing is often too weak for source-level analysis tools. To avoid
this issue for these experiments, we use debugging information to recover types.
When debugging information is not available, we might be able to obtain typing
information using a decompiler module that implements a type reconstruction
algorithm such as Mycroft’s [Myc99].
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Code Size Decomp. Verification
Test Case C x86 Orig. Decomp.
(loc) (loc) (sec) (sec) (sec)

gpmouse.c (B) 7994 1851 0.74 0.34 1.26
tlan.c (B) 10909 10734 8.16 41.20 94.30
gamma_dma.c (Q) 11239 5235 2.44 0.97 1.05

Table 1. Decompilation and verification times using BLAST (B) and Cqual (Q).

We have taken the benchmarks shown in Table 1, compiled them to x86
(unoptimized), and decompiled them back to C before feeding the decompila-
tions to the source-level tools (B for BLAST and Q for Cqual). In all cases,
we checked that the tools could verify the presence (or absence) of bugs just as
they had for the original C program. In the table, we show our decompilation
times and the verification times of both the original and decompiled programs
on a 1.7GHz Pentium 4 with 1GB RAM. The BLAST cases gpmouse.c and
tlan.c are previously reported Linux device drivers for which BLAST checks
that lock and unlock are used correctly [HIM T 02]. For gamma dma.c, a file
from version 2.4.23 of the Linux kernel, Cqual is able to find in the decompiled
program a previously reported bug involving the unsafe dereference of a user-
mode pointer [JW04]. Both Cqual and BLAST require interprocedural analyses
and some C type information to check their respective properties. We have also
repeated some of these experiments with optimized code. With gpmouse, we
were able to use all the -02 optimizations in gcc 3.4.4, such as instruction
scheduling, except ~fmerge-constants, which yields code that reads a byte di-
rectly from the middle of a word-sized field, and -foptimize-sibling-calls,
which introduces tail calls. The latter problem we could probably handle with
an improved Locals module, but former is more difficult. One limitation we have
observed with using the debugging information is that complicated pointer off-
sets are challenging to map back to C struct accesses. Also, we do not yet
handle all assembly instructions, particularly kernel instructions.

5 Related Work

Combinations of Analyses. In abstract interpretation, the problem of combining
abstract domains has also been considered by many. Cousot and Cousot [CC79)
define the notion of a reduced product, which gives a “gold standard” for pre-
cise combinations of abstract domains. In contrast to the direct product (i.e.,
a Cartesian product of independent analyses), obtaining a reduced product im-
plementation is not automatic; they generally require manual definitions of re-
duction operators, which depend on the specifics of the domains being com-
bined (e.g., [CMB™95]). Roughly speaking, we propose a framework for build-
ing reduced products based on decompilation, which is particular amiable for
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modularizing the analysis of assembly code. Cortesi et al. [CCH94] describe a
framework (called an open product) that takes queries as the central (and only)
means of communication. They allow arbitrary queries between any pair of do-
mains, whereas our queries are more structured through decompilation. With
this structure, modules need only agree upon a communication interface with its
neighbors (i.e., the decompiler immediately below it and the one immediately
above it). An alternative framework for combination of abstract domains fixes
one common language for communication (e.g., first-order logic), for example,
as in Chang and Leino [CL05]. In that framework, which owes inspiration to the
Nelson-Oppen combination of decision procedures [NO79], there is a centralized
dispatcher (the congruence-closure domain), whereas we have a more distributed
communication model.

Combining program analyses for compiler optimization is a well-known and
well-studied problem. It is widely understood that optimizations can lead to
mutually beneficial interactions, which leads to a phase ordering problem. At
the same time, it is known that manually constructed combinations of analyses
can be more precise than an iterative application of individual optimizations but
at the cost of modularity. Lerner et al. [LGC02] propose modular combinations of
compiler optimizations also by integrating analysis with program transformation,
which then serve as the primary channel of communication between analyses. We,
however, use transformation for abstraction rather than optimization. For this
reason, we use layers of intermediate languages instead of one common language,
which is especially useful to allow residuation of soundness obligations. They also
found it necessary to have a side-channel for communicating facts contained in
abstract states (snooping), which is similar to our query mechanism except that
we motivate making queries a first-class mechanism.

Decompilation. Practically all analysis frameworks, particularly for low-level
code, perform some decompilation or canonicalization for client analyses. For
example, the Soot framework [VRCG 99| for the JVML provides several dif-
ferent levels intermediate representations (Baf, Jimple, Shimple, and Grimp)
that assign types, decompile exceptions, convert into SSA, and introduce tree-
structured expressions. Our resulting decompilations for Java are similar to
theirs, though there are variances driven by differences in focus. They want to
support optimization, while we are more concerned with verification. This differ-
ence shows up in, for example, we convert into SSA and introduce tree-structured
expressions much earlier in our pipeline. Of course, we have also been concerned
with a framework that allows additional pipelines for different languages to be
built quickly and easily, as well as starting from assembly code.

Similarly, CodeSurfer/x86 [BR04], which is built on IDAPro [IDA] and Code-
Surfer [AZ05], seeks to provide a higher-level intermediate representation for
analyzing x86 machine code. At the core of CodeSurfer/x86 is a nice combined
integer and pointer analysis (value set analysis) for abstract locations, which
may be machine registers, stack slots, or malloc sites. The motivation for this
analysis is similar to that for the Locals module, except we prefer to handle
the heap separately in language-specific ways. Their overall approach is a bit
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different from ours in that they try to decompile without the assistance of any
higher-level language-specific analysis, which leads to complexity and possible
unsoundness in the handling of, for example, indirect jumps and stack-allocated
arrays. While even they must make the assumption that the code conforms to a
“standard compilation model” where a run-time stack of activation records are
pushed and popped on function call and return, their approach is more generic
out of the box. We instead advocate a clean modularization to enable reuse of
decompiler components in order to make customized pipelines more palatable.

Troger and Cifuentes [TCO02] give a technique to identify virtual method
dispatch in machine code binaries based on computing a backward slice from
the indirect call. They also try to be generic to any compiler, which necessarily
leads to difficulties and imprecision that are not problems for us.

Cifuentes et al. [CSF98] describe a decompiler from SPARC assembly to C.
Driven by the program understanding application, most of their focus is on re-
covering structured control-flow, which is often unnecessary (if not undesirable)
for targeting program analyses. Mycroft [Myc99] presents an algorithm for re-
covering C types (including recursive data types) based on a variant of Milner’s
unification-based type inference algorithm [Mil78]. We could also use this tech-
nique in a decompiler module to recover recursive data types. By building it on
top of the Locals module (as well as SymEval), it is possible we could enrich the
results that can be currently obtained by this technique.

Reusing Source-Level Analyses. Rival [Riv03] shows how to use debugging infor-
mation and the invariants obtained by a source-level analysis to verify that they
hold for the compilation to assembly. Unfortunately, this verification process
still requires implementing a corresponding assembly-level analysis with all the
complications we have described. One advantage of their approach is that the
verification can be done in a linear scan by using the translated invariants at
control-flow join points. This separation could be beneficial because it may be
more efficient to compute the fixpoint at the source-level or for the mobile-code
application where the checking on the consumer side must be as efficient as pos-
sible. When source code and the source-level analysis are available, we could
imagine utilizing this optimization in our framework as well.

6 Conclusion and Future Work

We have described a flexible and modular methodology for building assembly
code analyses based on a novel notion of cooperating decompilers. We have shown
the effectiveness of our framework through three example decompiler pipelines
that share low-level components: for the output of gcc, gcj, and compilers for
the Cool object-oriented language.

Primarily for program understanding, one might consider building a struc-
tural analysis decompiler module on top of the existing pipelines that could
recover typical source-level control-flow constructs. However, a loop analysis de-
compiler that leaves the control-flow unstructured may also be useful for higher-
level analyses.
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We are particularly interested in assembly-level analyses for addressing mobile-
code safety [Nec97,MWCG99], ideally in a foundational but also practical man-
ner. As such, we have also designed our decompilation framework with soundness
in mind (e.g., making decompilers work one instruction at a time and working in
the framework of abstract interpretation). To achieve this, we envision building
on our prior work on certified program analyses [CCNO6], as well as drawing
on abstract interpretation-based transformations [CC02,Riv03]. Such a modu-
larization of code as we have achieved will likely be critical for feasibly proving
the soundness of analysis implementations in a machine-checkable manner. This
motivation also partly justifies our use of reflection tables produced by gcj or
debugging information from gcc, as it seems reasonable to trade-off, at least,
some annotations for safety checking.

Decompilation even beyond C or Java-like source code may also serve as
a convenient methodology for structuring program analyses and verifiers. For
example, one might imagine decompiler modules that translate certain mutable
data structures into functional ones or uses of locks into atomic sections.
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A The Product Decompiler

To clarify how the decompiler modules interact to advance simultaneously, we
sketch here the product decompiler that ties together the pipeline. Let L be
a decompiler that translates assembly instructions I to instructions in an in-
termediate language I, and let H be a higher-level decompiler that trans-
lates I, instructions into a higher-level IL instructions I, . The product decom-
piler is then a decompiler from the assembly language I~ to the higher-level
IL I,. To indicate a sequence of instructions, we write [* and use step™ :
curr X (instr;, list) — abs as a lifting of step that gives the abstract
transition relation for straight-line code (i.e., a sequence of without control-flow
instructions). Also, for presentation purposes, we consider type succ to be a
finite map from locations to pairs of an abstract-state and a reinterpretation
(with such a mapping written as ¢ — (a, reinterp)) and abuse notation slightly
by identifying lists with sets.

In order to construct query objects, every decompiler must also define a
function getHints : hints,,; X abs — hints;, that returns the hints object
described in Sec. 2 for its input language. Observe that a decompiler produces
the hints,, object (for its input language) by either consulting its abstract
state or by forwarding queries to higher-level decompilers (through the given
hintsout).
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The abstract state of the prod-
uct decompiler is simply the pair
of abstract states of the sub-
decompilers. For step, we first
call getHintsg to get this call-
back object for £ (line 1). We then
make a transition in L to gen-
erate the intermediate instruction
I in order to make a transition in
H (lines 2 and 3). Note that our
actual implementation allows one-
to-many decompilations (many-to-
one can be obtained by using one-
to-none). The output instruction

© 0 XY N W~

~
=

type abs = absg X absy

fun step ((qur, (lo, hi)), Ir) =
let g, = getHints, (g, hi) in
let I, Lo’ = step, ((qs, o), 1) in
let Iy, Hi' = stepqy((gsr, hi), 1) in
I, combine(Lo" U reinterp(Hi'), Hi')
where combine(Lo’, Hi') =

[ £+ (lo', i) |
lo' = Lo’ (£) A ki’ = Hi'(¢) ]
and reinterp(Hi') =
[£+— 10" | Hi'(£) = (_,Some(I}))
A lo" = step} ((qc, 10), 1) ]

for the product decompiler is simply from the output of stepq, (line 4), while
the combine collects together the successors. If step,, yielded a reinterpreta-
tion at £, then we get the successor state for L by re-running step, with the
reinterpretation instructions I (line 10); otherwise, ¢ should be in Lo’.
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